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Abstract

Supply chain tensions have become an issue often talked about. Our paper develops a set

of stylized models studying the effect of an increase in suppliers’ market power on a buyer’s

investment decisions. First, we study the case where the buyer regularly goes to the input

market to source from a known set of oligopolistic suppliers and determine the buyer’s optimal

investment policy. We then study the conditions under which the buyer is better off committing

at the time of investment on a production schedule signing with the set of suppliers a framework

agreement regulating the input price. Finally, we endogenize the size of the pool of suppliers

the buyer can source from by considering a supplier’s decision to exit a market if the economic

circumstances are not satisfactory. The degree of competition in the input market is a key driver

of a buyer’s investment decision. While supply contracts favor suppliers, it leads to a delayed

investment by the buyer. Cost asymmetry among suppliers may lead the buyer to delay its

investment as a tradeoff between waiting for clarity about the supplier base or securing better

terms with a larger pool, which is less likely to sustain.
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1 Introduction

Motivation. In today’s globalized and interconnected business environment, supply chains serve

as the backbone of countless industries, facilitating the flow of goods and services from raw materials

to end consumers. The study of supply chains has garnered attention from scholars, practitioners,

and policymakers alike due to its profound implications on business performance, resilience, and

sustainability.

Since the 1960s, the narrative of international trade has changed significantly from a phase of

liberalized expansion (from the 1980s to the early 2010s) to a period in which supply chain disruptions

and political-economic tensions affect firm decisions. Recent crises (e.g., Brexit, China–US trade war,

Covid, 2021 Suez canal obstruction, draught of the Panama canal) highlight numerous challenges

and complexities, often resulting in tensions that reverberate throughout the entire supply chain.

Following Choi and Krause (2006), characteristics such as the length of the supply chain, the tier

structure, and the connections among the parties involved in the supply chain all affect a company’s

expenses, its exposure to risks in the supply chain, and ultimately its capacity to invest and innovate.

Such tensions pose significant hurdles to the smooth operation of client-facing downstream firms and

may jeopardize entire industries when critical inputs must be sourced from a limited pool of suppliers.

A case in point is the automotive industry, which must reconsider its operational approaches

to address these tensions. Governmental policies to tackle climate change and changing customer

preferences favor the emergence of electric vehicles (EVs) as an alternative to and at the expense of

traditional internal combustion engines (ICEs) (e.g., ban of ICEs by 2035 in Europe). Such changes

have facilitated the emergence of new players (e.g., Tesla, BYD Auto), prompting incumbent Orig-

inal Equipment Manafacturers (OEMs) to react, sometimes dramatically (e.g., Volkswagen) (see,

e.g., Chevalier-Roignant et al., 2019). A critical input for EVs are batteries. Experts expect the

global battery manufacturing market to reach a tenfold of its 2020 value by 2035 (see https://www.

oliverwyman.com/our-expertise/insights/2023/jun/where-to-find-investment-opportunities-in-the-battery-value-chain.

html). EV batteries need to be produced in very large quantities for them to be cost effective

(‘gigafactories’). While some OEMs (e.g., Tesla, Volkswagen/PowerCo) have decided to vertically

integrate battery production, others have decided to source from more independent gigafactories
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(sometimes sponsored by established OEMs) such as Northvolt (e.g., BMW, Volkswagen), Verkor

(e.g., Renault), or Automotive Cells Company (e.g., Stellantis and Mercedes Benz). Governments

often take action to secure local battery manufacturing (e.g., US Bipartisan Infrastructure Law,

Verkor sponsored by France’s development bank). The supply chain for battery manufacturing is

infinitely intricate and divided, with a variety of participants in each tier. To date, most manufac-

turers of electrodes, separators, and electrolytes, are from Asia, as do miners and processors of raw

materials, component makers and battery producers. Battery cell producers are confronted with the

issue of limited access to raw materials and rising energy costs. The degree of competition among

battery producers (partly explained by the high fixed costs to operate gigafactories and by the high

concentration of their input markets) will affect the viability of car manufacturing by OEMs and

likely impact their investment decisions.

Our paper explores various characteristics of supply chain tensions, leveraging a set of simple

stylized models. These models address questions pertaining to (i) the effect of industry concentration

in the input market on a buyer’s investment decision, (ii) the opportunity for suppliers to offer supply

contracts as a way to reduce uncertainty in the output market, and (iii) how the high fixed costs of

operating in the input market affects a buyer’s investment decision.

Brief descriptions of the models. Our paper models a hierarchical game capturing the strategic

interactions taking place among two sets of players: (a) a monopsonic buyer and (b) a pool of

suppliers. The suppliers are first assumed to be symmetric (i.e., their products are substitutes to

one another and suppliers face the same cost function), with their number assumed constant over

time. Based on this first set of assumptions, we study two stylized models which we contrast and

compare:

1. Based on the current market conditions, a monopsonic buyer sources a critical input to a

pool of suppliers deciding noncooperatively on their production outputs. This perspective

allows us to determine the buyer’s current profit under equilibrium conditions and ultimately

to determine the net present value (NPV) of this profit stream. Based on these premises, we

can formulate and solve a real-options problem in which the buyer decides whether and when

to launch a critical investment knowing that a share of the value created will accrue to a pool
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of suppliers. Clearly, the degree of market power affects the timing of this investment.

2. Second, we consider the possibility for the buyer to sign a supply contract (Li and Kouvelis,

1999) at the time of investment specifying an input price and a production schedule/purchase

orders. Here, the production levels and equilibrium prices reflect the parties’ beliefs about

market growth (and risk). We consider again a real-options problem and study how the

change in the interactions between the buyer and the pool of suppliers compared to the first

model affects the timing of the buyer’s investment.

3. Third, motivated by the role played by fixed cost in battery manufacturer, we study how

differential in fixed costs may lead some suppliers to forego an opportunity to service a market

because doing so would not be sufficiently profitable to cover the fixed operating cost. The

suppliers’ decision obviously affect the buyer’s investment decision.

All the stylized mathematical models, used to derive our managerial insights, are solved in closed

form.

Managerial insights. We derive various insights relevant for managerial practice:

1. The degree of competition among the supplier base affects a buyer’s investment decision. In

the absence of coordination costs and quality differential, a buyer should strive to source from

a larger base. This will ensure the equilibrium input price will be relatively low, with the buyer

more able to wield market power and charge more for the product in the output market. The

buyer’s ability to source from more suppliers will hasten the buyer’s investment decision. A

policy implication is that governments (e.g., via the regulator) should favor a higher potential

degree of competition in the input market (e.g., by developing leasing solutions to variabilize

costs), so an investment by a buyer creating that input market becomes more likely.

2. To ensure more steady cash flows, the suppliers may be willing to offer a supply contract to

the buyer. However, accepting the contract unilaterally favors the suppliers and depresses the

buyer’s profit. Consequently, the buyer should refrain from accepting such a supply contract

as it would lead to a delayed investment. The notion of a supply contract leads to a tradeoff
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for potential suppliers: such a contract ensures they are better off when they operate, but the

buyer delays its investment, so the suppliers receive higher profits but later.

3. If potential suppliers were to pay a fixed cost to trade with the buyer, their willingness to

trade depends on the state of demand. For low demand, the buyer would be trading with a

small set of suppliers, but will be able to source from more suppliers if demand materializes

further. The buyer is naturally better off trading with more suppliers because a higher degree

of competition depresses the equilibrium input price. A consequence is that there are circum-

stantial conditions under which the buyer will decide to delay its investment, so it can benefit

from more market power, while it would have invested if the set of suppliers were to sustain

(“strategic ambivalence”).

2 Literature review

Supply chain disruption. Our focus is not on whether diversifying one’s pool of suppliers help

a firm mitigate its exposure to supply chain disruption risk (see, e.g., Tomlin, 2006; Swinney and

Netessine, 2009; Federgruen and Yang, 2009; Gao et al., 2019), but rather on how the degree of

competition among suppliers affect equilibrium conditions in the input market and consequently a

buyer’s propensity to invest.

Supply contracts. In the supply chain literature (e.g., Cachon, 2003; Kouvelis and Zhao, 2015),

one of the focal points is the exploration of how collaborative supply agreements can align the various

components of the supply chain. This alignment aims to achieve an optimal outcome, known as the

“first best,” where the combined profit of the two-firm system matches that of a single-firm system.

Specifically, Li and Kouvelis (1999) consider different types of supply contracts (e.g., time-

inflexible agreement) in the context of deterministic demand, but uncertain prices. One of our

stylized models considers a time-inflexible agreement where the buyer and suppliers reach a consen-

sus regarding the quantity of units to be bought. In contrast to Li and Kouvelis (1999), the input

market is assumed not to be sufficiently competitive for a spot price to be readily available and,

so, the market-clearing price in the input market is an outcome of strategic interactions among the
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suppliers and with the buyer. As in Kouvelis and Zhao (2015), we consider how the default of one of

the parties in the supply chain affect the strategic interactions of the supply chain parties. However,

our focus is on the implications in case of dynamic sourcing rather than how the supply contracts

in case of a time-inflexible commitment would have terms adjusted for the risk of default.

In our paper, we consider a “time-flexible contract” that allows the firm to specify the purchase

amount over a given period of time without specifying the exact time of purchase.

Information sharing across the supply chain. There is a large literature looking at how

informational frictions is a key feature of supply chains and how they affect a firm’s choice of

suppliers (e.g., Simchi-Levi and Zhao, 2003; Shen et al., 2019). In contrast, we assume all key

characteristics of the firms (e.g., demand and costs) are known and taken into consideration when

inferring the other parties’ reactions.

3 Baseline model of dynamic sourcing

There are various rationales for companies to outsource the supply of components and subassemblies

such as lower cost, available capacity, quality, technology, and delivery time (see Li and Kouvelis,

1999). In many industries (e.g., paper, agriculture, electronics, textiles) the sourcing of inputs

involves substantial price uncertainty, not easily hedged by trading in futures markets. The well

functioning of futures markets requires a level of standardization that is often lacking for numerous

raw materials. We consider an imperfect input market in which the pricing depends on the purchase

decision of a buyer, itself subject to uncertainty in the output market. We first assume that the

buyer sources from a given set of suppliers, with a purchase order reflecting the current level of

uncertainty in the market.

Before we investigate the buyer’s decision about when to launch its project, we describe the

strategic interactions taking place between the buyer and the pool of suppliers. The suppliers are

producing a good which can be used as input in various inputs to production processes. The buyer

is a monopoly firm for one of these uses. Contrary to Li and Kouvelis (1999), we do not consider a

spot price for commodities traded in the input market, under the assumption that the market is not

sufficiently “liquid” for a market-clearing price to obtain from market forces. Instead, we consider
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an imperfect input market from which the buyer sources the input. The input is not a commodity

characterized by a spot price; its price is the outcome of strategic interactions among a given set of

suppliers competing à la Cournot.

Demand and cost functions. At a time t ≥ 0 following the investment, we consider a monopsonic

buyer who faces in the output market an inverse demand function q 7→ P (q, y) ≥ 0, which depends

on the state of demand denoted by y > 0 observed at time t ≥ 0. Up to a renormalisation, we

assume that the buyer needs q units of input to produce q units of output.

Given an input price c > 0, the buyer faces a cost function given by (c, q) 7→ C(c, q), a non-

negative, convex, and twice continuously differentiable function depending on the buyer’s output

choice q ≥ 0. On the other hand, let C0(·) ≥ 0 denote a supplier’s cost function. In the examples

studied later, we consider that the two functions C and C0 are either linear (i.e., C(c, q) = cq and

C0(q) = c0q with c0 ≥ 0 an exogeneous parameter) or quadratric in the output q (i.e., C(c, q) = 1
2cq

2

and C0(q) =
1
2c0q

2).

Equilibrium conditions. Suppose the monopsonic buyer has already invested and is sourcing at

every time t ≥ 0 a good in the input market after having observed the state of demand y. For each

time t ≥ 0, we consider a hierarchical game in which n symmetric suppliers decide on their output

capacity à la Cournot. These noncooperative decisions lead to a market-clearing price, c̄n ≥ 0, which

is observed by the buyer. Given this observed input price, the buyer decides at each time t ≥ 0 on

its production output. That buyer is rational and maximizes its profit at each time t ≥ 0.

To determine the equilibrium price in the input market, c̄n, we first consider the buyer’s perspective

given some arbitrary input price c. The buyer selects an output level q̄(y, c) that maximizes the

time-t profit π(q; y, c) := qP (q, y)−C(c, q). We use πq, πy, and πqq to denote the partial derivatives.

Under mild conditions, this maximum is obtained from a first-order condition, namely

πq (y, q̄(y, c)) = 0. (1)

Now, we consider the suppliers’ perspective where the function c 7→ q̄(y, c) can be interpreted as the

demand function of the suppliers. (By design, as the buyer is monopsonic, there is no other demand
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than the demand by this specific buyer.) Under standard conditions on P and C, the order quantity

q̄(y, c) in eq. (1) increases with demand (as q̄y = −πqy/πqq ≥ 0) and decreases with the input price

c (as q̄c = Cqc/πqq ≤ 0).

Because the suppliers are symmetric, we focus hereafter on symmetric equilibria. To determine

a symmetric Cournot-Nash equilibrium in the input market, we use the inverse demand function

Q 7→ q̄(y, ·)−1(Q), which maps the total demand by the buyer Q to a price, and then compute the

supplier i’s best-reply function:

z ∈ R+ 7→ R̄(z) := argmax
qi≥0

{
qi q̄(y, ·)−1(qi + z)︸ ︷︷ ︸

Inverse demand
function=input price︸ ︷︷ ︸

individual supplier’s
revenues

− C0(qi)︸ ︷︷ ︸
supplier’s

cost

}
∈ R+, (2)

where z has to be understood as
∑

j ̸=i qj .

Focusing on symmetric equilibria, we have qi = q̄n(y) for all i. Hence, the Nash-equilibrium output

q̄n(y) ≥ 0 of an individual supplier obtains from solving the following fixed-point equation,

q̄n(y) = R̄
(
(n− 1)q̄n(y)

)
. (3)

The n-tuple {q̄n(y), . . . , q̄n(y)} corresponds to the symmetric Cournot-Nash equilibrium outputs

among the n symmetric suppliers facing a monopsonic buyer. The total output in the input market

Q̄n(y) := nq̄n(y) (4)

equals by design the order by the monopsonic buyer. The equilibrium price in the input market is

then given by

c̄n(y) := q̄(y, ·)−1
(
Q̄n(y)

)
, (5)

while the equilibrium price in the output market is given by

P̄n(y) = P
(
Q̄n(y), y

)
. (6)
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Clearly, the prices in the input and output markets are not decoupled, with changes in the end

demand (driven by y) affecting the equilibrium price in the input market.

Unless specified otherwise, we consider henceforth an inverse demand function of the form

q 7→ P (q, y) = yq−δ, δ ∈ (0, 1), (7)

if the state of demand is y. Because ∂P
∂q (q, y) < 0 and ∂2P

∂q2 (q, y) ≥ 0, our inverse demand function

satisfies standard properties: the market-clearing price decreases with supply, in a convex manner.

In this case, the price elasticity of demand is constant, given by dQ
Q /dP

P = −1/δ. Other demand

specifications are obviously possible, but are less analytically tractable. (In particular, in case of a

linear inverse demand function, the optimal output decisions will be characterized by corner solutions

for specific range of the demand state y. This leads to expressions for the firms’ profits and net

present values which are defined in a piecewise manner and are slightly less tractable.)For the state

of completeness, the lemma below specifies the equilibrium input and output prices as well as the

equilibrium purchase order quantity by the buyer, in case of isoelastic demand in eq. (7). We consider

four cases (A, B, C, and D) to track the various combinations of cost functions:

A. C(c, q) = cq and C0(q) = c0q with c, c0 ≥ 0;

B. C(c, q) = 1
2cq

2 and C0(q) = c0q with c, c0 ≥ 0;

C. C(c, q) = 1
2cq

2 and C0(q) =
1
2c0q

2 with c, c0 ≥ 0;

D. C(c, q) = cq and C0(q) =
1
2c0q

2.

Lemma 1 (Equilibrium input price, purchase order quantity, and output price in case of dynamic

sourcing). For the inverse demand function of eq. (7), the equilibrium input price c̄n(·) in eq. (5),

the equilibrium output price P̄n(·) in eq. (6), and the buyer’s equilibrium order Q̄n(·) in eq. (4), are

respectively given by

A. C(c, q) = cq and C0(q) = c0q with c, c0 ≥ 0.

c̄n ≡ c0

1− δ
n

, Q̄n(y) =

[
1− δ

c̄n
y

] 1
δ

, P̄n ≡ c̄n
1− δ

.
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B. C(c, q) = 1
2cq

2 and C0(q) = c0q with c, c0 ≥ 0.

c̄n(y) ≡
c0

1− 1+δ
n

, Q̄n(y) =

[
1− δ

c̄n
y

] 1
1+δ

, P̄n(y) =

[
c̄n

1− δ

] δ
1+δ

y
1

1+δ .

C. C(c, q) = 1
2cq

2 and C0(q) =
1
2c0q

2 with c, c0 ≥ 0.

c̄n(y) = [(1− δ)y]
1

δ+2

[
n− 1− δ

c0

]− 1+δ
δ+2

, Q̄n(y) =

[
1− δ

c̄n(y)
y

] 1
δ+1

, P̄n(y) =

[
c̄n(y)

1− δ

] δ
δ+1

y
1

δ+1 .

D. C(c, q) = cq and C0(q) =
1
2c0q

2.

c̄n = (1− δ)

[
(n− δ)

1− δ

c0

]− δ
δ+1

y
1

δ+1 , Q̄n(y) =

[
1− δ

c̄n(y)
y

] 1
δ

, P̄n(y) =
c̄n(y)

1− δ
.

We make some observations relevant to all these cases discussed in Lemma 1. First, in line with

economic intuition, the equilibrium input price c̄n(·) increases with the suppliers’ cost parameter

c0. The input price c̄n(y), however, decreases as the number of suppliers in the pool, n, increases.

This is because the suppliers collectively lose market power vis-à-vis the buyer if they compete more

against each other. Second, the buyer’s purchase order Q̄n(y) decreases with the equilibrium price

in the input market, while the equilibrium price in the output market P̄n(y) increases. A greater

degree of competition among suppliers will thus lead the buyer to buy more units and to sell items

at a lower unit price P̄n(y) to the end customers. Third, the input market is subject to shocks in the

output market: the buyer’s purchase order Q̄n(y) depends on the realization of the demand state,

but so can be the equilibrium input price c̄n(y) depending on the firms’ cost specifications. The

equilibrium input price c̄n(·) and purchase order Q̄n(·) are nondecreasing in the demand state y.

In the general case, the buyer’s equilibrium profit is given by

π̄n(y) := π
(
Q̄n(y); y, c̄n(y)

)
, y > 0, (8)
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for Q̄n(·) and c̄n(·) given in eqs. (4) and (5) respectively, while a supplier’s profit reads

πn(y) := c̄n(y)q̄n(y)− C0

(
q̄n(y)

)
. (9)

The firms’ profit functions in eqs. (8) and (9) simplify greatly in the specific case of isoelastic demand

in eq. (7).

Proposition 1 (Equilibrium profits in case of dynamic sourcing.). In the specific case with the

inverse demand function in eq. (7), the buyer’s and suppliers’ profit functions in eqs. (8) and (9)

take respectively the form

π̄n(y) = any
ϵ and πn(y) = νny

ε, (10)

where ϵ > 0, an > 0, νn > 0, and ε > 0 take different values depending on the cost combinations:

ϵ = 1
δ

an = δ
[
n−δ
n

1−δ
c0

] 1
δ
−1

νn = δ
n

(
1−δ
c0

) 1−δ
δ

(
n−δ
n

) 1
δ

ε = 1
δ

in Case A,

ϵ = 2
δ+1

an = 1+δ
2

[
n−1−δ

c0

1−δ
n

] 1−δ
1+δ

νn = 1−δ2

n2

(
1−δ
c0

n−1−δ
n

)− δ
δ+1

ε = 1
δ+1

in Case B,

ϵ = 3
δ+2

an = 1+δ
2

[
n−1−δ

c0
(1− δ)

] 1−δ
2+δ

νn = (1− δ)
2

δ+2

[
n−1−δ

c0

]− δ
δ+2 n+1+δ

2n2 ε = 2
δ+2

in Case C,

ϵ = 2
δ+1

an = (1 + δ)
[
1−δ
c0

(n− δ)
] 1−δ

δ+1
νn =

(1−δ)
2−δ
δ+1

n2

[
n−δ
c0

] 1−δ
δ+1

{
n− n−δ

2
[1− δ]

δ
δ+1

}
ε = 2

δ+1
in Case D.

Demand dynamics. Over time, the buyer faces uncertainty due to continuous demand shocks

modeled by a Brownian motion (BM) Z defined in the probability space (Ω,F ,P). This BM generates

a filtration F := (Ft)t that satisfies the standard conditions. Specifically, the inverse demand function(
P (q, Yt)

)
t
evolves over time driven by the fluctuation of a geometric Brownian motion (GBM) given

by

Y0 = y > 0 and dYt = µYt dt+ σYt dWt with σ > 0.

The stochastic process (Yt)t characterizes shifts in the demand curve due to changes in consumer

tastes and arrivals of substitute products over time (see, e.g., Li and Kouvelis, 1999; Bensoussan

et al., 2022).

Buyer’s long-term value (after investment). The buyer’s discount rate, denoted r > 0, is

assumed constant over time (Li and Kouvelis, 1999; Bensoussan et al., 2022). Let Ey denote the

conditional expectation operator E
[
·
∣∣Y0 = y

]
. The net present value (NPV) of the buyer’s equilib-
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rium profit is given by

ūn(y) = Ey

∫ ∞

0

e−rtπ̄n(Yt)dt. (11)

Corollary 1 specifies the NPV in eq. (11) further for the case of isoelastic demand in eq. (7). To

state the result, we introduce

γ 7→ Q(γ) :=
1

2
σ2γ(γ − 1) + µγ − r. (12)

Corollary 1 (Buyer’s NPV in case of dynamic sourcing.). Consider the isoelastic demand of eq. (7).

If the parameter δ is such that ϵ > 0 in Proposition 1 satisfies Q(ϵ) < 0, then the NPV in eq. (11)

is of the form

ūn(y) = αny
ϵ, where αn := − an

Q(ϵ)
< αn+1, (13)

for an given in Proposition 1.

If the constraint Q(ϵ) < 0 on the parameter is not satisfied, then the net present value explodes

(i.e., ūn(y) = ∞) because the profits grow in an exponential manner in a manner that is too strong

compared to the discount rate. (If the suppliers face capacity limits, the buyer’s profit becomes

linear in the demand state at ∞ as per the discussion above and, so, a sufficient and necessary

condition for finiteness is r > µ.) It follows that a lower degree of market power among the pool

of suppliers (i.e., a larger value for n) helps the buyer achieve a higher value from operating in this

business. Independently from considerations about diversification of one’s supply, sourcing from a

larger pool of suppliers makes the buyer better off because the collective market power of these

suppliers is reduced, which benefits the buyer.

Buyer’s investment-timing problem. We are interested in studying the propensity of a buyer

to invest in productive assets given a dependence on its supplier base. Given the expression for the

NPV in eq. (13), we now introduce a real-options problem à la McDonald and Siegel (1986), which

takes the form

ψn(y) := sup
τ

Ey
[
e−rτ

(
αnY

ϵ
τ − I

)]
, (14)
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where τ is selected among the F-stopping times taking value in [0,∞) and the parameter I ≥ 0 is

a known investment cost incurred by the buyer. Let γ denote the unique positive root of Q(·) in

eq. (12). The solution of this problem is given in Proposition 2 below:

Proposition 2 (Buyer’s real-options problem in case of dynamic sourcing.). Assume that Q(ϵ) < 0

as per Corollary 1. Then, the solution of eq. (14) is given by

ψn(y) =


[
αnȳ

ϵ − I
] (

y
ȳn

)γ

, y < ȳn :=
(

γ
γ−ϵ

I
αn

) 1
ϵ

αny
ϵ − I, y ≥ ȳn.

The optimal investment strategy is a threshold policy, given by τ̂n := inf
{
t ≥ 0

∣∣Yt ≥ ȳ
}
.

The buyer invests if the price exceeds a level, higher than the Marshallian threshold and the

NPV threshold. The buyer thus requires extra profitability from its project before undertaking

investment. The investment threshold obtains by smooth fit. A classical assumption in case of linear

payoff functions is that r > µ (e.g. Dixit and Pindyck, 1994), which is not sufficient here. Here, we

introduce a slightly different assumption, namely Q(ϵ) < 0, which effectively is a constraint on the

elasticity parameter δ of the inverse demand function in eq. (7). The constraint also depends on the

choice of cost functions as per Corollary 1.

We also obtain the comparative results:

Corollary 2 (Comparative statics). Under the assumption of Proposition 2, the value functions

and the optimal stopping times are ranked, with ψn ≤ ψn+1 and τ̂n ≥ τ̂n+1.

As per Corollary 2, because of the inequalities αn+1 ≥ αn in eq. (13), a larger degree of competition

in the input market (and consequently a lower degree of market power) makes it more likely for

the buyer to invest because it receives a larger slice of the market with less value accruing to the

suppliers. The result is intuitive, as the buyer would be better off if the pool of suppliers is larger

because the suppliers would then compete more against each other leading the equilibrium price in

the input market to fall.

Coordination costs. The notion that the buyer is better off sourcing from a larger pool of suppli-

ers rests on the assumption that the buyer does not incur coordination costs. If the coordination costs
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n ∈ N 7→ K(n) are nondecreasing and convex, we would be able to solve a new optimization problem

determining the optimal supplier base at the time of investment. Because the optimal supplier base,

denoted say n̄(y), is integer-valued, the gain function of the buyer’s investment problem will be of

the form y 7→ αn̄(y)y
ϵ− I−K

(
n̄(y)

)
and be discontinuous. This would make the buyer’s investment

problem particularly complex (see, e.g., Bensoussan and Chevalier-Roignant, 2013), possibly with

limited new insights. Obviously, in this case, the insights from Corollary 2 do not hold.

Suppliers’ capacity constraints. The results in Lemma 1, Corollary 1 and proposition 2 are

obtained under the assumption that the suppliers face no capacity constraints. For the sake of argu-

ment, consider symmetric capacity limits κ > 0. Because, in all cases under study, the equilibrium

purchase order quantity satisfies Q̄′
n(·) > 0 with Q̄n(0) = 0 to Q̄n(∞) = ∞, there is a unique de-

mand state, namely y⋆ := Q̄−1
n (nκ), above which the supplier’s constraint is binding. The supplier

would then have to account for the likely capacity constraints of the suppliers when computing its

net present value in eq. (11), which now is defined piecewise. For larger demand, i.e., y ≥ y⋆, the

equilibrium input price in eq. (5), now given by q̄(y, ·)−1(nκ), is linear in y for all cases under study.

Consequently, the buyer’s cost y 7→ C(q̄(y, ·)−1(nκ), nκ) grows linearly with the demand state y at

∞. The equilibrium output price in eq. (7) is now y(nκ)−δ for y ≥ y⋆, while the buyer’s purchase

order is bounded by Q̄n(y⋆) = nκ due to the suppliers’ binding capacity constraints. Consequently,

the buyer’s revenues grow linearly in the demand state y at ∞. By optimality, the revenue contribu-

tion dominates the cost contribution for large y, so the buyer’s profit is linear at ∞. The integrand

thus becomes linear at ∞: the sufficient conditions Q(ϵ) < 0 in Corollary 1 can thus be substituted

by r > µ (which is equivalent to Q(1) < 0) in case of capacity constraints. Under suppliers’ capacity

constraints, the NPV will not have a simple functional form as in eq. (13), but will be defined piece-

wise and have convex kinks. The buyer’s investment problem will not be of the form in eq. (14).

The presence of convex kinks will make the study of the optimal stopping problem more involved,

with the optimal strategy possibly not characterized by a threshold (e.g., Décamps et al., 2006). At

any rate, we believe the additional mathematical complexity will outweigh the benefits, in terms

of novel unexpected managerial insights, gained by studying a more realistic setup with capacity

constraints. We also note that the capacity constraint is less of an issue if the suppliers can rely on
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providers of contract manufacturers if their own production capacity is limited.

4 Long-term supply contract

To reduce their exposure to uncertainty in the input market, suppliers may want to offer a supply

contract to the buyer (see Li and Kouvelis, 1999). Supply contracts establish a formal agreement

regarding the cost of components, the quantity of items bought, the delivery schedule, the quality

of products, and other factors relevant to the procurement situation. Here, the suppliers may want

to circumvent the dependence of the equilibrium input price c̄n(y) in Lemma 1 on the end demand

state y.

For this purpose, we consider a different hierarchical game in which, at time 0, the monopsonic

buyer decides on its production capacity—assuming it produces at capacity for any future time

t ≥ 0— and liaises with a set of n suppliers to converge on an input price ĉn ≥ 0 at which the buyer

will source the good in the future (as part of a long-term framework agreement). We are examining

a time-inflexible agreement where the buyer and suppliers reach a consensus at time 0 regarding (i)

the quantity of units to be bought (Li and Kouvelis, 1999) and (ii) the product price. Given a supply

contract, the buyer’s decision is to determine when to purchase and how many units to purchase

each time such that the expected net present value is maximized.

Buyer’s long-term value (after investment). Now, the buyer is assumed to select its produc-

tion capacity so as to maximize its net present value:

ûn(y) := sup
q≥0

Ey

[ ∫ ∞

0

e−rt{qP (q, Yt)− C(ĉn, q)
}
dt

]
, (15)

where P (·, y) is again an inverse demand function, for instance of the form in eq. (7). By assumption,

the purchase order quantity is held fixed following the time-0 decision in eq. (15).
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Equilibrium conditions. Again, we use backward induction to determine the equilibrium price

in the input market, ĉn. For a given arbitrary input price c ≥ 0, the buyer maximizes the function

q 7→ u(q; y, c) := Ey

[∫ ∞

0

e−rt{qP (q, Yt)− C(c, q)
}
dt

]
. (16)

If c 7→ q̂(y, c) := argmaxg≥0 u(q; y, c) is invertible, q 7→ q̂(y, ·)−1(q) is an inverse demand function for

the suppliers. To determine the Cournot-Nash equilibrium in the input market, we compute

Q ∈ R+ 7→ R̂(Q) := argmax
q≥0

{
qq̂(y, ·)−1(q +Q)− C0(q)

}
∈ R+, (17)

and then determine a capacity q̂n(y) ≥ 0 such that

q̂n(y) = R̂ ((n− 1)q̂n(y)) , (18)

with {q̂n(y), . . . , q̂n(y)} corresponding to a symmetric Cournot-Nash equilibrium. The buyer’s pur-

chase order is

Q̂n(y) := nq̂n(y). (19)

(The profits received by the suppliers does not depend on time as the buyer produces at capacity

in all subsequent periods and the input price is agreed upon and fixed in the framework agreement.

Consequently, whether the suppliers maximize their profit or the net present value of their deter-

ministic profits does not matter.) The equilibrium input and output prices are, respectively, given

by

ĉn := q̂(y, ·)−1
(
Q̂n(y)

)
and P̂n(y) := P

(
Q̂n(y), y

)
, (20)

while the buyer’s NPV can now be written as

ûn(y) = u
(
Q̂n(y); y, ĉn

)
(15’)

Lemma 2 discloses the equilibrium quantities in case of isoelastric demand and stresses the

difference with the earlier setting for which the results reported in Lemma 1:
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Lemma 2 (Equilibrium input price, purchase order quantity, and output price in case of supply

contract). We consider the inverse demand function of eq. (7) and recall the related quantities c̄n(·),

Q̄n(·), and P̄n(·) in Lemma 1. The equilibrium input and output prices ĉn(·) and P̂n(·) in eq. (20)

and the buyer’s equilibrium order Q̂n(·) in eq. (19) are respectively given by

A. ĉn ≡ c̄n, Q̂n(y) =
[

r
r−µ

] 1
δ

Q̄n(y), and P̂n ≡ r−µ
r P̄n.

B. ĉn ≡ c̄n, Q̂n(y) =
[

r
r−µ

] 1
1+δ

Q̄n(y), and P̂n(y) =
[
r−µ
r

] δ
δ+1 P̄n(y).

C. c̄n(y) =
[

r
r−µ

] 1
δ+2

c̄n(y), Q̂n(y) =
[

r
r−µ

] 1
δ+2

Q̄n(y), and P̂n(y) =
[
r−µ
r

] δ
δ+2 P̄n(y).

D. ĉn(y) =
[

r
r−µ

] 1
δ+1

c̄n(y), Q̂n(y) =
[

r
r−µ

] 1
1+δ

Q̄n(y), and P̄n(y) =
[
r−µ
r

] δ
1+δ P̄n(y).

From Lemma 2, it holds in all four cases that

ĉn(·) ≥ c̄n(·), Q̂n(·) ≥ Q̄n(·), and P̂n(·) ≤ P̄n(·).

This implies that, in case of a supply contract, the suppliers are better off compared to the case

of dynamic sourcing by the buyer, the suppliers selling more units Q̂n(·) at a higher equilibrium

input price ĉn(·). These circumstances, however, put pressure on the buyer, who charges less to

the end customers to ensure that the output market clears. The introduction of a supply contract

implies a reduction of wealth to the benefits of the suppliers. Interestingly, the terms of the supply

contract in Lemma 2 do not depend on the degree of uncertainty in the market. This is because the

supply chain parties are considered risk-neutral and because the demand state y affects the demand

in eq. (7) in a linear manner.

In this game with a time-inflexible supply contract, where the buyer decides on its production

capacity (and not continually on its output), we obtain

Proposition 3 (Buyer’s NPV in case of production schedule commitment.). We assume r > µ.

For the inverse demand function of eq. (7), the NPV in eq. (15) depends on the cost specifications:

A. ûn(y) = βny
1
δ where βn := δ

r−µ

[(
1− δ

n

)
1−δ
c0

r
r−µ

] 1
δ−1

;

B. ûn(y) = βny
2

δ+1 , where βn := 1
r−µ

1+δ
2

[(
1− 1+δ

n

)
1−δ
c0

r
r−µ

] 1−δ
1+δ

;
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C. ûn(y) = βny
3

δ+2 , where βn := 1
r−µ

1+δ
2

[
(n− 1− δ) 1−δ

c0
r

r−µ

] 1−δ
2+δ

.

D. ûn(y) = βny
2

δ+1 , where βn := 1+δ
r−µ

[
1−δ
c0

r
r−µ (n− δ)

] 1−δ
δ+1

.

Comparison with the case with dynamic sourcing. In all of the cases considered in Propo-

sition 3, the NPV in eq. (15) can be written in the form

ûn(y) = βny
ϵ, where βn ≤ βn+1 and ϵ ≥ 0. (21)

This simple form is reminiscent of the one in eq. (13). We compare the NPVs under these two

distinct setups and establish:

Proposition 4 (Ranking). Under the assumptions specified in Propositions 2 and 3, it holds in all

four cases that βn ≤ αn for all n ∈ N.

Following Proposition 4, the buyer is worse off by agreeing to sign a supply contract with suppliers

rather than sourcing dynamically as the demand state y is realized. This outcome in Proposition 4

is not surprising because we already observed a redistribution of wealth to the benefit of suppliers

in lemma 2.

Buyer’s investment-timing problem. Because of the formulation in eq. (21), the solution of

the real-options problem

ψ̂n(y) := sup
τ≥0

Ey
[
e−rτ

(
βnY

ϵ
τ − I

)]
is of the form given in Proposition 2 but with the parameter βn in lieu of αn. Because of the

inequality satisfied by the terms {βn}n in eq. (21), the results in Corollary 2 also hold in this case

with a commitment to the production schedule. A comparison between the optimal investment

time in case of dynamic sourcing vs commitment to a production schedule can also be readily done

leveraging the results of Proposition 4 and Corollary 2: the buyer is more prone to investing in a

project if it sources dynamically after the investment time rather than agree to a supply contract

with the suppliers.
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5 Supplier dynamics

The previous stylized models rest on the assumption that the suppliers are willing to trade with the

suppliers provided the input price exceeds the marginal cost. The fundamental force leading to a

given set of firms in the supplier base was left unanswered. We now revise the setting to allow for

dynamics in the number of firms in the supplier base, which we relate to a fixed cost of operating in

the input market, due, e.g., to a calibration of the production processes to adjust the input to the

buyer’s requirements, fixed costs to ship the goods to the buyer, contracting cost with a contract

manufacturer.

Weaker supplier’s exit decision. In particular, assume two suppliers could operate at time 0.

These suppliers i ∈ {1, 2} are asymmetric in terms of the quasifixed cost to operate their businesses.

The “strong supplier” has a competitive advantage compared to its rival as it faces a nonnegative,

convex, twice continuously cost differentiable function of the form C0(q), while its rival, the “weaker

supplier,” faces a cost function q 7→ C0(q) +K1(0,∞)(q), with K > 0. Following standard economic

arguments, the quasifixed cost of the weaker supplier does not affect the terms of the trade if a trade

with both suppliers were to take place, but it affects the willingness of the weaker supplier to trade

altogether, requesting the demand to be sufficiently large to agree on the terms.

We assume that the quasifixed cost of the weaker supplier K is sufficiently large so that there

exists a unique Markov perfect equilibrium in pure strategies for the supplier’s exit decision (see

Georgiadis et al., 2022, Proposition 1i). Under this assumption, the weaker supplier decides to exit

the business by solving the following optimal stopping problem:

ϑ =: argmax
τ

Ey

∫ τ

0

e−rt
{
π2(Yt)−K

}
dt, (22)

where πn(·) is given in eq. (9). This problem is akin to the one discussed in Leland (1994). In

contrast, the stronger supplier, which does not incur a quasifixed cost to trade, would stay trading

in the input market for any demand state y > 0 if the buyer decides to operate.
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Buyer’s long-term value (after investment). After the weaker supplier has decided to exit

the business at time ϑ, the buyer can only source from one supplier, with the stronger supplier then

being able to wield more market power and secure better terms of trade with the buyer. In summary,

if the buyer dynamically source from the input market, its NPV is given by

ũ(y) := Ey

[ ∫ ϑ

0

e−rtπ̄2(Yt) dt︸ ︷︷ ︸
buyer’s discounted profits
before supplier 2’s exit

+

∫ ∞

ϑ

e−rtπ̄1(Yt) dt︸ ︷︷ ︸
buyer’s discounted profits
after supplier 2’s exit

]
, (23)

for π̄n(·) given in eq. (8) and ϑ the optimal stopping time in eq. (22). By design, if the weaker

supplier is offered to trade at time 0, it will forego this opportunity forever if ϑ = 0, even in the

event where the demand state y increases significantly in the future. In this case, the buyer will

only be able to trade with a single supplier forever. If the weaker supplier does not forego this

opportunity at time 0 (i.e., ϑ > 0), it will exit the market at some time in the future, namely ϑ.

From that point onwards, the buyer is left with possibility to trade with a single supplier.

Proposition 5 summarizes the results for the weaker supplier’s exit decision in eq. (22) and the

buyer’s NPV in eq. (23) in case of isoelastic demand in eq. (7) and for various combinations of the

firms’ cost functions.

Proposition 5 (Weaker supplier’s exit and buyer’s net present value under isoelastic demand).

We consider the inverse demand function in eq. (7) and assume that δ is such that ϵ and ε in

Proposition 1 satisfies Q(ϵ) < 0 and Q(ε) < 0, respectively. The weaker supplier decides not to trade

with the buyer at the first time

ϑ := inf
{
t ≥ 0

∣∣Yt ≤ ỹ
}
at which the process (Yt)t is below ỹ :=

(
− γ̃

γ̃ − ε

Q(ε)

r

K

ν2

) 1
ε

, (22’)

where γ̃ is the negative root of Q(·) in eq. (12) and ν2 is the multiplier in eq. (10).

Furthermore, the NPV of the buyer in eq. (23) is given by

ũ(y) =


α1y

ϵ, 0 < y < ỹ,

α2y
ϵ +

[
α1 − α2

]
ỹϵ

(
y
ỹ

)γ̃

, y ≥ ỹ,

(23’)
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where αn is specified in Corollary 1.

If the weaker supplier is offered to trade at time 0, it will forego this opportunity to if the demand

state y is below ỹ. If the demand state y is larger, the weaker supplier accepts the trade, but will

exit when the demand state falls below ỹ in the future.

Buyer’s investment-timing problem. We can now revisit the buyer’s investment problem in

eq. (14). This problem now reads

ψ̃(y) := sup
τ

Ey
[
e−rτ

{
ũ(Yτ )− I

}]
, (24)

for the function ũ(·) in eq. (23’). Following the general theory on variational inequalities (Bensoussan

and Lions, 1982), the stopping set for this problem is S :=
{
y > 0

∣∣ψ̃(y) = ũ(y)− I
}
.

From eq. (23’), we get ũ′(ỹ−) = ϵα1ỹ
ϵ−1, while ũ′(ỹ+) = α2ϵỹ

ϵ−1 + γ̃
[
α1 − α2]ỹ

ϵ+γ̃−1−γ̃ . It

follows that

ũ′(ỹ+)− ũ′(ỹ−) =
[
α2 − α1

]︸ ︷︷ ︸
>0

from eq. (13)

ỹϵ−1
[
ϵ− γ̃

]︸ ︷︷ ︸
>0

> 0.

So, the function ũ(·) has a convex kink at ỹ.

Because of the convex kink, it is known (see, e.g., Décamps et al., 2006) that there exists a small

η > 0 such that (
ỹ − η, ỹ + η

)
̸⊆ S.

In other words, close to the point ỹ where the weaker supplier is likely to forego trading with the

buyer, the buyer will be strategically ambivalent between (i) waiting for a decrease in demand to

ensure clarity with regard to the pool of suppliers, as the weaker supplier pulls out, and (ii) waiting

for an increase in demand, which will at least for a short period of time, will ensure more favorable

equilibrium conditions in the input market because the weaker supplier will indeed accept the trade.
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6 Conclusion

Main managerial insights. Our paper derive a set of insights useful for practice. First, the

level of competition among suppliers influences a buyer’s investment. Accessing a broadeer supplier

base would lower the input prices, which would give the buyer more market power. Second, while

suppliers may offer supply contracts to stabilize their cash flows, the buyer shouild refrain from them

because it gives them less market power and reduce their propensity to invest. Finally, we endogenize

the size of the supplier base by introducing asymmetry with respect to the fixed operating costs. In

such a case, the buyer may delay investment to gain market power.

Limitations. We identify numerous limitations. First, because in the example of demand function

we consider, the demand state enters the problem linearly, uncertainty considerations do not the

relative terms of the tension between dynamic sourcing and a long-term supply contract. Second, the

suppliers were assumed to be able to infer the demand from the buyer and the best-reply function

of their rivals. This requires a high degree of transparency, which is not realistic. We assume that

purchase orders materialize into the inflow of product in the inventory. Recent events (e.g., Suez

Canal Blockage, War in Ukraine, and Panama Canal drought) remind us that the buyer may want

to build up inventory to achieve resilience in case of supply chain disruption. We leave these and

other topics for future research.
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Appendices

A Proof of Proposition 1

Case A. Given the cost specifications, the demand from the buyer in eq. (1) becomes

q̄(y, c) =

(
1− δ

c

) 1
δ

y
1
δ

and, so, that the inverse demand faced by the suppliers is

q 7→ q̄(y, ·)−1(q) = (1− δ)yq−δ.

It follows by differentiation that R̄(Q) in eq. (2) satisfies

c0
1− δ

1

y
=

(
R̄(Q) +Q

)−δ−1 [
(1− δ)R̄(Q) +Q

]
.

So, q̄n(y) in eq. (18) solves

c0
1− δ

1

y
=
[
nq̄n(y)

]−δ−1
[(1− δ)q̄n(y) + (n− 1)q̄n(y)]

=[nq̄n(y)]
−δ

(
1− δ

n

)
.

Hence,

q̄n(y) =
1
n

[(
1− δ

n

)
1−δ
c0
y
] 1

δ

(25)

It now follows from eq. (5) that

c̄n = (1− δ)y
[(
1− δ

n

)
1−δ
c0
y
]−1

=
c0

1− δ
n

. (26)
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We get the equilibrium output price from eqs. (6) and (7):

P̄n(y) ≡
c0

1− δ
n

1

1− δ
=

c̄n
1− δ

.

Furthermore,

Q̄n(y) =
[
1−δ
c̄n
y
] 1

δ

.

After substitution, the buyer’s profit is now:

π̄n(y) =

{[(
1− δ

n

)
1−δ
c0
y
] 1

δ

y
[(
1− δ

n

)
1−δ
c0
y
]− δ

δ − c0
1− δ

n

[(
1− δ

n

)
1−δ
c0
y
] 1

δ

}
=

[(
1− δ

n

)
1−δ
c0

] 1
δ

{
c0

1− δ
n

1
1−δ − c0

1− δ
n

}
y

1
δ

= δ c0
1−δ

1

1− δ
n

[(
1− δ

n

)
1−δ
c0

] 1
δ

y
1
δ .

In contrast, the supplier’s profit is given by

πn(y) =

[
c0

1− δ
− c0

]
1

n

[
(1− δ

n )
1− δ

c0
y

] 1
δ

= y
1
δ
δ

n

[
1−δ
c0

] 1−δ
δ (

n−δ
n

) 1
δ .

Case B. When C(c, q) = 1
2cq

2, we get the suppliers’ inverse demand function

q 7→ q̄(y, ·)−1(q) = (1− δ)yq−δ−1.

In this case, R̄(Q) satisfies

0 = −c0 + (1− δ)y
{
(R̄(Q) +Q)−(δ+1) − R̄(Q)(1 + δ)(R̄(Q) +Q)−(δ+2)

}
.

It follows that q̄n satisfies

0 =− c0 + (1− δ)y
{
(nq̄n)

−(δ+1) − q̄n(1 + δ)(nq̄n)
−(δ+2)

}
⇐⇒ q̄n = 1

n

[
1−δ
c0

(1− 1+δ
n )y

] 1
1+δ

.
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If we substitute the total output into the inverse demand function, we get

c̄n(y) = (1− δ)y

[[
1−δ
c0

(1− 1+δ
n )y

] 1
1+δ

]−(δ+1)

= (1− δ)y c0
1−δ

1

1− 1+δ
n

1

y
=

c0

1− 1+δ
n

.

From the inverse demand function, the equilibrium output price is

P̄n(y) =

[
c0

1− δ

1

1− 1+δ
n

] δ
1+δ

y
1

1+δ =

[
c̄n

1− δ

] δ
1+δ

y
1

1+δ .

By substitution, the supplier’s profit is

πn(y) =

[
c0

1− 1+δ
n

− c0

]
1

n

(
1− δ

c0

) 1
δ+1

(
1− 1 + δ

n

) 1
δ+1

y
1

δ+1

=
c0

1− 1+δ
n

1 + δ

n2

(
1− δ

c0

) 1
δ+1

(
1− 1 + δ

n

) 1
δ+1

y
1

δ+1

=c0
1 + δ

n2

(
1− δ

c0

) 1
δ+1

(
n− 1− δ

n

)− δ
δ+1

y
1

δ+1

=
1− δ2

n2

(
1− δ

c0

)− δ
δ+1

(
n− 1− δ

n

)− δ
δ+1

y
1

δ+1 .

Case C. The inverse demand function is the one from Case B. Because C0(q) = 1
2c0q

2, the term

R̄(Q) in eq. (17) obtains to satisfy

(1− δ)y(R̄(Q) +Q)−(2+δ)
[
Q− δR̄(Q)

]
− c0R̄(Q) = 0,

and, so, q̄n satisfies

(1− δ)y(nq̄n)
−(2+δ)[n− 1− δ]− c0 = 0 ⇐⇒ q̄n = 1

n

[
(n− 1− δ) 1−δ

c0
y
] 1

2+δ

.

By substituting the total outputs of the suppliers into the inverse demand function yields the equi-

librium price

c̄n = [(1− δ)y]
1

δ+2

[
n− 1− δ

c0

]− 1+δ
δ+2

.
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Furthermore,

P̄n(y) = y
[
(n− 1− δ) 1−δ

c0
y
]− δ

2+δ

.

But we know that

1− δ

c̄n
y =

[
(1− δ)y n−1−δ

c0

] 1+δ
δ+2

=⇒ (n− 1− δ) 1−δ
c0
y =

[
1− δ

c̄n(y)
y

] δ+2
δ+1

.

Hence,

P̄n(y) =
[

1−δ
c̄n(y)

]− δ
δ+1

y
1

δ+1 and Q̄n(y) =
[

1−δ
c̄n(y)

y
] 1

δ+1

.

By substitution, the buyer’s profit is given by

π̄n(y) =

[
n− 1− δ

c0
(1− δ)y

] 1−δ
2+δ

y − 1

2
[(1− δ)y]

1
δ+2

[
n− 1− δ

c0

]− 1+δ
δ+2

[
n− 1− δ

c0
(1− δ)y

] 2
2+δ

= y
3

δ+2

{[
n− 1− δ

c0

] 1−δ
δ+2

(1− δ)
1−δ
δ+2 − 1

2
(1− δ)

3
δ+2

[
n− 1− δ

c0

] 1−δ
δ+2

}

= y
3

δ+2

[
n− 1− δ

c0

] 1−δ
δ+2

(1− δ)
1−δ
δ+2

{
1− 1

2
(1− δ)

2+δ
δ+2

}
= y

3
δ+2

[
n− 1− δ

c0
(1− δ)

] 1−δ
δ+2

1+δ
2 .

By substitution, the supplier’s profit is

πn(y) = [(1− δ)y]
1

δ+2

[
n−1−δ

c0

]− 1+δ
δ+2 1

n

[
(n− 1− δ)

1− δ

c0
y

] 1
δ+2

− c0
2

1

n2

[
(n− 1− δ)

1− δ

c0

] 2
δ+2

=
y

2
δ+2

n2

{
n(1− δ)

2
δ+2

[
n−1−δ

c0

]− δ
δ+2 − c0

2

[
n−1−δ

c0

] 2
δ+2

[1− δ]
2

δ+2

}
=
y

2
δ+2

n2
(1− δ)

2
δ+2

[
n−1−δ

c0

]− δ
δ+2

{
n− c0

2
n−1−δ

c0

}
= y

2
δ+2 (1− δ)

2
δ+2

[
n−1−δ

c0

]− δ
δ+2 n+ 1 + δ

2n2
.

Case D. Here, the inverse demand function is q 7→ q̄(y, ·)−1(q) = (1− δ)yq−δ. It follows that R̄(Q)
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satisfies

0 = −c0R̄(Q) + (1− δ)y
[
R̄(Q) +Q

]−δ−1 {
Q+ (1− δ)R̄(Q)

}
and that q̂n satisfies

0 = −c0 + (1− δ)y [nq̄n]
−δ−1 {n− δ} ⇐⇒ q̄n =

1

n

[
(n− δ) 1−δ

c0
y
] 1

1+δ

.

Hence, from the inverse demand function of the suppliers, we get

c̄n = (1− δ)y

[
(n− δ)

1− δ

c0
y

]− δ
δ+1

= (1− δ)

[
(n− δ)

1− δ

c0

]− δ
δ+1

y
1

δ+1 .

It follows that

(n− δ)
1− δ

c0
y =

[
1− δ

c̄n(y)
y

] δ+1
δ

,

from which

Q̄n(y) =

[
1− δ

c̄n(y)
y

] 1
δ

and P̄n(y) =
c̄n(y)

1− δ
.

By substitution,

πn(y) = (1− δ)
1−δ
δ+1

[
n− δ

c0

]− δ
δ+1

y
1

δ+1
1

n
[(1− δ)y]

1
δ+1

[
n− δ

c0

] 1
δ+1

− c0
2

1

n2

[
n− δ

c0

] 2
δ+1

[(1− δ)y]
2

δ+1

=
y

2
δ+1

n2
(1− δ)

2−δ
δ+1

[
n−δ
c0

] 1−δ
δ+1

{
n− c0

2

[
n− δ

c0

] 2−1+δ
δ+1

[(1− δ)]
2−2+δ
δ+1

}
=
y

2
δ+1

n2
(1− δ)

2−δ
δ+1

[
n−δ
c0

] 1−δ
δ+1

{
n− n− δ

2
[1− δ]

δ
δ+1

}

This completes the proofs of proposition 1.
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B Proof of Corollary 1

The term ūn(y) in eq. (11) then becomes

ūn(y) = anEy

∫ ∞

0

e−rtY ϵ
t dt.

We now consider the stochastic process (Y ϵ
t )t. By the Itô-Döblin formula,

dY ϵ
t =

[
1
2σ

2Y 2
t ϵ(ϵ− 1)Y ϵ−2

t + µYtϵY
ϵ−1
t

]
dt+ σYtϵY

ϵ−1
t dZt

=m(ϵ)Y ϵ
t dt+ σϵY ϵ

t dZt,

where

m(ϵ) := 1
2σ

2ϵ(ϵ− 1) + µϵ. (27)

So (Y ϵ
t )t follows a GBM. It follows by standard properties of GBMs that EyY ϵ

t = yϵem(ϵ)t and that

Ey

∫ ∞

0

e−rtY ϵ
t dt = yϵ

∫ ∞

0

eQ(ϵ)tdt,

for Q(·) given in eq. (12), converges to

Ey

∫ ∞

0

e−rtY ϵ
t dt = − yϵ

Q(ϵ)
iff Q(ϵ) < 0.

C Proof of Proposition 2

Equation (14) describes the classical problem of McDonald and Siegel (1986). We drop the index n

in the notation αn and introduce the differential operator

L :=
1

2
σ2y2

∂2

∂y2
+ µy

∂

∂y
− r1. (28)
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The dynamic programming equation for the problem in eq. (14) is a variational inequality (VI):


max

{
αyϵ − I − ψ(y);Lψ(y)

}
= 0, a.e. y > 0,

lim
y↓0

ψ(y) = 0,

lim
y↑∞

ψ(y)

yϵ
= 1.

(29)

We have

L(α ·ϵ −I)(y) ≡ −[r −m(ϵ)]αyϵ + rI (30)

for m(·) given in eq. (27). If r > m(ϵ), y 7→ L(α ·ϵ −I)(y) is monotone decreasing on (0,∞) from

rI > 0 to −∞, so it has a unique root, denoted y⋆. We conjecture that {ψ > α ·ϵ −I} = (0, ȳ) ⊂

(0, y⋆), where ȳ obtains by smooth fit. If this conjecture holds, then ψ(·) solves the free-boundary

problem (FBP)

ψ(0+) = 0,

Lψ(y) = 0, ∀y ∈ (0, ȳ),

ψ(ȳ) = αȳϵ − I,

ψ′(ȳ) = αϵyϵ−1.

The function Q(·) in eq. (12) is convex, attains its minimum at the point γ⋆ := −µ− 1
2σ

2

σ2 , and

satisfies Q(±∞) = ∞. Further, because Q(1) = m(ϵ)−r < 0, the minimum is necessarily a negative

minimum and Q(·) has a positive root γ, which is unique because Q(·) is monotone increasing

on (max{1; γ⋆},∞). Standard computations lead us to conclude that the function ψ(·) given in

Proposition 2 solves the FBP.

It remains to verify that this ψ(·) solves the variational ineq. (29). We look at the two intervals.

(ȳ,∞). For ψ to solve the VI in this interval, we must have Lψ = L(α ·ϵ −I)(y) ≤ 0. From eq. (30)
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and the expression for ȳ,

L(α ·ϵ −I)(ȳ) = = I[r −m(ϵ)]
[ 1

1− ϵ
γ

− 1

1− m(ϵ)
r

]
=−I[r −m(ϵ)]︸ ︷︷ ︸

<0

∫ ϵ
γ

m(ϵ)
r

1

(1− ζ)2︸ ︷︷ ︸
>0

dζ.

But, it follows from eq. (12) after simplifications that

Q
(

rϵ
m(ϵ)

)
=

1

2

r −m(ϵ)

[µ+ 1
2σ

2(ϵ− 1)]2
rσ2 > 0 because r > m(ϵ).

Because Q(·) is monotone increasing on (max{1; γ⋆},∞) and Q(∞) = ∞, the root γ satisfies

γ < rϵ
m(ϵ) . It immediately follows ϵ

γ >
m(ϵ)
r . Hence, L(α ·ϵ −I)(ȳ) < 0. So the FBP’s solution

ψ(·) verifies the VI in the interval (ȳ,∞).

(0, ȳ). We want to verify that ψ(y) ≥ αyϵ − I. We note that ψ(·) also reads

ψ(y) =
αϵ

γ
yγ ȳϵ−γ in the interval (0, ȳ).

We define ψ̃(y) := ψ(y)− αyϵ + I. In the interval (0, ȳ),

ψ̃′(y) =αϵ
[
yγ−1ȳϵ−γ − yϵ−1

]
= αϵyϵ−1

[(
y
ȳ

)γ−ϵ

− 1

]
.

We note that

Q(ϵ) =
1

2
σ2ϵ(ϵ− 1) + µϵ− r = −[r −m(ϵ],

for m(·) given in eq. (27). Given the assumption r > m(ϵ), it follows that Q(ϵ) < 0 and, so,

given the behavior of Q(·), we have γ > ϵ. It follows that ψ̃′(·) ≤ 0 on (0, ȳ).

Further, ψ̃(ȳ) = 0 by value matching. Hence, ψ̃(·) necessarily decreases on (0, ȳ) from a positive

value and vanishes at the right boundary. It follows that ψ(y) ≥ αyϵ − I and, so, that the

FBP’s solution ψ(·) solves the VI in this interval as well.

We conclude with the verification theorem. Let ψ be a supersolution of the variational ineq. (29).
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For an arbitrary stopping time τ , it follows from Dynkin’s formula that

ψ(y) = Ey
[
e−rτ ψ(Yτ )︸ ︷︷ ︸

≥αY ϵ
τ −I

−
∫ τ

0

e−rt Lψ(Yt)︸ ︷︷ ︸
≤0

dt
]

≥ Eye−rτ
{
αY ϵ

τ − I
}
.

Then, a supersolution of the VI exceeds the value function. Let ψ(·) denote the classical solution

of the VI and take τ̂ := inf
{
t ≥ 0

∣∣ψ(Yt) ≥ αYt − I
}
. Proceeding similarly, we obtain that the

solution of the VI is the smallest supersolution and coincides with the value function in eq. (14).

This concludes the proof of Proposition 2.

D Proof of Corollary 2

Assume N ≥ n and that the conditions in Proposition 2 are met. It follows from eq. (13) that

αNY
ϵ
τ − I ≥ αNY

ϵ
τ − I and, so, that

ψN (y) ≥ Eye−rτ̂n
[
αNY

ϵ
τ̂n − I

]
≥ ψn(y) := Eye−rτ̂n

[
αNY

ϵ
τ − I

]
.

Further, ȳN ≤ ȳn by monotonicity of the map a 7→
(

γ
γ−ϵ

I
a

)
. This completes the proof.

E Proof of Proposition 3

We assume r > µ and consider the inverse demand function in eq. (7). It follows from standard

properties of GBM that the term in eq. (16) simplifies to

u(q; y, c) :=
y

r − µ
q1−δ − 1

r
C(c, q).

Case A. Because δ ∈ (0, 1), when C(c, q) = cq where c ≥ 0, the value-maximizing output for the

supplier is

q̂(y, c) =

(
r

r − µ

1− δ

c

) 1
δ

y
1
δ (31)
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and the inverse demand faced by the suppliers is

q 7→ q̂(y, ·)−1(q) =
r

r − µ
(1− δ)yq−δ.

It follows by differentiation that R̂(Q) in eq. (17) satisfies

c0
1− δ

r − µ

r

1

y
=

(
R̂(Q) +Q

)−δ−1 [
(1− δ)R̂(Q) +Q

]
.

So, q̂n(y) in eq. (18) solves

c0
1− δ

r − µ

r

1

y
=
[
nq̂n(y)

]−δ−1
[(1− δ)q̂n(y) + (n− 1)q̂n(y)]

=[nq̂n(y)]
−δ

(
1− δ

n

)
.

Hence,

q̂n(y) =
1
n

[(
1− δ

n

)
1−δ
c0

r
r−µy

] 1
δ

(32)

It now follows from eqs. (20) and (31) that

ĉn(y) ≡
r

r − µ
(1− δ)y

[(
1− δ

n

)
1−δ
c0

r
r−µy

]−1

=
c0

1− δ
n

. (33)

The NPV in eq. (15’) now reads

ûn(y) =
y

r − µ

[(
1− δ

n

)
1−δ
c0

r
r−µy

] 1−δ
δ − 1

r

c0

1− δ
n

[(
1− δ

n

)
1−δ
c0

r
r−µy

] 1
δ

= βny
1
δ ,

where βn is given by

βn :=
[(
1− δ

n

)
1−δ
c0

r
r−µ

] 1
δ−1 [

1
r−µ − 1

r
c0

1− δ
n

(
1− δ

n

)
1−δ
c0

r
r−µ

]
,

which simplifies as per Proposition 3.
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Case B. When C(c, q) = 1
2cq

2, we have

u(q; y, c) :=
y

r − µ
q1−δ − 1

2r
cq2, (??’)

from which we get the suppliers’ inverse demand function

q 7→ q̂(y, ·)−1(q) =
r

r − µ
(1− δ)yq−δ−1.

In this case,

R̂(Q) := argmax
q≥0

{
qq̂(y, ·)−1(q +Q)− c0q

}
∈ R+

satisfies

0 = −c0 +
r

r − µ
(1− δ)y

{
(R̂(Q) +Q)−(δ+1) − R̂(Q)(1 + δ)(R̂(Q) +Q)−(δ+2)

}
.

It follows that q̂n satisfies

0 =− c0 +
r

r − µ
(1− δ)y

{
(nq̂n)

−(δ+1) − q̂n(1 + δ)(nq̂n)
−(δ+2)

}
,

which yields

q̂n = 1
n

[
1−δ
c0

(1− 1+δ
n ) r

r−µy
] 1

1+δ

.

If we substitute the total output into the inverse demand function, we get

ĉn(y) =
c0

1− 1+δ
n

.

The expression for ûn(·) obtains after simplifications.

Case C. The inverse demand function is the one from Case B. Because C0(q) = 1
2c0q

2, the term

R̂(Q) in eq. (17) obtains to satisfy

r

r − µ
(1− δ)y(R̂(Q) +Q)−(2+δ)

[
Q− δR̂(Q)

]
− c0R̂(Q) = 0,
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and, so, q̂n satisfies

r

r − µ
(1− δ)y(nq̂n)

−(2+δ)[n− 1− δ]− c0 = 0 ⇐⇒ q̂n = 1
n

[
(n− 1− δ) 1−δ

c0
r

r−µy
] 1

2+δ

.

By substiting the total outputs of the suppliers into the inverse demand function yields the equilib-

rium price

ĉn =
r

r − µ
(1− δ)y

1
δ+2

[
(n− 1− δ)

1− δ

c0

r

r − µ

]−1+ 1
δ+2

.

The expression for ûn(·) is obtained after simplifications.

Case D. Here, the inverse demand function is

q 7→ q̂(y, ·)−1(q) =
r

r − µ
(1− δ)yq−δ.

It follows that R̂(Q) satisfies

0 = −c0R̂(Q) +
r

r − µ
(1− δ)y

[
R̂(Q) +Q

]−δ−1 {
Q+ (1− δ)R̂(Q)

}

and that q̂n satisfies

0 = −c0 +
r

r − µ
(1− δ)y [nq̂n]

−δ−1 {n− δ} ⇐⇒ q̂n =
1

n

[
(n− δ) 1−δ

c0
r

r−µy
] 1

1+δ

.

Hence,

ĉn =
r

r − µ
(1− δ)y

[
(n− δ)

1− δ

c0

r

r − µ
y

]− δ
δ+1

It follows the expression for ûn(·) for Case D. This completes the proof.
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F Proof of Proposition 4

After simplifications, it follows from Corollary 1 and proposition 3 that

βn
αn

=



Γ
(
1
δ

)
, in Case A,

Γ
(

2
δ+1

)
, in Case B,

Γ
(

3
δ+2

)
, in Case C,

Γ
(

2
δ+1

)
, in Case D,

where Γ(·) is defined by

Γ(ϵ) := − Q(ϵ)

r − µ

[
r

r − µ

]ϵ−1

, (34)

with Q(·) in eq. (12). We consider the function Γ(·) in eq. (34). After simplifications,

Γ′(ϵ) =
1

r

(
r

r − µ

)ϵ

Γ̃(ϵ), where Γ̃(ϵ) := ln

(
r

r − µ

)[
r −m(ϵ)

]
−m′(ϵ).

For µ ≥ 0, we have

Γ̃′′(ϵ) = − ln
(

r
r−µ

)
σ2 ≤ 0.

so

ϵ 7→ Γ̃′(ϵ) = − ln

(
r

r − µ

)[1
2
σ2(2ϵ− 1) + µ

]
− σ2

is monotone decreasing on (−∞,∞) from ∞ to −∞ and has a unique root given by

ϵ† := − 1

σ2

[
µ− 1

2σ
2
]
− 1

ln( r
r−µ )

.
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So the function Γ̃(·) is monotone increasing on (−∞, ϵ†) from −∞ to Γ̃(ϵ†) and monotone decreasing

on (ϵ†,∞) from Γ̃(ϵ†) to −∞. We have

Γ̃(ϵ†) =
σ2

2

1

ln( r
r−µ )

+
[ 1

2σ2

(
µ− 1

2
σ2

)2
+ r

]
ln(

r

r − µ
) > 0.

So Γ′(·) has a unique root in (ϵ†,∞), which we note ϵ⋆ and necessarily corresponds to a global

maximum of Γ(·). The function Γ(·) is concave. Because, from eq. (27), Γ(0) = 1 and Γ(1) = 1, we

necessarily have ϵ⋆ ∈ (0, 1) and Γ(ϵ) ≥ 0 for all ϵ ∈ (0, 1). Again, r > m(ϵ) is equivalent to ϵ < γ

where γ is the root of Q(·) in eq. (12). We have Γ(ϵ) ≤ 1 for all ϵ ∈ [1, γ).

From the above, it follows that the function Γ(·) in eq. (34) is concave on (−∞,∞) and has a

positive global maximum which is attained at a point in (0, 1). It satisfies Γ(·) ≥ 1 on (0, 1) and

Γ(·) ≤ 1 on (1, γ). We note that 1
δ ≥ 1 in Case A, 2

δ+1 ≥ in Case B, 3
δ+2 ≥ in Case C, and 2

δ+1 ≥ 1

in Case D. This completes the proof.

G Proof of Proposition 5

Supplier 2’s exit decision. In case of the inverse demand function in eq. (7), πn(·) is given in

Proposition 1. We have

Ey

∫ τ

0

e−rt
{
π2(Yt)−K

}
dt = Ey

∫ τ

0

e−rt
{
ν2Y

ε
t −K

}
dt,

for νn given above. The optimal stopping time for the problem in eq. (22) is given by

ϑ := inf
{
t ≥ 0

∣∣Yt ≤ ỹ
}
, where ỹ :=

(
− γ̃

γ̃ − ε

Q(ε)

r

K

ν2

) 1
ε

where ỹ is given in eq. (22’) and γ̃ denotes the negative root of Q(·) in eq. (12).
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Buyer’s NPV. The buyer’s profit π̄n(·) in eq. (8) can be expressed in simpler form following the

results in Corollary 1. The buyer’s NPV in eq. (23) is given by

ũ(y) := Ey

[ ∫ ϑ

0

e−rt
{
−Q(ϵ)α2Y

ϵ
t

}
dt+

∫ ∞

ϑ

e−rt
{
−Q(ϵ)α1Y

ϵ
t

}
dt

]
, (35)

for αn specified in Corollary 1. It now follows from eq. (22’) that

ũ(y) = −Q(ϵ)Ey

[
α2

∫ ∞

0

e−rtY ϵ
t dt+

[
α1 − α2

] ∫ ∞

ϑ

e−rtY ϵ
t dt

]
= α2y

ϵ +
[
α1 − α2

](
y ∧ ỹ

)ϵ
ψ(y) where ψ(y) := Eye−rϑ.

Clearly, from eq. (22’), ψ(y) = 1 if 0 < y < ỹ. If y > ỹ, the function ψ(·) is obtained as the

solution of the second-order ODE
1
2σ

2y2ψ′′(y) + µyψ′(y)− rψ(y) = 0, for y > ỹ,

ψ(ỹ) = 1,

ψ(∞) = 0.

This solution has a general solution of the form y 7→ Ayγ + Byγ̃ , where γ and γ̃ are the roots of

eq. (12). The parameter A is set to 0, so ensure the asymptotic behavior at ∞. From the boundary

condition B = (1/ỹ)γ̃ . It follows that

ũ(y) := α2y
ϵ +

[
α1 − α2

](
y ∧ ỹ

)ϵ (y ∨ ỹ
ỹ

)γ̃

,

which is the expression in eq. (23’). This completes the proof.
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