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Abstract

We apply a game-theoretic real options approach to analyse two mechanisms for the
adoption of industry compatibility standards in situations of conflict. Conflicts arise if the
players agree that adoption by the industry of one particular standard is best for all, but
they each have a vested interest in their own preferred standard being the industry choice.
We analyse the two main mechanisms for standard adoption: one mechanism focuses on
achieving consensus via negotiation and the other is via the market in which one player
unilaterally adopts and expects her competitors to follow suit. A key question in the field is
which mechanism performs better. Another is when should a participant take the lead and
unilaterally adopt a particular standard.

We address these questions in our paper by deriving equilibrium strategies for both mech-
anisms. In particular, we show that by considering the problem from the unique perspective
as a real option timing game, a comparison of the mechanisms to help inform the industries
which performs best cannot provide a definitive answer because it depends on each of the
participants’ expected payoffs from unilateral adoption and concession at any given time.
Furthermore, the equilibrium expected payoffs in each of the mechanisms are equivalent.

Keywords : Standardisation; Game theory; Real options; Timing games.

1 Introduction

Standards are an agreed way of doing things for the design or measurement of products and
processes. The adoption and market acceptance of a particular standard is meant to reduce
technological and legal uncertainty across and within industries by guaranteeing that conform-
ing to the standard will enable interoperability and network benefits among independently
manufactured products and services (Wen et al. [2022]; Deng et al. [2022]; Blind et al. [2023];
Fichman [2004]). Other benefits of standard adoption include establishing safety requirements,
promoting competition in the market, and facilitating divisions of labour. However, they can
also be associated with costs such as the resulting market power and higher rents that accrue
to certain parties (Blind et al. [2023]). As such, conflicts can arise in the sense that all relevant
parties agree that one standard should be adopted by all, but reaching agreement and consensus
on which standard is difficult because each party wants their own standard to be adopted. Rea-
sons for such conflict include: different parties plan to serve different segments of the market;
a party may have a competitive advantage and experience in a particular system and, hence,
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has vested interest in their own standard; there may be a variety of opinions on which standard
is best for the industry; or nations may press for certain standards to protect domestic firms
(Farrell and Saloner [1988]).

The adoption of compatibility standards emerge in two main ways (Simcoe [2012]; Rysman
and Simcoe [2008]). One approach is via the market in which an industry player - a potential
leader - adopts a standard and the other players in the industry follow suit (Besen and Farrell
[1994]). These are known as de facto standards. For example, iTunes was adopted originally by
Apple and was initially only available on Apple devices. However, in October 2003, iTunes was
updated to a more widely compatible version to support Microsoft Windows 2000 and Windows
XP and was adopted and made available across a wide range of non-Apple devices. Another
example is that of Google’s General Transit Feed Specification (GTFS) being adopted by most
of the transit systems globally to provide timetable and transit route data to the public (Blind
et al. [2023]).

The other main approach is where compatibility standards are adopted through a process
of explicit consensus achieved via negotiation and discussion within a committee known as a
Standard Setting Organization (SSO). However, while the participants of the committee realise
the benefits of setting one specific standard, they sometimes have their own vested interests in
the standard that is set and, as such, reaching a consensus can be difficult and this can lead to
conflict.

In some cases, governments legally mandate certain compatibility standards. For example,
in recent years, environmental challenges have led to compatibility standardisation efforts to
enable green technologies such as the EU mandate of electrical vehicle plug compatibility (Blind
et al. [2023]; Bakker et al. [2015]). However, in our paper, we focus on situations of conflict over
which standard to adopt and therefore, examine and compare de facto compatibility standard
adoption with standard adoption via a SSO.

Simcoe [2012] points out that a large normative question in the area of compatibility stan-
dard adoption is over the comparison of the performance of committees and markets, especially
in the context of shared technology platforms, but he finds that there is no complete answer.
Fichman [2004] also notes that a central question in IS research is about when a firm should
take a lead role in adopting innovative technologies. More recently, in their review of the recent
literature on standards, Blind et al. [2023] call for further theoretical contributions to “highlight
critical distinctions to enable researchers to better understand when and why dominant plat-
forms become de facto standard setters and when they participate in broader standardisation
efforts” (i.e., via an SSO). We attempt to shed some light on this question in our paper.

While there is plethora of research on compatibility standards in the literature, much of it is
empirical. On the theoretical side, research relating to the performance of the standardisation
approaches include, for example, Farrell and Saloner [1988] who use a game theoretic approach
to analyse these two mechanisms described, Farrell [1996] develops a model considering the
consensus via a committee mechanism with incomplete information to assess its performance,
and Simcoe [2012] uses a simple model of standard setting committees based on the stochastic
bargaining framework of Merlo and Wilson [1995]. What none of the contributions have ad-
dressed to date is that there is uncertainty over the payoffs that will accrue to the individual
firms from adopting a standard (noted by Katz and Shapiro [1986]), as well as the inherent
option like feature of the decision to adopt one.

As such, we propose to analyse the problem of adopting compatibility standards using a real
options approach (see, for example, Dixit and Pindyck [1994]; Trigeorgis et al. [2022]). We deem
it an appropriate methodology for our analysis because similar to most investment decisions,
adopting a standard has two main features; there is uncertainty over whether the adopted
standard will succeed so that waiting has value in order to resolve some of this uncertainty
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(McGrath and MacMillan [2000]; Benaroch [2002]), and the decision to adopt is only partly
reversible in the sense that the sunk cost of implementing the standard cannot be fully recouped.
In this way, we contribute to the literature on compatibility standard adoption by introducing
a new methodology under which to analyse it which accounts for uncertainty over the payoffs
from adoption as well as the inherent option value. As we will discuss, this approach allows
us to answer the question on which adoption mechanism performs better (Simcoe [2012]), as
well as when a specific mechanism should be adhered to (Blind et al. [2023]; Fichman [2004]),
from a different angle to those cited above. We also contribute to the real options literature by
introducing a new application of the methodology because, to the best of our knowledge, it has
not been applied in the context of compatibility standard adoption to date.

To be specific, our analysis is one of a real option timing game (see, for example, Smit and
Trigeorgis [2004]; Trigeorgis et al. [2022]; Chevalier-Roignant et al. [2019])) because we focus on
situations of conflict. In particular, we assume that all participants agree that the adoption of
one particular standard is better than the case of all participants going their own way, but they
cannot agree on which standard should be adopted because they all want their own standard
to succeed. The game is, thus, a qualitative ‘battle of the sexes’ type set up (see, also Farrell
and Saloner [1988] and Farrell [1987]). As mentioned above, conflicts arise for many reasons,
but in essence, they arise because the benefits or payoffs to the individual participants are
heterogeneous. As such, along with each wanting the market to accept and adopt their own
proposed standard, they also have different stopping times over when to adopt so that their
payoffs from doing so are maximised. Hence, we assume that the players’ strategies are typically
asymmetric over stopping times. However, the symmetric case of both players having the same
stopping times is nested within our model.

To summarise, all participants want one particular standard to be adopted by the industry
and they want their own standard to succeed. The payoff to adopting a particular standard is
uncertain for each participant, and the optimal time to adopt a standard so that the payoff is
maximised is different for each participant.

The literature on timing games has grown extensively over the last decade or so and has
been applied to numerous different contexts (see Azevedo and Paxson [2014]; Chevalier-Roignant
et al. [2011]). Many of the contributions to this literature have focussed on analysing games
with a first mover advantage, or preemption games (see, among others, Riedel and Steg [2017];
Huisman and Kort [2015]; Thijssen et al. [2012]; Pawlina and Kort [2006] and Weeds [2002]).
The literature on war of attrition timing games, or games with a second mover advantage, is less
well developed, with Hoppe [2000], Murto [2004] and Steg and Thijssen [2015] being particular
exceptions. Furthermore, for the most part, the literature on timing games has focussed on
players with symmetric strategies, whereas in our paper, we consider players whose strategies
are asymmetric; i.e., the optimal times for each of the players to choose a particular action are
different. This is novel in the context of war of attrition games. Riedel and Steg [2017] have
already developed an equilibrium framework for preemption games with asymmetric strategies.

We analyse the adoption of compatibility standards as a real option timing game via the
two main approaches: de facto standard adoption through a market mechanism, and standard
adoption through consensus agreement within a committee (SSO). Key to our analysis is the
asymmetric incentives of the participants and the uncertainty over the payoffs from adoption,
but the symmetric case is nested within our framework. Our main result is that by analysing
the decision to adopt as a timing game, the state space can be split into regions such that when
the relative expected payoff from unilaterally adopting the preferred standard over conceding
to adopt the competitor’s is negative, it is optimal to negotiate within a SSO. Otherwise, when
the relative payoff is positive, there is a first mover advantage, an it is optimal to preempt the
competitor and unilaterally adopt her preferred standard (i.e., via the Market mechanism).

The relevance of this result is as follows. It answers the question posed by Blind et al.
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[2023] over when and why dominant platforms become de facto standard setters and when they
participate in broader standardisation efforts (i.e., via an SSO), as well as the question posed
by Fichman [2004] over when a firm should take a lead role in adopting innovative technologies
(namely, as soon as they have a first mover advantage in terms of expected payoffs). Moreover,
as mentioned, Simcoe [2012] points out that there is no complete answer to the question of
which performs better: markets or committees. Our model shows why this is the case. For
an individual player, taking one approach to adoption is optimal for certain expected payoff
levels, and the other approach for different expected payoff levels. Moreover, in equilibrium,
each player’s expected payoff at any time during the negotiation is equivalent to her expected
payoff at the earliest time it is optimal for a Market game to be played. We further discuss how
our result implies that comparing the performance of the two mechanisms with respect to the
likelihood of achieving coordination is not economically meaningful.

The more wide-ranging economic implication of our result is that if one of the parties has
an expected payoff from adoption of a standard that is sufficiently high to give that party a first
mover advantage, they should adopt the standard immediately and other players follow suit
by adopting that same standard at the time that is optimal for them; i.e., when the expected
payoff from doing so adequately exceeds the adoption cost. This may be substantially later
than the first adopter, but they should commit to adopting the leader’s standard and not go
their own way. For example, in 2023, in the US electric vehicle industry, plug compatibility
is an important problem and the adoption of a de facto plug is expected to be crucial in the
rollout of public charging infrastructure (cf. Blind et al. [2023]; Li [2023]).

On the other hand, if there is no first mover advantage to any of the participants, they should
negotiate within a committee. This absence of a first mover advantage may arise if the standard
is in the early stages and there is much uncertainty over whether implementing it will increase
the demand for the product or service. Nevertheless, each participant is sufficiently confident
about its impact on future demand to argue for it to be adopted widely by the industry.

The remainder of the paper is organised as follows. The standard adoption model is described
in Section 2 and an intuitive outline and key results are provided in Section 2.2. In Section 3 we
present the equilibrium results more generally for the Market and Committee mechanisms. In
Section 4 we discuss and compare the two mechanisms with respect to our results, and Section 5
concludes. All proofs, as well as an outline of the typical timing game framework, are provided
in the Appendix.

2 Overview and Intuition

2.1 Model Overview and Assumptions

Consider a timing game in which two asymmetric players i and j have the choice between adopt-
ing one of two incompatible new standards. There is conflict in that the players’ preferences
are different: player i wants to adopt standard i and j wants to adopt standard j. Both realise
that the adoption of one standard is better than going their own way by each adopting their
own preferred standard.1 It is a classic ‘battle of the sexes’ type set up, which appropriately
represents compatibility standard adoption in situations of conflict (see, for example, Farrell
and Saloner [1988]; Farrell [1987]).

The payoffs from adopting the standards are uncertain and the uncertainty is represented
by a fixed filtered probability space (Ω,F , (Ft)t≥0, P ), such that (Ft)t≥ is right continuous and
complete. Once a player i adopts his preferred standard, hereafter referred to as Insists, the

1Indeed, Adner et al. [2020] find that social welfare is greater under compatibility standard adoption.
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other player j Concedes (adopts i’s preferred standard) or Insists (adopts his own preferred
standard).

Strategies are feasible state-dependent stopping times τ : Ω → [0,∞] and are pure strategies
for the initial mode of the game. Let T denote the set of all stopping times which are pure
strategies for the game. The players’ strategies are asymmetric and players cannot observe the
strategies of their opponents; i.e., they are open loop.

If the strategies of players i and j for i 6= j, are to Insist at τi and τj, respectively, then if
τi < τj , the game will end at τi. The payoff to i at τi, if she is the Leader (i.e., the only one
to Insist), is πI

i,τi
, if he is the Follower (i.e., he Concedes) at τi, the payoff is πC

i,τi
, and if both

players Insist simultaneously at τi, the payoff to i is πB
i,τi

. All the payoffs at the time a move is

made are right-continuous and adapted stochastic processes πI
i,t = (πI

i,t)t≥0, π
C
i,t = (πC

i,t)t≥0 and

πB
i,t = (πB

i,t)t≥0.

The intuition is as follows. For the Follower, adopting a standard that is compatible with
that adopted by the Leader will make their products more popular than if it had adopted a
totally different standard. Moreover, if the Follower adopts a different standard to the Leader,
the Leader may suffer in that its products may lose some of their attractiveness relative to that
of the Follower. For example, Adner et al. [2020] discuss such a scenario in the context of Apple
adopting Amazon’s Kindle Reader app for the iPad. In particular, they argue that if Apple had
not adopted it, it would have lost to Amazon some buyers who prefer e-books on the Kindle
Reader app to those on Apple’s own iBooks app, and vice versa. The main reason for this, they
argue, is owing to the different profit foci of the two firms,2 and we capture this in our model
by letting our players have asymmetric strategies over when to adopt. Moreover, we assume
that πB

k,t < πC
k,t for all t and k = {i, j} to capture the preference of concession to the opponent

over both going their own ways.

Returning to the technical set-up, two firms k = {i, j}have the opportunity to adopt a
particular standard. If firm i Insists and adopts her preferred standard at time t and if the
competing firm j Concedes and adopts that standard also, then i is the Leader and her return
from Insisting is given by DIXt, where (Xt)t≥0 follows a geometric Brownian motion:

dX = µXdt+ σXdBt,

where µ and σ > 0 are the drift and volatility parameters, respectively, and (Bt)t≥0 a standard
Brownian motion.

If, however, j adopts his preferred standard at t and i Concedes by adopting that same
standard, then the return to i from conceding is Xt.

Finally, if both i and j go their own way and adopt their own preferred standards, the return
to i at the time of adoption t is DBXt, where DB < 1. Since DB < 1, at any time t ≥ 0, the
return from going one’s own way and Insisting is lower than the return from Conceding.

There is a firm-specific sunk cost to adopting a standard, denoted by Ik > 0, k = {i, j}. This
could, for example, be the cost of labour and/or materials required to implement the standard
for their products or services.

In line with the literature on timing games, once one player plays Insist, the other player’s
decision over whether to Insist or Concede is instantaneous. However, if the decision is to

2Apple’s profits from hardware sales are more important to it than royalties from e-book sales, and vice
versa for Amazon. Other examples they provide of standards being adopted by parties with different profit foci
include Google’s Android Auto being adopted by General Motors and Microsoft Office being made available on
the Apple iPad. In the former, the profit focus of GM is the car business, whereas Google’s main source for profit
is ad-sponsored content, and not their self-driving cars. In the latter, the profit focus of Apple is hardware sales,
whereas the focus for Microsoft is software sales.
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Concede, he will not actually adopt the other player’s standard until some time later. In
particular, at the time it would be optimal for him to adopt if he were a monopolist because
once the other player adopts, he is no longer faced with any competitive pressure and chooses
his optimal stopping strategy accordingly.

We also assume that profits are discounted at a common risk-free rate r > µ > 0. Then let
β1 > 1 be the positive root of the quadratic equation

1

2
σ2β(β − 1) + µβ − r = 0 (1)

and define

X∗
k := Xτ∗

k
=

β1
β1 − 1

(r − µ)Ik (2)

with τ∗k := inf{t ≥ 0|Xt ≥ X∗
k} for k = {i, j}. This is a standard result from the optimal

stopping literature for the optimal real option investment threshold for a Follower in a duopoly
(see Dixit and Pindyck [1994], Chapter 9).

Therefore, the expected payoff to i from adopting her preferred standard at some time t,
with j Conceding at t and adopting at τ∗j ≥ t is given by

πI
i,t =

[ ∫ τ∗j

t

e−rsDIXsds +

∫ ∞

τ∗j

e−rsXsds− Ii

∣∣∣Ft

]

=e−rt
(DIXt

r − µ
− Ii

)
+ e−rτ∗j

(1−DI)β1Ij
β1 − 1

.

(3)

Note here that j Concedes and becomes the Follower at t so that he makes his adoption decision
as if he were a monopolist from that time. As such, τ∗j denotes the optimal time for j to adopt i’s
preferred standard, with Ij denoting the cost to j of adopting i’s standard, and so on. Moreover,
as is standard in timing games of this type, we assume that once the Follower acts, the Leader
loses her monopoly share of the profits and both share the market stream of payoffs (arising
from the standard) between them.

On the other hand, if j adopts his preferred standard at t ∈ [τj , τi), then i Concedes at t,
but adopts the standard at τ∗i ≥ t; in other words, she takes the role of the typical Follower.
Her expected payoff from Conceding is

πC
i,t =Et

[∫ ∞

τ∗
i

e−r(s−t)Xsds− Ii

∣∣∣Ft

]

=e−r(τ∗i −t)

(
Xτ∗i

r − µ
− Ii

)
,

(4)

and if she adopts her preferred standard at t and j adopts his own preferred standard at t also,
the expected payoff is

πB
i,t = e−rt

(DBXt

r − µ
− Ii

)
. (5)

Finally, we described τi and τj as the strategies (or planned times) for i and j to Insist,
respectively. Therefore, one min(τi, τj), denoted by τ̃ is reached, the game ends. However, more
particularly, we interpret them as the earliest times at which i and j are indifferent between
being the Leader or Follower (i.e., unilaterally adopting her preferred standard, or conceding to
her competitor). In other words,

τk := inf{t ≥ 0|πI
k,t = πC

k,t}. (6)
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We return to this specific example later in the paper to illustrate our findings in more detail,
but the general set up in terms of payoff functions for player i is represented by Fig. 1 below.

Xt
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Figure 1: Payoff Functions

Lastly, it is important to point out that the geometric Brownian motion assumption is made
here so that the payoff functions can be easily computed for illustrative purposes later on.3

To solve for the equilibria of the games described, we adopt the framework of Riedel and Steg
[2017]. In Appendix A, we restate their definitions of the concepts required for understanding
and solving the games.

Their approach to determining mixed strategy equilibria is that of Fudenberg and Tirole
[1985] in which Gν

i (t) is a distribution function representing the conditional probability that i
has stopped before time t given that her competitor has not stopped, for the subgame starting
at ν ∈ T , such that T is a set of pure strategy stopping times. They argue that, in continuous
time, such a distribution function is insufficient to define an equilibrium strategy and, as such,
αν
i (t) is introduced as a randomisation device to replicate discrete time results that are lost

when modelling in continuous time. In particular, there is no “next period” in continuous time
and the randomisation device avoids situations of both trying to stop simultaneously in a dt
interval when stopping unilaterally by each player is optimal, but not simultaneous stopping.

To solve for the equilibria, we must determine the probabilities of who Insists first and when
that arise from a pair of extended mixed strategies (Gν

i , α
ν
i ) and (Gν

j , α
ν
j ). Let τνk := inf{t ≥

ν : αν
k(t) > 0} for k = {i, j}. Let λI,k denote the probability that player k Insists first, so that

the opponent Concedes, let λB denote the probability that both players Insist simultaneously
and let λW denote the probability that both wait; i.e., neither Insists. These probabilities are
defined in terms of Gν

k and αν
k in Appendix A.

Note that the technical analysis to follow hereafter assumes asymmetric strategies of the
players. However, the analysis for the symmetric strategy case proceeds along the same lines
but for τνi = τνj and, hence, for αν

i (t) = αν
j (t). We do consider this special case within our

model and, as such, the symmetric strategy solution is nested within our more general solution
under these conditions.

2.2 Model Intuition and Snapshot of Key Results

Before we proceed with defining the general equilibria, to fix ideas and intuition, consider the
case with only two periods: period 0 and period 1. In period 0 (the current period), there is

3However, our results on the economic forces driving the equilibria that emerge are generalisable to many
other underlying payoff processes.
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no uncertainty over the level of X; i.e., it is X0 = x. However, in period 1, X1 may be high or
low; i.e., its level is unknown. The players each have a choice between adopting the standard
in period 0 (Insisting) or waiting and adopting it in period 1. There are four possible scenarios
at period 0, which are explained below (see also Table 1 of Section 3).

1. τi = 0 and τj = 1: i Insists at τi = 0 and j Concedes. This scenario occurs with probability
λI,i.

2. τi = 0 and τj = 0: i and j randomise over Insisting at t = 0.

3. τi = 1 and τj = 0: i Concedes and j Insists at τj = 0 so that i adopts j’s standard in
period 1 with probability λI,j.

4. τi = τj = 1: Both players wait in period 0 with probability λW and the game is repeated.

Player i must compare these payoff values to determine what approach is optimal. If πI
i,0 ≥

πC
i,0, then it is optimal to Insist at period. If this holds, then τi = 0. However, if it does not

hold, then i should wait and τi = 1. The same arguments are true for player j.

If at least one of the firms expects the demand for their device with their preferred software
will be high leading to a FMA, they will be keen to adopt it quickly before the competitor adopts
his (e.g., radical innovaion). Prompt adoption is key because once the competitor adopts the
standard at a later date, their expected profits will decline owing to the competition in the
market and, hence, the longer they have the monopoly share, the greater is their FMA. In the
e-books example introduced above, Adner et al. [2020] point out that Amazon’s Kindle was
introduced to the market in 2007 and Apple’s iPad in 2010. Therefore, for those three years,
Amazon’s Kindle device was the only e-reader available in the market. However, when the iPad
was introduced, “Amazon cut the Kindle’s price by $70 as a competitive response.” In other
words, before the iPad was introduced, Amazon had a FMA as the only player in the e-books
market, but when the iPad was introduced, their profits declined with the competition. This is
a clear example of a Market (or Bandwagon) effect and we analyse that scenario in the following
subsection.

On the other hand, it could be that the idea is in the early stages, and neither firm is
sufficiently convinced of a high demand so is not yet ready to adopt. Nevertheless, they still
want their own preferred standard and hope to convince the competing firm to Concede and
commit to adopting it. This is achieved via a SSO or committee agreement and is a classic
war of attrition. With this commitment set (i.e., Leader and Follower roles agreed upon ex
ante), then the “winner” can act as a monopolist and adopt when his expected payoff from
doing so is sufficiently high (see, for example, Farrell and Simcoe [2012] who show that wars of
attrition impose adoption delays when the players have vested interests). We call this scenario
the Committee Case.

2.2.1 Market Case

We return to the four scenarios just described in the previous subsection and analyse them in
the context of the Market Case in which one player takes the lead by unilaterally adopting their
preferred standard in the hope/expectation her competitors Concede by adopting that same
standard (recall, for example, Amazon’s introduction of the Kindle e-Reader app which was
subsequently adopted by Apple for the iPad):

1. τi = 0 and τj = 1 implies i Insists at τi = 0 when πI
i,0 = πC

i,0. Since τj = 1, πI
j,0 < πC

j,0 so
that λI,j = 0 (since λI,j represents the probability of j insisting.) It further implies that
λB = 0 since both players will not Insist simultaneously. Now, i will insist for sure at
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t = 0 so that λI,i = 1 and λW = 0. As such, in this scenario, the payoff to player i is given
by Vi,0 = πI

i,0 = πC
i,0. This corresponds with Eq. (B.1) in our formal proof of Proposition

1 (cf. Appendix B).

2. τi = 0 and τj = 0 implies πI
i,0 = πC

i,0 and πI
j,0 = πC

j,0. This suggests that both Insist at

t = 0 so that λB = 1 and Vi,0 = πB
i,0. However, since πB

i,t < πC
i,t, for all t, given that j

Insists, i would achieve a higher payoff from Conceding at t = 0 instead. But, j will also
have the same idea about Conceding. Hence, i may take the risk of Insisting because j
may Concede by this argument. Therefore, there is a randomisation between the players
over Insisting. In equilibrium, i should Insist with a probability that yields the highest
expected payoff.

Let pi denote the probability that i Insists at period 0. This differs from λI,i given the
above because the latter corresponds with i being the only one to insist. In essence λI,i

is captured here by
pi(1−pj)

pi+pj−pipj
(cf. Riedel and Steg [2017] and Eq. (A.6) in Appendix A).

Therefore, for this example, the expected payoff to i will be

Vi,0 =λi,Iπ
I
i,0 + λj,Iπ

C
i,0 + λBπ

B
i,0

=
pi(1− pj)

pi + pj − pipj
πI
i,0 +

pj(1− pi)

pi + pj − pipj
πC
i,0 +

pipj
pi + pj − pipj

πB
i,0.

Maximising this expression with respect to pi gives

p∗j =
πI
i,0 − πC

i,0

πI
i,0 − πB

i,0

. (7)

This probability corresponds to αν
j given by Eq. (B.4). Replacing for p∗j in Vi,0 gives

Vi,0 = πC
i,0.

3. τi = 1 and τj = 0 implies j Insists at τj = 0 and i Concedes. Thus, λI,j = 1, λI,i = 0,
λW = λB = 0. As such, Vi,0 = πC

i,0. This corresponds with Eq. (B.2) in Appendix B.

4. τi = 1 and τj = 1 implies neither Insist at t = 0 since πI
k,t < πC

k,t for k = {i, j} and the
game is repeated .

Let τ̃ := min(τi, τj). Then, from the above analysis, the equilibrium expected value to i for the
market (preemption) game is given by

V M
i,0 = πC

i,01τ̃=0. (8)

A coordinated outcome is one such that one, and only one, player plays Insist. In Scenario
4, there is no outcome, so we do not consider it. However, it is clear from the above discussion
that a coordinated outcome is achieved at t = 0 in Scenarios 1 and 3. In Scenario 2, when
both randomise over playing Insist, coordination will be achieved if, and only if, only one of the
players Insist. This idea is represented by Eq. (13) in the formal analysis presented below, in
which P (i, 1) and P (j, 1) denote respective probabilities of i or j being the only one to Insist.

2.2.2 Committee Case

The preceding analysis gave an informal description of the problem under the Market Case to
explain some of the intuition underlying the more technically complicated results to follow in
Section 3. We continue in this vein for the Committee Case in this subsection.
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Let τ∗k denote the optimal time for player k to adopt his preferred standard (Insist) if he
were the only player in the market. It is well known from the literature on timing games that
when there is a competitor and a FMA, there is a preemptive pressure to be the first to stop.
We have defined this preemption time as τk = inf{t ≥ 0|πI

k,t = πC
k,t}. In the two period Market

Case, we implicitly assume that τk < τ∗k so that, for example, if τk = 0, τ∗k = 1. This means that
if there was no competitive pressure for k, he would adopt at time τ∗k = 1 because this strategy
would maximise his payoff from doing so. However, there is a payoff advantage to being the
first mover and, as such, it is better for him to adopt earlier (i.e., at time τk = 0) to avail of
this and obtain monopoly share of the market for some time before his competitor adopts.

Recall the example above of two firms A and B wanting to adopt a new standard that is in the
early stages (i.e., a new software feature for their devices). If there was no competitive pressure,
k would adopt at time τ∗k . However, the potential entry of future competitors in the market
reduces the upper end of payoff distribution (see Dixit and Pindyck [1994]). Moreover, given
the early stage, payoff uncertainty is high and the sunk cost of adoption cannot be recouped.
Hence, even if t ≥ τ∗k , the potential cap on its future profits by the adoption of the software by
the competing firm means that he would rather not adopt yet but to wait until the expected
payoff level is higher. The implication of this is that there is value in waiting; i.e., the players
are not concerned about being preempted by their competitor and are not duelling over the
Leader role (i.e., akin to incremental rather than radical innovators). Furthermore, given that
negotiation within a committee is associated with substantial delays in adoption (cf. Simcoe
[2012]), it is reasonable to assert that the players do not have a preemptive pressure to adopt
(i.e., play Insist), but want to convince their competitors to commit adopting to their standard
in the future. As such, the Committee Case is represented by a war of attrition game4 and
τ∗k < τk (see, for example, Thijssen et al. [2006]).

To give a heuristic argument, consider a two period example such that τ∗i = 0 and τi = 1.
At t = 0, i would adopt if she were a monopolist, but because of the potential of future entry
by her competitor which reduces the potential upside of her future payoff, she would prefer to
wait until t = 1, but having convinced her competitor to commit to her standard. However, j
is of a similar mind. He too wants to wait until t = 1, but wants to convince i to commit at
t = 0 to adopting his preferred standard. As such, there will be a randomisation over adopting
at t = 0.

Let θ be the probability that j Concedes and commits to i’s choice of standard at t = 0. In
a war of attrition situation, each player wants the other player to commit at a particular time,
but not adopt until some time later. Thus, if j Concedes at t = 0, i adopts (plays Insist) at
t = 1.

The expected value to i of not conceding at t = 0 is

V NC
i,0 = θπI

i,1 + (1− θ)Vi,1,

and if i Concedes at τ∗i = 0, her expected value is equal to

V C
i,0 = πC

i,0.

In equilibrium, it must be such that player i is indifferent between not conceding or conceding
at τ∗i = 0 (cf. Fudenberg and Tirole [1991]); i.e., θ must be such that V C

i,0 = V NC
i,0 . Thus,

θ∗ =
πC
i,0 − Vi,1

πI
i,1 − Vi,1

, (9)

where Vi,1 denotes i’s expected value at t = 1.

4See also Farrell and Saloner [1988]
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Let γi,0 denote the probability that i Concedes at t = 0. Then, the expected value to i at
t = 0 is given by

Vi,0 = γi,0V
C
i,0 + (1− γi,0)V

NC
i,0 .

In equilibrium, when θ = θ∗, her expected value during the war of attrition (woa) is

V woa
i,0 = V NC

i,0 = πC
i,0,

which implies that the equilibrium expected value to i during the war of attrition is equivalent
to her equilibrium expected value at the earliest time one of the players unilaterally adopts and
the game becomes one of preemption (Market Case) (see Eq. (8)).

This is a main result of our paper and may explain why the question over which approach
performs better has not been fully answered (cf. Simcoe [2012]). By considering the problem as
an option timing game, we examine it from a more sequential dynamic perspective which shows
that in equilibrium, the expected payoff at some point in the Committee Case is equivalent
to her expected payoff at the preemption point; i.e., when she enters the market region by
obtaining a FMA. We discuss this in further detail later in Section 3.

Figure 2 below depicts the argument graphically for the τ∗i = 0 and τi = 1 example. In the
top left plot, πI

i,0 < πC
i,0 implying the expected payoff from Conceding is actually higher than

the expected payoff from insisting at t = 0. In the top right plot, the equilibrium probability θ∗

of j Conceding is shown as increasing over time. The bottom left plot depicts the equilibrium
situation for a particular θ∗; namely θ∗ = 0.2. At this value of θ∗, x ≈ 0.11 (see top right
figure) and we see that in the bottom figure, the expected payoffs from waiting and Insisting at
x ≈ 0.11 coincide.

Figure 2: A graphical illustration of the attrition scenario

In the more formal analysis, we model strategies more generally as distribution functions
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over time such that θ∗ is actually a hazard (or attrition) rate given by Eq. (15).

3 Equilibria of the Games

3.1 Market Case

Suppose that the battle of the sexes style game depicted in Table 1 below is to be played until
at least one of the players play Insist and adopt their preferred standard unilaterally. This
happens at τ̃ = min(τi, τj). We refer to hereafter as the Market Case.

Player j

INSIST CONCEDE

INSIST (πB
i,t, π

B
j,t) (πI

i,t, π
C
j,t)

Player i CONCEDE (πC
i,t, π

I
j,t) Repeat game

Table 1: Market Case

We analyse this situation as a preemption game in which there is an advantage to being the
first mover so that neither player wants to be preempted by their competitor. Therefore, define
τνk := inf{t ≥ ν : αν

k(t) > 0} = inf{t ≥ ν : πI
t,k − πC

t,k = 0}, for k = {i, j}. Preemption further
implies that τνk < τ∗k for k ∈ {i, j}, where τ∗k is the optimal time for k to adopt if not faced
with preemptive pressure from a competitor. For an intuitive and simplified exposition of the
the following results and discussion, see Section 2.2.1.

Proposition 1. (Market) Assume that for player i, πI
i,t ≥ πC

i,t > πB
i,t for all t ≥ τνi , where

τνi := inf{t ≥ ν|αν
i (t) > 0} = inf{t ≥ ν|πI

i,t − πC
i,t = 0}. Moreover, assume that τ̃ ≤ min(τ∗i , τ

∗
j ).

The pair of strategies (Gν
i (t), α

ν
i (t)), for any t ∈ [ν,∞), are given by

Gν
i (t) = 1t≥τνi

(10)

and

αν
i (t) =





0 if t < τνi
1 if τνi < t < τνj
πI
j,t−πC

j,t

πI
j,t

−πB
j,t

if max(τνi , τ
ν
j ) ≤ t

(11)

constitute a subgame perfect equilibrium with expected payoff to player i at time t given by

V M
i,t =πC

i,t

(
1t≥max(τνi ,τ

ν
j )

+ 1τνj ≤t<τνi

)
+ πI

i,t1τνi ≤t<τνj
, (12)

where 1x = 1 if x is true, otherwise 1x = 0.

Proof. See Appendix B.

We call an outcome coordinated if both firms have not gone their own way by adopting their own
preferred standards. Otherwise, the outcome is uncoordinated. The benefits of coordination in
the context of our paper has been discussed previously.

Corollary 1. (Market) The probability of coordination at time t is given by

P (CoordinationM
t ) = 1min(τνi ,τ

ν
j )≤t<max(τνi ,τ

ν
j )

+ (P (i, 1) + P (j, 1)) 1t≥max(τνi ,τ
ν
j )
, (13)
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where P (k, 1) is given by Eq. (A.6) for k = {i, j}. Hence

P (i, 1) + P (j, 1) =
αν
i (t) + αν

j (t)− 2αν
i (t)α

ν
j (t)

αν
i (t) + αν

j (t)− αν
i (t)α

ν
j (t)

=
αν
i (t)

(
πI
i,t − πB

i,t

)
+ (1− 2αν

i (t))
(
πI
i,t − πC

i,t

)

αν
i (t)

(
πI
i,t − πB

i,t

)
+ (1− αν

i (t))
(
πI
i,t − πC

i,t

)

=1−
(πI

j,t − πC
j,t)
(
πI
i,t − πC

i,t

)

(
πI
j,t − πC

j,t

)(
πI
i,t − πB

i,t

)
+ (πC

j,t − πB
j,t)
(
πI
i,t − πC

i,t

)

(14)

A coordinated outcome is an outcome such that one, and only one, player plays Insist. This
arises with certainty if one, and only one player, has a FMA from Insisting. However, if both
players have a FMA, the outcome may not be coordinated since both players play Insist with
some positive probability.

The left hand plot of Fig. 3 below, depicts the payoffs to both the Insister and the Con-
ceder when the outcome is coordinated, whereas the right hand plot depicts the same for an
uncoordinated outcome.

In the left hand plot, Xτνi
≈ 0.12 and this is the value of Xt at which i is indifferent between

insisting and conceding (Leader or Follower). From the plot it is also the case that Xτνj
≈ 0.14.

As such, τνi < τνj in this example and, hence, i becomes the Insister at τνi and gets payoff πI
i,t for

all t ≥ τνi (solid line) and j becomes Conceder at τνi and gets payoff πC
j,t for all t ≥ τνi (dashed

line). Prior to τνi ; i.e., for Xt < Xτνi
, it is not optimal for either player to Insist. Once i adopts

at τνi , j Concedes to adopt i’s preferred standard. As such, his payoff drops to the Conceder
payoff of standard i. This is depicted by the dashed line in the plot. He will wait until τ∗j to
adopt the standard, where X∗

j ≈ 0.2 and, at that stage, the payoffs to both i and j coincide.

The right hand plot depicts an example of an uncoordinated outcome. Both i and j Insist
at the same time when Xτνi

= Xτνj
. In this sense, both go their own way and each gets payoff

πB
k,t for k = {i, j} and t ≥ τνk . The dotted line in the figure depicts the payoff j would get if

he instead Conceded and, it is clear, that he would have been better off doing this. Indeed, if
i were to Insist and j were to Concede, the payoffs to both are depicted in the left hand plot
and, as we can see from the values on the vertical axes, both are definitely better off if they
coordinate. An example of an uncoordinated outcome is that one of the firms adopts its own
unique standards which are incompatible with the other firm’s products or services.

A coordinated outcome is only achieved with certainty if only one player has a FMA from
adopting unilaterally. Otherwise, the outcome is coordinated with probability P (i, 1) +P (j, 1),
which is the probability that only i plays Insist or only j plays Insist. From Eq. (14), it is
clear that the probability of coordination is low when the FMA of both players (|πI

i,t − πC
i,t|

and |πI
j,t − πC

j,t|) is high, which is intuitive and provides support for the empirical observation
that a number of leading radical innovators opt to go their own way and adopt their own
preferred standard rather than coordinating with their competitors (e.g., see Foucart and Li
[2021]; Lieberman and Montgomery [1988]).
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Figure 3: Market Case Example for Coordinated versus Uncoordinated Outcomes.

3.2 Committee Case

In this subsection, we consider a game within a SSO where there is conflict. We call this the
Committee Case and, since unilateral adoption does not arise while the game is still in play
(i.e., during the negotiation), it is therefore the case that there is no FMA for any of the players
in the committee; i.e., πC

k,t > πI
k,t implying t < τ̃ := min(τνi , τ

ν
j ). This further implies that since

τνk has been defined above as τνk := inf{t ≥ ν|αν
k(t) > 0}, then αν

k(t) = 0 for all t < τ̃ and
k = {i, j}.

The payoff from Conceding in this region is higher than the payoff from Insisting. However,
for each player, the cost of Conceding to her opponent is the giving up on her preferred standard
and, thus, the expected payoff from being the market leader in that. A player is willing to bear
that cost if there is a chance her competitor will Concede. The chance is only reasonable if
the opponent is also arguing for their standard. Thus, it is reasonable to assume that t ≥ τ∗k
for k = {i, j}; in other words, for each player, he would adopt the standard at t if he were a
monopolist, but owing to the potential adoption of the standard by his competitor at a later
date, the upside potential of his future expected payoff is lower than in the monopoly case. To
compensate for this, he does not want to adopt until he will have at least a FMA. Thus, the
committee region in our model is defined by t ∈ [max(τ∗i , τ

∗
j ), τ̃ ) (see Fig. 4).

When τ̃ is reached, the game ends and at least one of the players unilaterally adopts. In
real option timing games, our committee region is typically analysed as a war of attrition in
which each of the players have a second mover advantage and both want their competitor to
stop first (akin to playing Insist in our framework) so they can avail of an information spillover
(see, for example, Thijssen et al. [2006]). In other words, there is a war of attrition over
who stops first. However, in our problem, in the SSO the players are trying to convince their
opponents to Concede and not adopt as they still want to adopt their preferred standard. If they
convince their opponent to Concede, then the roles of the Leader and Follower are effectively
predetermined at that point and the Leader can wait until τνi when her expected payoff from
adoption is higher. It is still a war of attrition in which the goal for each player is to have their
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Figure 4: Committee Region for player i

opponent ‘drop out’, where “dropping out” is by Conceding before the player Insists (i.e., before
he unilaterally adopts). Therefore, the probability of insistence by each player in t is zero; i.e.,
Gν

k(t) = 0 for k = {i, j} and t ∈ [max(τ∗i , τ
∗
j ), τ̃ ).

If i is convinced to Concede first at t, then her expected payoff is just πC
i,t. However, if j

Concedes first, then i can wait until τνi to adopt and, thus, her expected payoff is πI
i,τνi

. But

since πI
i,τνi

= πC
τνi

by the definition of τνi , her expected payoff from j Conceding first is equal to

her expected payoff from Conceding at τνi ; i.e., π
C
i,τνi

.

The game that is played is depicted in Table 2.

Player j

Do not concede Concede

Do not concede Repeat game (πC
i,τνi

, πC
j,t)

Player i Concede (πC
i,t, π

C
j,τν

j
) Repeat game

Table 2: Committee Case

To solve for the mixed strategy equilibria we introduce a distribution function Hν
i (t) rep-

resenting the conditional probability that i Concedes before time t given that her competitor
has not Conceded, for the subgame starting at ν ∈ T for which T is a set of pure strategy
stopping times. It is an adapted and right continuous function with Hν

i (t) = 0 for t < ν. In
the market case above, we introduced a randomisation probability denoted by αν

i (t) to allow
for situations in which insistence by at least one player is certain, but simultaneous insistence
is not. In our attrition region t ∈ [max(τ∗i , τ

∗
j ), τ̃ ), concession by at least one firm is not certain;

i.e., Hν
k (t) < 1 and, hence, we do not require a randomisation device of this sort.

Proposition 2. (Committee) Let t ∈ [max(τ∗i , τ
∗
j ), τ̃ ), such that τ̃ = min(τνi , τ

ν
j ). The strat-

egy Hν
i (t) for any t ∈ [ν,∞] constituting a subgame perfect equilibrium is defined by

dHν
i (t)

1−Hν
i (t)

= −
Et[dπ

C
j,t]

πC
j,τνi

− Et[πC
j,t+dt]

(15)

and the equilibrium expected payoff for all t in the attrition region is given by

V woa
i,t =πC

i,t = e−r(τνi −t)πC
i,τνi

. (16)
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Proof. See Appendix C.

The cost to a player from not Conceding at a particular t is represented by the drift of πC
i,t

(i.e., Et[dπ
C
i,t])

5. A player will only bear this cost if there is a chance her competitor will Concede

in the [t, t+ dt) interval. Her compensation for waiting is represented by πC
i,τνi

− Et[π
C
i,t+dt]. In

equilibrium, the compensation for the cost of waiting makes them entirely indifferent between
Conceding and not. Conceding at the rate described by (15) ensures such indifference. As such,
her expected equilibrium payoff is just the expected payoff from immediate concession.

A coordinated outcome is achieved in the attrition region if one of the players Concede.
This leads to the following proposition.

Corollary 2. (Committee) The probability of a coordinated outcome at any time t ∈ [max(τ∗i , τ
∗
j ), τ̃)

(the attrition region), is given by

P (CoordinationC
t ) = Hν

i (t) +Hν
j (t). (17)

To analyse this probability of coordination, it is sufficient to consider the probability θ∗

given by (9), rather than the distribution functions defined as attrition rates. The probability
of coordination is equivalent to the probability that one of the players plays Concede and this
increases in the likelihood of τ̃ being reached; i.e., that at least one of the players has a FMA
(see also Fig. 2). This, in turn, is true if, for at least one player, the expected benefit from
playing Concede over Insist is low and this will force the other player to “drop out”; i.e., to
Concede (attrition rates are defined in terms of the competitor’s expected payoffs). Intuitively,
this likely to be true in a SSO negotiation if one of the players is nearing the stage of having a
FMA from adopting unilaterally and so will be more compelled to work harder at convincing
her competitors to Concede.

4 Comparison of the Mechanisms in Equilibrium

Before proceeding, we summarise the story for player i in Fig. 5 below. The diagonal solid line
depicts cases in which πI

i,t = πC
i,t; i.e., when t = τνi . For all t > τνi , π

I
i,t > πC

i,t and the Market
game of unilaterally playing Insist is optimal. This is depicted by the red shaded region.

The dashed line is the point at which πI
i,t = (πI

i )
∗, in other words, when t = τ∗i . Below the

solid line, when πI
i,t < πC

i,t for all t, τ∗i < τνi for some values of πC
i,t (π

C
i,t > 0.4 in this example)

(τ∗i < τνi when the dashed line is below the solid line). For those values, once τ∗i is hit, or
equivalently, when πI

i,t reaches (πI
i )

∗, i will play the Committee game (war of attrition) until
τνi . This is depicted by the blue region in the plot. The white region is the Continuation region
when no play is optimal.

We now address the question of which mechanism (negotiation via SSO or unilateral adop-
tion) is best (Simcoe [2012]) or when one mechanism should dominate and be adhered to (Fich-
man [2004]; Blind et al. [2023]). This can be interpreted as (i) which yields the highest payoff,
(ii) which is more likely to achieve coordination, or (iii) when a player should take the lead in
unilaterally adopting his preferred standard.

The last question (iii) is posed by Fichman [2004] (regarding new technology adoption) and
Blind et al. [2023] and we show that he should take the lead and unilaterally adopt his preferred
standard as soon as he has a FMA in terms of expected payoffs.

5This can be calculated as rπC
j,t by applying Ito’s formula to (4)
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Figure 5: Market and Committee Regions for player i.

Regarding mechanism performance, negotiation via a SSO is only realistic if none of the
participants have an expected FMA from adopting their preferred standard in terms of ex-
pected payoffs. As soon as one of them does have such payoffs, then she will unilaterally adopt
immediately and the game ends; in other words, the game becomes a preemption game and
the Market effect ensues. Since SSOs and Market (preemption) games are optimal for different
relative payoffs, comparing their performance in terms of expected payoffs is not useful; at any
time, either negotiation via an SSO is optimal or it is optimal for one player to unilaterally
adopt and the others follow her lead. Nevertheless, we show that in equilibrium, the expected
payoff from being in a SSO is given by her expected payoff from immediate concession which
is equivalent to her (discounted) expected payoff from adopting as the conceder (i.e., adopting
her competitor’s choice of standard) at the later time of τνi .

If a participant in the SSO presently unilaterally adopts her preferred standard, then τ̃
will have been reached, and we see from Eq. (12) that the equilibrium expected payoff in the
market case at τ̃ is also the expected payoff from immediate concession, even for the player who
unilaterally adopts (plays Insist) at that time. Note that the scenario of t ∈ (τ̃ ,max(τνi , τ

ν
j ))

yielding the equilibrium payoff πI
i,t is stated in the proposition for generalisation purposes, but

unilateral adoption in the context of our standardisation story tends to happen after discussion
within a SSO. This rules out, in the context of conflict over compatibility standard adoption
that we consider, the likelihood of a state of t > τ̃ without anyone having unilaterally adopted.
This implies that the equilibrium expected payoff in the Market Case and the Committee (SSO)
cases are equivalent and correspond with the expected payoff from Conceding at τ̃ .

This result is key for the following reason. Simcoe [2012] points out that a large normative
question in the field is about which mechanism performs better, but there is no complete answer.
This is point is echoed in more recent review by Blind et al. [2023]. Our result may explain why.
In particular, because we consider the problem as a real option timing game, which approach
should be taken at any specific point in time to maximise the expected payoff from adopting
depends on the state of payoffs at that time. Moreover, we show that in equilibrium, the
expected payoff in the SSO is equivalent to her expected payoff at the time the Market effect
will ensue.

Finally, regarding the performance of the two mechanisms with respect to coordination, an
uncoordinated outcome is only possible in the Market Case if both players have a FMA at the
same time. In the SSO, an uncoordinated outcome is ruled out since the players will not play
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Insist simultaneously. However, this does not necessarily imply that the SSO performs better
than the Market with respect to coordination. This is because a comparison in this context
is only economically meaningful if it were to direct the players to adopt under a particular
mechanism and this direction only has significance if a player could have a FMA and a higher
expected payoff from concession at the same time, which is not possible. As such, by accounting
for the dynamic aspect of the players’ payoffs, we show that comparing the mechanisms under
the likelihood a coordinated outcome will be achieved is economically insignificant because this
likelihood depends on the players’ expected payoffs from playing Insist or Concede.

5 Conclusion

In this paper, we consider the adoption of compatibility standards as a real option timing game
with asymmetric strategies over players’ stopping times and uncertain expected payoffs. In
particular, we analyse two different mechanisms for the adoption of such standards to answer
the question posed in the literature about which performs better; one in which coordination is
achieved by the market without explicit collaboration and one in which it is achieved via nego-
tiation through a SSO. The two mechanisms correspond with preemption and war of attrition
games, respectively (or radical versus incremental innovations).

We find a number of novel economic implications relative to prior studies which investigated
a similar question pertaining to the adoption of standards. Importantly, we find the Market
effect of one player unilaterally adopting her preferred standard will only arise in equilibrium
when she obtains a first mover advantage from doing so in terms of her expected payoffs and
none of the other players has a FMA. When none of the players have such a FMA, there is
negotiation within a SSO. It cannot be the case that players with a FMA will argue for their
preferred standard in a SSO or that participants arguing for their preferred standard in a SSO
but without a FMA will unilaterally adopt.

The relevance of our result is the following. We show that by modelling the problem as an
option timing game with asymmetric strategies (the symmetric case is nested within our model
as a special case) and uncertain expected payoffs from adoption, the different mechanisms are
optimal under different expected payoff levels. Hence, the difficulty in answering questions
over whether committees outperform markets (and vice versa), and hence when to unilaterally
proceed with adoption or wait to achieve compatibility, is explained by our result that in
equilibrium, at any time t, it will be optimal for one approach or the other, and will depend on
the state of the payoffs for each player at that time.

We further show that, in equilibrium, the expected payoff to a player at any time during
the negotiation phase is equivalent to her expected payoff at the earliest time at which she or
one of her competitors has a FMA; i.e., when the Market mechanism becomes optimal over the
SSO.

Finally, an uncoordinated outcome is only possible if more than one player has a FMA at
the same time. This can never arise during the negotiation phase. Nevertheless, one should
not conclude that the SSO outperforms the Market from a coordination perspective because a
comparison in this context is not economically meaningful. This is because at any given time,
the probability of an uncoordinated outcome depends on the players’ expected payoffs from
adoption via Insist or Concede (i.e., of their or their competitor’s standard) which, in turn,
determines whether a standard should be adopted unilaterally or via negotiation.

The takeaway from our analysis should be that if the answer to the question over which
mechanism performs better is desirable as a means to direct policy or how future agents show
go about adopting a standard, then it cannot be given definitively. It depends on the state of
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expected payoffs at a particular point. That said, in terms of expected payoffs, their equilibrium
performances are equivalent.

Appendix

A The Timing Game Framework

In this section, we restate the Riedel and Steg [2017] definitions of the concepts required for
understanding and solving the games.

Definition 1. (Reidel and Steg): A timing game Γ is a tuple ((Ω,F , (Ft)t≥0, P ),T ×
T , (πI

i , π
C ,i , π

B
i )i={1,2}, (πi)i={1,2}) consisting of a filtered probability space (Ω,F , (Ft)t≥0, P ),

stopping times T as pure strategies, adapted and right continuous processes (πI
i , π

C
i , π

B
i )i={1,2}

and the expected present value of payoffs are given by

E0[πi(τi, τj)] = E[e−rτiπI
i,τi

1τi<τj + e−rτjπC
i,τj

1τj<τi + e−rτπB
i,τi

1τi=τj=τ ]. (A.1)

Definition 2. (Reidel and Steg): Fix a stopping time ν ∈ T . An extended mixed strategy
for player i for the subgame Γν , starting at ν, is a pair of processes (Gν

i , α
ν
i ) taking values in

[0, 1], respectively, with the following properties:

1. Gν
i is adapted, right continuous and non decreasing. It satisfied Gν

i (s) = 0 for s < ν.

2. αν
i is progressively measurable. It is a.s. right continuous in R+ for which αν

i (t) ∈ (0, 1)
and αν

i (s) = 0 for all s < ν.

3. αν
i (t) > 0 =⇒ Gν

i (t) = 1 for all t ≥ 0 a.s.

Definition 3. (Reidel and Steg): A time consistent extended mixed strategy for player k
for k = {i, j} for the timing game Γ is a family of strategies (Gν

k, α
ν
k)ν∈T , such that for all ν, ν ′,

τ in T , with ν ≤ ν ′ ≤ τ ,

Gν
k(t) = Gν

k(ν
′−) + (1−Gν

k(ν
′−))Gν′

k (t)

and
αν
k(τ) = αν′

k (τ)

for t ≥ ν ′ a.s.

Definition 4. (Reidel and Steg): A subgame perfect equilibrium for the timing game is a
pair (Gν

k, α
ν
k)k={1,2} of time consistent extended mixed strategies such that for all ν ∈ T , i 6= j,

and an extended mixed strategy (Gν
a, α

ν
a), then a.s.

Vi(G
ν
i , α

ν
i , G

ν
j , α

ν
j ) ≥ Vi(G

ν
a, α

ν
a, G

ν
j , α

ν
j ).

The probabilities of who Insists first and when are defined as follows:

1. If τνi < τνj , then at τνi , α
ν
i (τ

ν
i ) > 0 (so that Gν

i (τ
ν
i ) = 1) and αν

j (τ
ν
i ) = 0 so that the

conditional probability that j will Insist at τνi is given by ∆Gν
j (τ

ν
i )/(1−Gν

j (τ
ν
i −)) (Riedel

and Steg [2017]), such that ∆Gν
k(t) := Gν

k(t)−Gν
k(t−). Thus, ∆Gν

i (τ
ν
i ) = 1−Gν

i (τ
ν
i −).
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•

λI,i =(1−Gν
i (τ

ν
i −))(1 −Gν

j (τ
ν
i −)) ∗ P (i Insists at τνi ) ∗ P (j Concedes at τνi )

=∆Gν
i (τ

ν
i )(1 −Gν

j (τ
ν
i −))αν

i (τ
ν
i )

(
1−

∆Gν
j (τ

ν
i )

1−Gν
j (τ

ν
i −)

)

=∆Gν
i (τ

ν
i )(1 −Gν

j (τ
ν
i )).

(A.2)

Since Gν
i (τ

ν
i ) = 1, a move will occur at τνi with certainty. Since j Concedes in this

case, then i Insists with certainty. Therefore, αν
i (τ

ν
i ) = 1.

•

λI,j =(1−Gν
i (τ

ν
i −))(1−Gν

j (τ
ν
i −)) ∗ P (i Concedes at τνi ) ∗ P (j Insists at τνi )

=(1−Gν
i (τ

ν
i −))(1−Gν

j (τ
ν
i −))(1 − αi(τ

ν
i ))

∆Gν
j (τ

ν
i )

1 −Gν
j (τ

ν
i −)

=∆Gν
i (τ

ν
i )∆Gν

j (τ
ν
i )(1− αi(τ

ν
i )).

(A.3)

•

λB =(1−Gν
i (τ

ν
i −))(1−Gν

j (τ
ν
i −))αν

i (τ
ν
i )

∆Gν
j (τ

ν
i )

1−Gν
j (τ

ν
i −)

=∆Gν
i (τ

ν
i )∆Gν

j (τ
ν
i )α

ν
i (τ

ν
i ).

(A.4)

•
λW = ∆Gν

i (τ
ν
i )(1−Gν

j (τ
ν
i ))(1 − αi(τ

ν
i )). (A.5)

2. If τνi = τνj = τν

• If αν
i (τ

ν), αν
j (τ

ν) > 0, both Insist at τν such that Gν
k(τ

ν) = 1 for k = {i, j}. However,
who Insists first is the question. From Thijssen et al. [2012], the probability that only
one player stops and that is player i is given by

P (i, 1) =
αν
i (τ

ν)(1− αν
j (τ

ν))

αν
i (τ

ν) + αν
j (τ

ν)− αν
i (τ

ν)αν
j (τ

ν)
(A.6)

and the probability that both Insist simultaneously is given by

P (i, j) =
αν
i (τ

ν)αν
j (τ

ν)

αν
i (τ

ν) + αν
j (τ

ν)− αν
i (τ

ν)αν
j (τ

ν)
. (A.7)

Therefore

–
λI,i = ∆Gν

i (τ
ν)∆Gν

j (τ
ν)P (i, 1). (A.8)

–
λB = ∆Gν

i (τ
ν)∆Gν

j (τ
ν)P (i, j). (A.9)
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B Proof of Proposition 1

B.1 Equilibrium Characterisation

In this case, the game depicted in Table 1 is played. Consider the following scenarios:

• Let t < τ̃ := min(τνi , τ
ν
j ). In this case, αν

i (t) = αν
j (t) = 0 and Gν

i (t) = Gν
j (t) = 0.

Therefore, no player Insists at t and neither will act until some τ̃ .

• Let τνi ≤ t < τνj so that αν
i (t) > 0, αν

j (t) = 0 and Gν
i (t) = 1. Since this is a preemption

game, once τi is reached, the value of waiting to player i is zero so that the game ends
and she Insists. Thus, the total expected payoff to player i from playing the matrix game
depicted in Table 1 is given by

Vi,t =λBπ
B
i,t + λI,iπ

I
i,t + λI,jπ

C
i,t

=Gν
j (t)α

ν
i (t)π

B
i,t + (1−Gν

j (t))π
I
i,t +Gν

j (t)(1− αi(t))π
C
i,t.

where the λ’s are given by Eqs. (A.2) to (A.4).

However, since Gν
j (t) = 0 and Gν

i (t) = 1, i Insists with certainty at t so that αi(t) = 1
and

Vi,t = πI
i,t. (B.1)

• If τνj ≤ t < τνi , so that αν
i (t) = 0, αν

j (t) > 0 and Gν
j (t) = 1 and Gν

i (t) = 0, we get that
αν
j (t) = 1 and

Vi,t =λBπ
B
i,t + λI,iπ

I
i,t + λI,jπ

C
i,t

=πC
i,t.

(B.2)

• If t ≥ max(τνi , τ
ν
j ), then αν

i (t) > 0, αν
j (t) > 0 and Gν

i (t) = Gν
j (t) = 1. This implies that

at least one player will make a move at t and, as such, the probability that both Concede
is zero. The total expected payoff to player i at t is given by

Vi,t = λB,iπ
B
i,t + λI,iπ

I
i,t + λI,jπ

C
i,t, (B.3)

where λI,k (k = {i, j}) and λi,B are given by Eqs. (A.8) and (A.9), respectively. Replacing
for the λ’s and taking the first order condition with respect to αν

i (t), we get that the
expected payoff to i is maximised for

αν
j (t) =

πI
i,t − πC

i,t

πI
i,t − πB

i,t

, (B.4)

which is reminiscent of the standard solution obtained by, among others, Thijssen et al.
[2012] and Riedel and Steg [2017].

This implies, therefore, that player i’s maximum expected payoff in equilibrium is given
by

Vi,t = πC
i,t. (B.5)

B.2 Subgame Perfection

To show the equilibrium is subgame perfect, let player i deviate from the equilibrium strategy
in each of the scenarios described, and let player j abide by his equilibrium strategy. We argue
that by deviating, he cannot achieve a higher payoff than that described above.
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1. For t < τ̃ (= min(τνi , τ
ν
j )), if i instead plays Insist at t rather than wait, his expected

payoff is πI
i,t, where πI

i,t < πC
i,t in that region. Hence, he is better off not Insisting for

t < τ̃ .

2. For τνi ≤ t < τνj , if i does not Insist at t, then his expected payoff is to Concede at τνj ;

i.e., πC
i,τνj

< πI
i,t.

3. For τνj ≤ t < τνi , if i Insists instead of Conceding at t, then the outcome is that both play

Insist and i gets πB
i,t < πC

i,t.

4. For t ≥ max(τνi , τ
ν
j ), according to the equilibrium defined above, he plays Insist with

positive probability. However, if he Insists with zero probability, he gets πC
i,t. Therefore,

he cannot achieve a better payoff (i.e., πI
i,t) from deviating from the strategy defined above.

C Proof of Proposition 2

Let t ∈ [max(τ∗i , τ
∗
j ), τ̃ ). Neither player will Insist before τ̃ . Each player wants the other to

Concede first. Her competitor will Concede at t with probability Hν
j (t) and the game will end.

If neither player concedes before τ̃ , the game will end at that point and one of the players will
Insist with certainty. If j Concedes at t, i adopts at time τνi for a payoff πC

i,τνi
. Simultaneous

concession is not possible. Therefore, the expected payoff to i from Conceding at some t′ ∈ [t, τ̃)
is given by V C

i,t = πC
i,t.

On the other hand, if she does not concede at t, her expected payoff is

V NC
i,t =

dHj,t

1−Hj,t

πC
i,τνi

+

(
1−

dHj,t

1−Hj,t

)
Vi,t+dt

=
dHj,t

1−Hj,t

πC
i,τνi

+

(
1−

dHj,t

1−Hj,t

)(
V NC
i,t + Et[dVi,t]

) (C.1)

where dHj,t/(1 −Hj,t) denotes the probability j Concedes in the [t, t+ dt] interval conditional
on him not having conceded before this. Hence

dHj,t

1−Hj,t

= −
Et[dVi,t]

πC
i,τνi

− V NC
i,t − Et[dVi,t]

(C.2)

In equilibrium, she should be indifferent between conceding and not so that V NC
i,t = V C

i,t = πC
i,t.

This implies the rate of attrition of j is

dHj,t

1−Hj,t

= −
Et[dVi,t]

πC
i,τν

i
− πC

i,t − Et[dVi,t]
= −

Et[dπ
C
i,t]

πC
i,τν

i
− πC

i,t −Et[dπC
i,t]

. (C.3)

However, since t ∈ [τ∗i , τ̃), she will not adopt until τνi , so her expected payoff at t is, in equilib-
rium, her discounted expected payoff at τνi , which is, by definition, πC

i,t (see Eq. (4)).
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