Competitive Real Option Risk

Roger Adkins
Alliance Manchester Business School, University of Manchester
Manchester M15 6PB, UK
rogeradkins2020@outlook.com

Alcino Azevedo
Aston Business School, University of Aston
Birmingham B4 7ET, UK
a.azevedo@aston.ac.uk

Dean Paxson!
Alliance Manchester Business School, University of Manchester
Manchester M15 6PB, UK
dean.paxson@manchester.ac.uk

Submitted to the ROC Bologna 2024, 4 March 2024

JEL Classification: D81, G31, H25.

Key words: Real Option Risks; Duopoly; Analytical Partial Derivatives; Numerical Partial
Derivatives; Hedging

Abstract

We evaluate the risk aspects of a simple portfolio of real options to invest for a duopoly. After
summarizing the basic model, covering three sequences, two thresholds, and three strategic and
rival options, we look at five risk elements: delta, vega, rho (the conventional option Greeks) along
with epsilon (drift) and alpha (market share). The value function of both the leader and follower
IS most sensitive to revenue (delta), interest rate (rho), drift (epsilon) and market share (alpha)
variations, which we view in terms of sensitivities (to percentage changes), partial derivatives
(analytical confirmed by numerical) and to a range of each of the input variables. Naturally, delta
and rho hedging are plausible and appropriate risk avoidance actions. Maintaining final stage

market share is particularly important for the follower.
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Highlights

o For a duopoly real option investment model, an analytical method is formulated to derive
the impact on the value function due to a change in each parameter value.

o The analytical method is validated by comparing the solution with a numerical method based
on ever finer differences which converge to the analytical.

o The impact of a change in most parameter values is not constant and varies according to
value of the state variable.

o The function representing the impact of a parameter change on the value function is semi-

continuous for at least one of the players.

Acknowledgements: We thank in advance the discussant and participants in the Real Options

Conference Bologna 2024 for helpful comments.



1 Introduction

What is the appropriate measure of risk for real options in a duopoly? We address this issue through
studying (i) the sensitivities of changes in the value functions to 1% changes in the model
parameter values, (ii) through calculating the analytical partial derivatives for the thresholds,
option coefficients and value functions (reconfirmed with numerical partial derivatives), and (iii)
through calculating the changes in value functions across the regimes along a range of changes for
each input parameter value?. Which is the most appropriate method for observing (and eventually

managing) risk?

There is limited literature on most of these approaches. Both pre-emptive and non-pre-emptive
duopoly real options usually require a numerical solution for the leader’s threshold, and ignore
risk exposure, partial derivatives and risk management. Few of the models allow for an operating
cost. Few models offer the proofs that the differential equation is solved (or not), and that the
value matching and smooth pasting conditions are satisfied. Few authors are concerned with

market share derivatives, with risk assessments.

Fudenberg and Tirole (1985) created the foundations of real options in a competitive setting while
developing a model of games of timing with a continuous time version of strategy equilibrium.
Smets (1993) considered a strategic setting where firms can act under the fear of pre-emption,
clearly presented by Dixit and Pindyck (1994) Chapter 9.3. Joaquin and Butler (2000) consider the
first mover advantage of lower operating costs. Smit and Trigeorgis (2001) modelled different

investment strategies under quantity or reciprocating price competition.

Tsekrekos (2003) studied the sensitivity of the leader and follower value function to market share
(with both temporary and pre-emptive permanent market share advantages for the leader), assumed
to be constant after the follower enters. Paxson and Pinto (2003) model a leader with an initial
market share advantage, which then evolves as new customers arrive (birth) and existing customers

depart (death)®. Paxson and Pinto (2005) suggest a two-factor model with permanent quantity

2 Provisionally, these are shown only in Appendix F.
3 Appendix H reviews the innovations in these two articles regarding some analytical partial derivatives (delta, and
alpha), and discussions of the respective leader/follower choices and actions.
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advantages accorded to the leader. Paxson and Melmane (2009) provide a two-factor model where
the leader starts with a larger but stochastic market share. Bobtcheff and Mariotti (2013) consider
a pre-emptive game of two innovative competitors, whose existence may be revealed only by first-
mover investment. Azevedo and Paxson (2014) review the literature on developing such real
option games. Huberts et al. (2019) show that for a duopoly, entry may be deterred by competitive
actions, possibly in a war of attrition or pre-emption, following interesting strategies. Adkins et al.
(2022) provide quasi-analytical solutions for switching and divesting opportunities in a duopoly

with mutually exclusive options.

We provide six innovations for basic once-off investment opportunities in a duopoly (non-pre-
emptive) with variable operating costs: analytical solutions for the thresholds and option
coefficients; analytical solutions for the partial derivatives for all of the inputs (except K);
confirming all of these solutions with numerical solutions; confirming that these solutions with
solve the conventional different equations, and the value matching and smooth pasting conditions
(except for the special case of crossing the follower’s threshold); confirming that the sensitivities,
partial derivatives and simulation of value functions across the basic revenue range are consistent;
and finally showing how the delta partial derivative can be used for delta hedging to sharply reduce

risk.

The rest of the paper is organized as follows. Section 2 derives the investment real options model
for a duopoly with variable operating costs. Section 3 shows sensitivities of the value functions for
each of the parameter inputs. Section 4 derives analytical results for each of the partial derivatives,
and discusses some of the option coefficient characteristics. Section 5 reviews the additional
insights available from considering the evolution of value function across a range of values for
each input parameter, useful in hedging risk exposure. Section 6 summarizes and concludes and

provides some suggestions for further research and applications.

2 Real Option Model for a Duopoly with Variable Operating Costs

We demonstrate the analytical procedure based on partial derivatives for determining the impact
of input parameter variations on the value function of a leader and follower in a duopoly investment

opportunity. We find that for one of the rivals in a duopoly model, the derivative of their value
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function with respect to market share, volatility, interest rate and revenue drift are semi-continuous
functions with a jJump, which can be both positive and negative, and varies according to the value
of the state variable. The partial derivatives have similar characteristics, regarding thresholds and
option coefficients, as opposed to the revenue (delta) derivative (where the thresholds and option

coefficients remain the same).

Our basic model builds on a monopoly context, where the firm, with no current cash-flow, has a
perpetual opportunity to invest in an operating asset that it intends to exercise and operate forever

as soon as the asset’s prevailing cash-inflow, denoted by V, is sufficiently high. The optimal policy
is to retain the investment option for 0<V<V,, where V, denotes the threshold cash-inflow, and
to exercise the option for V, SV <o, While the cash-inflow remains within the inaction region,

ve(0,v;), the firm does nothing. Whenever V departs from the inaction region, where v & (0,V,),

the firm makes the investment. We assume the state variable, the cash-inflow, follows a geometric

Brownian motion process:
dv=0Oovdt+ovdWw,

where 0,0 denote the instantaneous drift and volatility, respectively, and dW an increment of the

standardized Wiener process.

As an extension, we assume there is a simple duopoly where a first mover leader, and a follower

share the final market. The leader’s initial market share on entering the market is denoted by

M, =1 from capturing the entire market. When the follower subsequently enters the market, its
market share is denoted by 0< Mg, <1 and simultaneously the leader’s final market share reduces
to 0<m; <1 with Mz +My =1 and M, <M due to the leader’s first mover advantage. Then:

O<my <me<m =1m,+m, =1



The nature of the duopoly game is that the leader always commits to a policy change ahead of the
follower. By backwardation, we first examine the follower’s value function. The value G (V) of

the follower’s perpetual opportunity is:

O = AFlvﬂl' VE(O'VFI)’

GF= m.v m. f F1,F2 1)
ngzﬁ_%_Kv V%(O,Vpl)-

where K denotes the investment cost, f the operating cash-outflow, and [ the risk-free rate with

the net adjusted return shortfall e=r-3, with an unknown threshold, V¢;, an investment option

coefficient, A-;, and the option power parameter, f},. We assume that, where v=p*q, where q is
a constant market volume quantity, p is stochastic, and f is equivalent to a variable operating cost.
In (1), the term A, vA represents the real option value for the follower of eventually entering the

market.

The value G, (V) of the leader’s opportunity is:

_ B

O, =A, V", VE(O’VLl)'
mv m f

G ={09,=A, Viq-t———L_

L L2 ALll r—§ r

_Mmev_mge f

Boor-s r

~K, ve[VyVe).bL1, L2, L3 @)

-K, ve(0,vy).

In (2), the term A vA represents the value for the leader of the rival option (negative value for
the leader, when the follower enters the market). The coefficient A ; is obtained from the value

conserving condition g, (Ve;) =05 (Ve,)-

The solutions for the follower’s entry threshold, Vgq, and coefficient, A, the leader’s entry

threshold, V|, and coefficients, A;, A, and /3, are derived as follows.
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From (1), the value-matching relationship and smooth-pasting condition* for the follower’s value

function are, respectively:

gFl(VFl)_ng( ) AFlvﬂ1 n:'FL \2‘:1 i mFIE : He=0
(3a, 3b)
a(gFl(VFl)_ Je2 (VFl)) = B A Vﬁ1—1 Me _ 0.
ov s r-o

Solving for V;; and A, yields:

v - (me f+rK) B (r-9)
F1 1
Mg (ﬂl_l)r
4 (4a, 4Db)
A - M {(mFL f +rK)ﬂl(r—§)} |
,Bl(l’—5) Mg, (ﬂl_l)r
From (2), the value-conserving condition for the leader when the follower exercises is:
m, v m f m_v m, f
Q.2 (VFl)_gLS (VFl): ALVE + rL_g‘l - I;F - I’LF—é":l + L: =0. 5)
Solving for A, yields:
v fy
ALll:_(mL _mLF) A — VFlﬂl' (6)
r-o r

From (2), the value-matching relationship and smooth-pasting condition for the leader’s value

function are, respectively:

m, v m, f
i (VLl)_ dio (VLl) = Aleﬁ _ALllvl_ﬂi _ﬁ‘FLT‘F K=0,
(7a, 7b)
a(ng(VLl)_gLZ( )) ﬁA\LVﬂl -1 Vﬂlil— mL =0
ov 171 1V —I’—5 .

Solving for V; and Ay, yields:

4 The conventional approach to such an optimal stopping problem is that if v follows a geometric Brownian motion
process, the solution G(v) must satisfy an ordinary differential equation,
1 VG (V) +(F —S WG (V)—rG(v) =0’ along with the value matching and smooth pasting boundary

(v*) conditions, 3a,b, 5, 7a,b, see Dixit and Pindyck (1994), page 141.
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y :(mLf+rK)ﬁ1(r—5),
L m.r(8-1)r @, 8b)
a,
~ m, (m_f+rK)B (r-9) e
Al_ﬂll+ﬂl(r_5)|: er(IBl—l)r :| .

The power parameter /3, is the positive root of the characteristic Q function:

Q(B)=4"B.(B,-1)+ B (r-8)-r=0, B >0. )
In summary, all option coefficients and thresholds have an analytical solution, with the option

coefficients simplified using the threshold expressions:

ﬂl(r_é‘)(mFL f "'rK)

Y= Mg, (ﬂl_l)r ’
_ Mg -4
A= ﬂl(r—é)[v”] |
B (r—=5)(m_f+rK)
Yu= m (B, -1)r '
g n; . (10)
A= AL11+W[VL1] d

Table 1A
Mathematica Thresholds & Option Coefficients for Duopoly Model®

Vi, Vg A, Ay Ay B

8.63437  18.70780 3.88276 1.43595 -2.35747 1.71508

5 Based on the parameter values (INPUT) in Table 1B.



Table 1B ODE, VM & SP Conditions®

A B | C D
1 CROR MODEL ODE
2 |INPUT
3 |v 14.00
4 |K 140.00
5 |lo 0.16
6 |r 0.05
7 |6 0.03
8 |f 2.00
9 |mLF 0.60
10 [mFL 0.40
11 |OUTPUT
12 [F1(v) 132.6927 IF(B3<B14,B16*(B3~B19),B13) la
13 [F2(v) 124.0000 B10*(B3/(B6-B7)-B8/B6)-B4 1b
14 |vF1 18.7078 (B19/(B19-1))*((B6*B4+B10*B8)*(B6-B7))/(B6*B10) 4a
15 |vL1 8.6344 (B19/(B19-1))*(B6*B4+B8)*(B6-B7)/B6 8a
16 |AF1 1.4360 (B10/(B19*(B6-B7)))*(B14~(1-B19)) 4b
17 |ALL 3.8828 B18+(1/(B19*(B6-B7)))*(B157(1-B19)) 8b
18 [AL11 -2.3575 (-(B10)*(B14/(B6-B7)-B8/B6)*(B14~-B19)) 6
19 |B, 1.7151 0.5-(B6-B7)/(B5”2)+SQRT(((B6-B7)/(B572)-0.5)"2 + 2*B6/(B5”2)) 9
20 |L(v) 302.1527 IF(B3<B15,B21,IF(AND(B3>B15,B3<B14),B22,B23)) 2
21 |L1(v) 358.7955 B17*(B3~B19) 2a
22 |L2(v) 302.1527 B18*(B3~B19)+(B3/(B6-B7)-B8/B6)-B4 2b
23 |L3(v) 396.0000 B9*(B3/(B6-B7)-B8/B6) 2c
24 |Leader Pre-Invest v=5
25 |ODE 0.0000 0.5*(B572)*(B3/22)*B27+(B6-B7)*B3*B26-B6*B21
26 |F'(v) 43.9546 IF(B3<B14,B19*B17*(B3~(B19-1)),1)
27 |F"(v) 2.2451 IF(B3<B14,B19*(B19-1)*B17*(B3~(B19-2)),0)
28 |F(vL1) 156.6229 B17*(B157B19) VM1
29 |V*-K 156.6229 B18*(B15~B19)+(B15/(B6-B7)-B8/B6)-B4 VM1
30 |SP1 0.0000 B19*B17*(B157~(B19-1))-(B19*B18*(B15”~(B19-1))+1/(B6-B7)) SP1
31 |Leader Post-Invest L, Pre-Invest F v=14
32 |ODE 0.0000 0.5*(B572)*(B372)*B34+(B6-B7)*B3*B33-B6*B22+(B3-B8)
33 |F'(v) 23.3124 B19*B18*(B3~(B19-1))+1/(B6-B7)
34 |F"(v) -1.3631 B19*(B19-1)*B18*(B3~(B19-2))
35 |F(vL1) 537.2340 B18*(B14~B19)+(B14/(B6-B7)-B8/B6) VM2
36 |Vv* 537.2340 B9*((B14/(B6-B7)-B8/B6)) VM2
37 |SP2 -12.8349 B19*B18*(B14/~(B19-1))+1/(B6-B7)-B9/(B6-B7) SP2
38 |Follower Post-Invest L, Pre-Invest F v=14
39 |ODE 0.0000 0.5*%(B572)*(B3/72)*B41+(B6-B7)*B3*B40-B6*B12
40 |FF'(v) 16.2557 B19*B16*(B3~(B19-1))
41 |FF"(v) 0.8303 B19*(B19-1)*B16*(B3~(B19-2))
42 |FF(vF) 218.1560 B16*(B14/~B19) VM3
43 |V*-K 218.1560 B10*((B14/(B6-B7)-B8/B6))-B4 VM3
44 |SP3 0.0000 B19*B16*(B14~(B19-1))-B10/(B6-B7) SP3
45 |Follower Pre-Invest L&F v=5
46 |ODE 0.0000 0.5*(B572)*(B3/~2)*B41+(B6-B7)*B3*B40-B6*B12
47 |FF'(v) 16.2557 B19*B16*(B3~(B19-1))
48 |FF"(v) 0.8303 B19*(B19-1)*B16*(B3~(B19-2))
49 |FF(vF) 218.1560 B16*(B14~B19) VM4
50 |V*-K 218.1560 B10*((B14/(B6-B7)-B8/B6))-B4 VM4
51 |SP4 0.0000 B19*B16*(B14/(B19-1))-B10/(B6-B7) SP4

6 This spreadsheet shows that the analytical equations solve the ODE, and that the VM and SP conditions are
satisfied, except for the special case of the Leader SP post-investment with a jump if the Follower invests.
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Figure 1A
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Figure 1A shows that the value functions is an almost linear function of increasing v, despite leader
market share falling to 60% after the follower invests. A decomposition of the value function in
Figure 1B shows that the follower’s value function strategic option value (blue) to invest steadily
increases with v, the leader’s value is split into the PV of operations after investing (grey) less the
negative value of the rival option (orange); when the follower invests, the leader’s value is entirely
the PV of operations (60% of the market).
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Figure 1B
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3 Sensitivities

Figure 2 (v=5, regime L1 before either has invested) shows a quick and easy way to assess the
sensitivity of the leader and follower value functions to changes in each of the eight parameter
values separately. Significance (more than 2%) is indicated in bold. Thresholds are highly
sensitive to changes in interest rates and revenue drift, but not generally to changes in the other

parameter values (except for the follower’s threshold to the leader’s final market share).
Figure 2
Percentage Change in Thresholds, Option Coefficients & Value Functions

for a 1% Increase in the Parameter Value
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AF1
ALl
AL1l
B
v
v=5 % L 0.0172
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% F 0.0172
v=22 % L 0.0104
% F 0.0155

Sensitivities of VF to Input 1% Increase, v=5
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0.0000
-0.0049

(0
0.0050
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-0.0036

o
0.0025
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-0.0209
-0.0260

0.0242
-0.0040

r
-0.0368
-0.0318
-0.0351
-0.0364
-0.0249
-0.0372

B%L B%F

o
-0.0230
-0.0230
-0.0035

0.0058
-0.0020
0.0059

d
0.0222
0.0129
0.0227
0.0200
0.0158
0.0236

0.0010
0.0022
-0.0007
-0.0019
0.0011
0.0000

f
-0.0019
-0.0007
-0.0013
-0.0007
-0.0004
-0.0006

mLF
0.0137
0.0000

-0.0245
0.0145
0.0239
0.0000
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0.0000
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-0.0099
0.0165
-0.0067
0.0149

All sensitivities are logical, with the value functions of both the leader and follower with the same

sign, except for the increase in mr=1-mrL, that is the leader’s final market share. Naturally, each

value function increases with an increase in v, and decreases with an increase in K. Consistent

with expected sensitivity for a call option (investment opportunity), each value function increases

with increases in volatility and in the net drift rate, but decreases with increases in interest rates,

which is the most significant in percentage terms. Changes in the operating costs does not seem

to make much of a difference. Also shown are the sensitivities when v=10 (L2 middle regime after

the leader has invested) and v=22 (L3 final regime, after both have invested). Observations are
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that the sensitivities to increases in v are much the same over the regimes. Naturally, increases in
K are not relevant for the leader in L3, who spends K in the transition from L1 to L2. Change in
the interest rate and drift are important in L1 (affecting the thresholds and option coefficients), and
continue to be important in L2 and L3 affecting the present value of operations. Note that there is
no effect of changes in volatility in L3, since there are no options in that regime. Maintaining

market share is critical for the follower in all regimes, less important for the leader

4 Partial Derivatives

Market Share Partials

From (1), the impact of the market share M change on the follower’s opportunity value is:

agFl — aAFl vA 4 aﬂl AF1V'B1 |Og (V) y Ve (O’VFl)’

,: omge  omg om, ¢ (114, 11b)
09, v f |
_————— + 1 V % Olv .
om. 517 (0.vey)

F.m e

From (2), the impact of the market share M change on the leader’s opportunity value is:

o9y, _ oA, vA 4 oh, Aleﬁl log (V), VE(O’VLI)’

omg  omg om,
. 9, Ay, 4, OB /)
= = v+ vilog(v), vel|v,,,V), 12a, 12b, 12c
Lme e om,.  om, om, Ay g( ) e[ L1 Fl) ( )
0 Y f
h:___’ Vg(O’VFl)'

omg r-o0 r
The derivation of the partial derivatives for each variable with respect to the leader’s market share
after the follower’s entry, M ¢, follows the procedure described in Appendix A & B.

aVLl
al’nLF

OVgy _ V|l=_1ﬁl ((181 _1)VF1 _ ﬂlf J

—0,
(13)

8m|_|: (:31 _1) ﬂlAFl
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oA , __vFl(mL _mLF)(rVFl(IBl_l)_ f (r_é‘)'gl)vfzﬂl

am"': r(r_§)2 Ay (ﬂl _1)131 "
+(er1— f (r—5))vfﬂ1 B Ay (Ve (B -1)-f (r—5),6’1)vfﬂ1
r(r-o) F A (B -1)r(r-o) F

%__v_ﬂl[rvpl— f(r—5)]

om, r(r-5)

oA _ (rVFl_ f (r_é‘)) -A

- VFl

om, . r(r-o)
_(mL _mLF)VFl(rVFl (ﬂl _1)_ f (r_5)ﬂl)v_2ﬂ1
r(r—5)2 AFl(ﬂl_l)ﬂl "
_ ALll(rVFl(ﬁl_l)_ f (r_é‘)ﬂl)v,ﬁl
r(r-8)A. (4 -1) F
DBy,
amLF

(14)

(15)

(16)

(17)

Using the base case parameter values, the results calculated in Mathematica are in Table 2A.

Table 2A
Leader’s Market Share Partial Derivative VValues

aVLl avpl aA]_]_ a'Al:l aAL:L:L
amLF amLF amLF amLF amLF
0.0 41.97263 9.43960 -5.89367 9.43960
Table 2B

Market Share Partial Derivative Equation Solutions
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B

om,

0.0



A | B C D
1 CROR MARKET SHARE Partials
2 |INPUT
3 |v 5.00
4 K 140.00
5o 0.16
6 |r 0.05
7 16 0.03
8 |f 2.00
9 [mLF 0.60
10 ImFL 0.40
11 |OUTPUT
12 |F1(v) 22.6952 IF(B3<B14,B16*(B3AB19),813) 1a
13 [F2(v) -56.0000 B10*(B3/(B6-B7)-B8/B6)-B4 1b
14 |vF1 18.7078 (B19/(B19-1))*((B6*B4+B10*B8)*(B6-B7))/(B6*B10) 4a
15 [vL1 8.6344 (B19/(B19-1))*(B6*B4+B8)*(B6-B7)/B6 8a
16 |AF1 1.4360 (B10/(B19*(B6-B7)))*(B14~(1-B19)) 4b
17 |ALL 3.8828 B18+(1/(B19*(B6-B7)))*(B15~(1-B19)) 8b
18 |AL11 -2.3575 (-(B10)*(B14/(B6-B7)-B8/B6)*(B141-B19)) 6
19 (B, 1.7151 0.5-(B6-B7)/(B5”2)+SQRT(((B6-B7)/(B5”2)-0.5)*2 + 2*B6/(B5/2))
20 [L(v) 61.3668 IF(B3<B15,821,IF(AND(B3>B15,83<B14),822,823)) 2
21 [L1(v) 61.3668 B17*(B37B19) 2a
22 |L2(v) 32.7404 B18*(B3~B19)+(B3/(B6-B7)-B8/B6)-B4 2b
23 [L3(v) -14.0000 B9*(B3/(B6-B7)-B8/B6)-B4 2c
24 |(mLF) PARTIALS
25 [SVF1/5LF 41.9726 ((B147(1-B19))/((B19-1)*B19*B16))*B35 13
26 |3AF1/SLF -5.8937 -(B14-B19)*((B6*B14-B8*(B6-B7))/(B6*(B6-B7))) 15
27 |sAL1/5LF 9.4396 (-B14*(1-B9)*(B147(-2*B19)))*B39/B37+B38-B40 14
28 |6AL11/5LF 9.4396 B42-(1-B9)*(B14/(1-2*B19))*B43/B45-B18*(B14/-B19)*B43/B44 16
29 |SF(v)/5LF -93.1490 IF(B3<B14,B26*B3B19,B30) 11a, 18a
30 -210.0000 -B3/(B6-B7)+B8/B6 11b
31 [SL(v)/SLF 149.1923 IF(B3<B15,832,IF(AND(B3>B15,B83<B14),833,834)) 12
32 149.1923 B27*(B3”~B19) 12a
33 149.1923 B28*(B3~B19) 12b
34 210.0000 (B3/(B6-B7)-B8/B6) 12¢
35|A 600.2796 (((B19-1)*B14/(B6-B7))-B8*B19/B6)
36 [SAL1/8LF  Parts
37 (B 0.0000 (B6*((B6-B7)A2)*B16*(B19-1)*B19)
38]C 5.8937 (B147-B19)*((B6*B14-B8*(B6-B7))/(B6*(B6-B7)))
39 D 0.6003 (B6*B14*(B19-1)-B8*(B6-B7)*B19)
40 |E -9.0714 (B18*B39*(B14-B19))/(B16*(B19-1)*B6*(B6-B7))
41 [8AL11/8LF Parts
42 |F 5.8937 (B147-B19)*((B6*B14-B8*(B6-B7))/(B6*(B6-B7)))
43 |G 0.6003 (B6*B14*(B19-1)-B8*(B6-B7)*B19)
44 |H 0.0010 B6*(B6-B7)*B16*(B19-1)
45 |i 0.0000 B6*((B6-B7)A2)*B16*B19*(B19-1)

Note that the leader’s threshold is not affected by the final market share, but the follower’s

threshold increases significantly with increases in that final market share, naturally. The follower’s
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strategic option to invest declines as the final market share increases; but the leader’s strategic and
rival option coefficient partial derivatives are the same, (14)=(16). Note that the equations for (14)
and (16) have been simplified by using parts (B37:B40) and (B42:B45).

Inserting Table 2 values into (11) and (12) yields respectively:

~5.89367v""*, v &(0,18.70780),
Fmp = (18a, 18b)
* 40.0-50.0v, v¢(0,18.70780),
and:
9.43960v"™, v (0,8.63437),
G, =19.43960v" "%, v e[8.63437,18.70780), (19a, 19b,19¢)
50.0v—-40.0, ve(0,18.70780).
Figure 3A v=10
F(v) 10729 10382 10040 9701 9367 9036 8711 838 8072 7759 7451
L(v) 14557 15105 15647 16183 167.13 17238 177.56 18268 187.74 192.74  197.67
mLF 050 051 05 053 05 05 05 057 058 059 060
Duopoly Values as function of mLF
110.00
190.00 105.00
170.00 100.00
150.00 95.00
130,00 20.00
85.00
110.00
80.00
90.00 75.00
70.00 70.00
0.50 051 0.52 0.53 0.54 0.55 0.56 057 0.58 0.59 0.60
mLF
L(v) ==o=F(v)

Figure 3A shows that both leader and follower values when vL<v<vF are linear functions of
increasing market share (follower negative, naturally) The partial derivatives are also linear, with

the follower’s increasing as leader’s final market share increases, in Figure 3B.
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Figure 3B

OF(v)/SLF  -348.85 -344.80 -340.69 -336.53 -332.32 -328.05 -323.72 -319.34 -31490 -310.39 -305.82
OL(v)/OLF  550.35 54475 539.07 53328 52740 52141 51532 509.11 502.80  496.37  489.82

Duopoly MS Partial Derivatives as function of mLF, v=10

560.00 -280.00
550.00 280,00
540.00
530,00 -300.00
520.00 -310.00
510.00

-320.00
500.00
490.00 -330.00
480.00 -340.00
470.00
160,00 -350.00
450.00 -360.00

0.50 051 0.52 053 0.54 0.55 0.56 057 0.58 0.59 0.60
mLF

dL(v)/dLF  ==@=dF(v)/dLF

The plots of G, ' and G¢, " are presented in Figure 4, as a function of v. G, " is a
decreasing continuous function of the prevailing cash-inflow v, since a positive change in M ¢
implies a negative change in M and adverse consequences for the follower. Although the
function is continuous, it is not smooth at the follower’s market entry at V=Vg;. In contrast,
G

L " is a semi-continuous function with a downward jump at V = V¢, . The function is increasing

for 0<V <V, and for V> V¢, since a positive change in M, benefits the leader.

Figure 4
Impact of Market Share Change on the Leader’s and Follower’s Value Functions
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So, at all levels of v, in this case the leader will benefit from an increase of m.r, except at the
follower’s threshold vri1, when there is a sudden drop in the leader’s value function, which,

however, is still positive as a function of v thereafter.

Volatility Partials

The impact of volatility changes on the follower’s opportunity value is found from:

0 0 0
% :%Vﬂ1 +a—§AF1Vﬂ1 log(v), ve(0vy),

6] (20a, 20b)
%:O, ve(0,vg,).
ang aALl B 5,31 A
= ___UyaL A vAlog(v), ve(0,v,,),
Py Fye Py ALl g( ) G( '—1)

. leg, @ 0

G = 8;2= gLaHVﬂlJra_iALllVﬂl log(v), ve[viyVe ). (21a 21b, 21c)
a9
a—;=0, ve(0Vy,).

The derivatives expressed in (20) and (21) are determined in Appendix C, and their solutions are

presented below:
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aVL1_ V,05
oo (r+l 2 2)

Ne, _ Veof
oo _(r+%ﬂ1202)’
oA, __ (mL —Mye )VFlﬂla + Ao p (161 )Iog [VFl]
oo (r+3pio?)(r-o)v4 r+1p%c?
N (ALl - ALll)G:BlZ (ﬂl )Iog [VLl] Aulaﬂlz
r+1plo? r+ipc"
A _ A3 (B, ~1)olog Ve, ]
oo I’+%ﬂ1202 ’
AL __ (mL _mLF)VFyBlU ALMUIBl (/31 )Iog [VFl]
oo (r+1 12c72)(r—5)vﬂ1 r+1ip%c?
_ ALllo-ﬁlz
r+ipc’ ’

op, _ O-ﬂlz (181 )

oo (r+ 2 2)

(22)

(23)

(24)

(25)

(26)

(27)

Consequently, the partial derivatives of the value functions with respect to volatility are:

agFl _ AFl\/ﬂlU:Bl2 (ﬂl - )(Iog[

A-toalv]) |

oo r+1 2 2 e(O’VFl)’
and:
agu:_ (mL_mLF )vFlﬂla vﬂl_l_ALllo-ﬂlz(ﬂl )Iog [VFl]Vﬁ
oo (r+% faz)(r—é)v,/fi1 r+1p0°
JAu-ALoB (Al [va] s AA
2 2 2 2
r+3 r+%
af (5
_AL1r+11(212 )vﬁllog[v], ve(Ovy,),
6ng __ (mL_mLF) FlIHl VA 4 ALllaﬂlz (ﬁ1 )Iog[ Fl]
oo (r+% fcfz)(r—cS)vﬁll r+1p%c?
o (f
ré‘_ulo',zglz A AL1;+ 1(2 12 )Vﬂllog[v], VE[VLl'VFl)'
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G:" is a continuous but not a smooth function for v e R*.The value of the function 00, /00 is
non-negative for Ve (O,V4F1) ,equals zero at its two end-points, V=0,V 2V, and exhibits a point

of maximum at v =V, Exp[-1/4,].

Figure 5
Impact of Volatility Changes on the Leader’s and Follower’s Value Functions

Volatility Derivative G'

800 1
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400
200 B gy,
‘—
0 f” \\
i i i L i i i i L i i i V
_ 5  N\NAD 15 20 25
—200!

Figure 5 corroborates the predicted properties for the follower’s and the leader’s value functions.

The effect of volatility changes on the follower’s value GF' behaves as a continuous function but
not continuously differentiable at V =V, attaining a maximum at Ve yu =10.25626 . The effect
of volatility changes on the leader’s value G, ' behaves as a semi-continuous function, continuous
for V<V, and for V>V, but discontinuously differentiable at V=V, while having a down-

jump discontinuity at V =Vg,. For V;; SV<Vg;, G, is an increasing function.
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In contrast’, the shape and behaviour of G, is less straightforward by being most likely a semi-

continuous function and displaying both positive and negative values. First, we note that

0 v '
gL(;( Ll) <0, so GL displays both positive and negative values and is concave for V<V.
(o2

Second, since

ag L1 (VLl) — ag L2 (VLl)
oo Ll

G, ' is a continuous function for V<V, for all revenue values prior to the follower’s market

entry. For V2V, % is an increasing function, which intersects the abscissa only if the
(o2

expression:
\
(mL —Me )ﬁ + ALllﬁlvlfll (31)
is positive, in which case G, ' experiences a discontinuous downward jump at V=Vg,. If (31) is

negative, then% <0 for ve [VLl,VFl] , in which case G, experiences a discontinuous upward
(o2

jump at V=V,. Ifinthe unlikely event (31) is zero, then G, becomes a continuous function for

all v>0. Clearly, since A is negative, the magnitude of M, —M; is critical in deciding the sign

of (31) and determining whether the jump is upwards or downwards.

These properties of G, ' and G¢' can be illustrated numerically. Table 3A presents the solution

values obtained using Mathematica and their derivative values with respect to volatility.
Substituting these values into (20) and (21) yields the impact of volatility changes on the

followers’ and the leader’s opportunity value, respectively:

%Be1 1614882075 _ 551354717 Jog [v], ve(0,18.70780),
G.'= oo (32a, 32b)

09k,
—= =0, 0,18.70780),
. ve( )

7 The background for some of the statements made in this paragraph is in Appendix C.
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% =30.08801v"""** —14.90837v""*** log [v], v e(0,8.63437),
o

G ' = % = —21.56416V""% 49,0518 log [v], v <[8.63437,18.70780),
(o3

09, 5
—== =0, 0,18.70780).
o ve( )

(33a,33b, 33c)

As expected, all thresholds and strategic option coefficients have a positive “vega” (sensitivity to
changes in volatility), but the rival option for the leader has a negative vega. This means that the
negative value of this rival option becomes more negative as volatility increases, which does not
benefit the leader when v is between the leader and follower thresholds.

Table 3A

Mathematica Solution and Volatility Partial Derivative Values for Competitive Model

Ny OVg4 oA, oA, OA 1, B
oo oo oo oo oo oo

27.03195  58.56922  30.08801  16.14882 -21.56416 -3.83963
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Table 3B

A B C D E

1 CROR VOLATILITY Partials
| 2 [mvPuT CROR
[ 3 |v 5.00
4 |k 140.00
[ 5 |o 0.16

6 |r 0.05
EAE 0.03
[ 8 |f 2.00
[ 9 |mLF 0.60

10 [mFL 0.40
[ 11 |ouTtPuT
[ 12 |F1(v) 22.6952 IF(B3<B14,B16*(B3~B19),B13)
[13|F2(v) -56.0000 B10*(B3/(B6-B7))-(B10*B8/B6)-B4

14 |vF1 18.70780 (B19/(B19-1))*((B6*B4+B10*B8)*(B6-B7))/(B6*B10)
15 [vL1 8.63437 (B19/(B19-1))*(B6*B4+B8)*(B6-B7)/B6
[ 16 |AF1 1.43595 (B10/(B19*(B6-B7)))*(B14~(1-B19))
17 ]AL1 3.88276 B18+(1/(B19*(B6-B7)))*(B15/(1-B19))
[ 18]AL11 -2.3575 (-(B10)*(B14/(B6-B7)-B8/B6)*(B14*-B19))

19 B, 1.7151 0.5-(B6-B7)/(B5~2)+SQRT(((B6-B7)/(B5/2)-0.5)A2 + 2*B6/(B5/2))
[ 20|L(v) 61.3668 IF(B3<B15,B21,IF(AND(B3>B15,83<B14),822,B823))
[ 21 |L1(v) 61.3668 B17*(B3~B19)
[ 22 |L2(v) 32.7404 B18*(B3/B19)+B3/(B6-B7)-B8/B6-B4

23 |L3(v) -14.0000 B9*B3/(B6-B7)-B9*B8/B6-B4
24 |(c) PARTIALS Table 4A
[ 25 |ovL1/80 27.0319 (B15*B5*B19)/B38 22 27.0320
| 26 |6vF1/60 58.5692 (B14*B5*B19)/B38 23 58.5692
| 27 |5AF1/80 16.1488 B39/B38 25 16.1488
28 |8AL1/50 30.0880 B40/((B38*(B6-B7)*(B147B19)))+B41*(B19-1)*LN(B14)/B38+B42-B41/B38 24 30.0880
[ 29 |8AL11/80 -21.5642 (B40/((B38*(B6-B7)*(B147B19))))+(B41*(B19-1)*LN(B14)/B38)-B41/B38 26 -21.5616
[ 30 |8F(v)/60 114.9829 IF(B3<B14,B27*(B3AB19)+B36*B16*(B3AB19)*LN(B3),B31) 28

31
[ 32 [5L(v)/50 96.3139 IF(B3<B15,B33,IF(AND(B3>B15,83<B14),834,B35))

33 96.3139 B28*(B3~B19)+B36*B17*(B3~B19)*LN(B3) 29
[ 34] -110.5688 B29*(B3"B19)+B36*B18*(B3/B19)*LN(B3) 30
35| 0.0000 21c
[ 36 [5p1/60 -3.8396 (-B5*(B19/2)*(B19-1))/B38 27 -3.8363
37 Parts
[ 38]A 0.0877 B6+0.5*(B19/2)*(B5/2)
(398 1.4155 B16*(B1972)*(B19-1)*B5*LN(B14)
[40]c -2.0535 (-(1-B9)*B14*B19*B5)
[ 41D -1.1095 B18*B5*(B1912)

42 [E 51.6522 B40/((B38*(B6-B7)*(B14~B19)))+B41*(B19-1)*LN(B15)/B38
[ 43 |ELasTICITY
[ 44 |(c/F)(8F/50) 0.8106 (B5/B12)*B30

45 |(o/L)(5L/50) 0.2511 (B5/B20)*B32

Which of the two competitors benefits most from a volatility change, and when? Figure 5 can be

decomposed into four segments. (1) While Ve (O’VL,MAX ] the leader gains more from positive

volatility changes due to first mover advantage. (II) For v increasingly greater than V| yax ., the

follower gains from volatility increases as the leader loses, approaching (5gL2/80) a minimum at

v=6.00676 <V, .) (I11) The follower vega becomes negative, and 9tz and % intersect at

oo

Vi, =12.96882 . Finally, the leader increasingly benefits more from positive volatility changes
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while ve (VLZ,Fl 'Vm)  because those changes defer the market entry for the follower since et 5 ¢

o

and thereby prolong the monopoly position for the leader. Note the equations (24) and (25) have

been simplified using parts (B38:B42).

Table 3C
w o [T ol el elew I T oI« olw[wTolrer[aoalr]s[tTu

Al 1 2 3 4 5 § 7 8 s 0 U on» B ¥ B 7 18 19 W0
4fL50 BN N6 18T 2883 302 41042 5090 71995 85697 100150 11313 I3ULS3 47638 164743 182444 200720 29551 2392 25815 27916
45150 Pat 000 2176 8004 15477 4995 36441 4973 64725 81408 99700 119546 -MOS01 63721 187967 213605 -406.03 68932 -298563 39472 -3616.35
[46]LR0 DY 6674 258 18607 5884 33YT AR SI8T7 61250 TS 83081 04504 106383 -1187.08 131463 144631 156201 172159 -I86493 201194
[47{LROPar 000 1812 5231 10101 16343 23783 345 44 B3 65069 78022 91959 106852 12676 139409 157029 175518 194856 215029 23600
[48]Fs0 085 S 10591 16209 2548 29528 3090 45190 53791 G863 7381 8323 9671 103407 114518 125989 131810 149968 162455 175261
[49]Fs0par 000 267 3658 063 1407 -16631 2688 29530 37153 4500 54558 6304 MATA8 -G5T.83 -97484 -1098.05 122734 136257 -I50363 165041
[ 50[3F{wdo 08 B4 090 9L 1140 1897 1403 15651 16638 17363 1183 18019 1793 164 1703 16184 15076 13712 12092 10220
[51[3L0)f0 BN 68T 8859 10346 10927 10601 9378 TA6) 4289 450 23 545 46 3068 T4 IBB BN 268 853% 387
5 [ \ I I I I I I moomwooowmwoowmN N N N W

EVegaF + + + + + + + + . - . - .

EVegaL + + - . . - . - + + + + + + + + + +

Table 3C shows in detail what parts of the leader strategic option (before investing), and rival

option (after investing, before follower invests) contribute to the positive and negative vegas. In

the first phase | both vegas are positive. In the second phase II the leader’s vega is negative,

follower’s vega is positive, a contrasting risk exposure. In the third phase Ill both vegas are

positive, a similar risk exposure. In the fourth phase IV the leader’s vega is positive, the follower’s

vega is negative, a contrasting risk exposure.

Delta Partials

The leader delta (34) does not involve any change in the thresholds or option coefficients, while

the other partial derivatives do.

oV, (Vv
%ﬂnm s forv>v,,
oV, (Vv
oV (V) _ Lazv( )_ rf§+ﬂlAm VA forv, <v<vg,
ov
oV, (Vv
% =BAL VAT forv < Vi

Differentiate the follower’s value function with respect to v yields:
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N, (V)

1
=m, —— forvxv,

ov r-o
avgv(v) = 5VF81V(V) = B A, Vi forv<v,,, (35)

In line with conventional option pricing theory, it could be argued that for L1 and L2

oV, (v
#() =B A, vA1=21.0498 v=5
(36)
oV, ., (v 1 _
Lazv( ) = r_5+,[7’1Amvﬂ1 1-233124 v=14

a short position 21.0498 when v =5, and VF_=61.3668 should be used to delta hedge the L value

function which includes the strategic investment option A,v*™ in the initial L1 regime. A short

position 23.3124 when v =14, and VF_=302.1527 should be used to delta hedge the L value

function which includes the negative value of the rival investment option A ,, v*. These hedging

guidelines are not well presented in the literature.
Interest Rate and Drift Partial Derivatives

See Appendix D and E.

5 Value Functions Across Ranges of Input Parameter Values & Hedging
Appendix F shows the effect on the value functions of changes of each of the eight inputs across
a range of parameter values and regimes, assuming changes are independent. The summaries for

each parameter v, K, o, r, 8, f, m.r and mg. are given below.

Changing v does not affect the thresholds but may move the L/F across the regimes, as shown in
Figure 1A. The follower’s value function consists solely of the investment option value, until
past v=18.7 the value function is the present value (PV) of operations. Over L1, the leader’s value
function consists solely of the investment option value; over L3, the PV of operations with the

effective market share reduced from 100% to 60%. Over L2 the value function L2(Vv) consists of
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the PV of operations less the value of the rival option (reduction of market share when the follower

invests).

Naturally, both thresholds increase if K increases, and both value functions decrease. But over the
range of K increasing by 5 over each interval from 115 to 165 in Appendix Figure F4, the absolute
decrease of the VF when v=5 is half of that even for the leader, since there is still the option of
making the investment. But when v=22 over the L3 regime, the leader’s value function decreases
by 184, and the follower’s by 70 if K increases from 115 to 165 as the follower invests, and the
leader’s market share is reduced. Such an illustration shows that the value of investment tax credits

or subsidies increases as v increases, more for the leader than for the follower.

As expected, both thresholds increase (about the same) as o increases. At L1 when v=5, the value
functions consisting solely of the investment option values increase as shown in Figure 5, also at

L2 for the follower. At L3 volatility changes do not affect the PVs of either the leader or follower.

As noted in the sensitivities analysis, increases in r significantly affect all thresholds and option
coefficients, increasing the thresholds, and reducing the investment option coefficients (and
reducing the negative value of the rival option). As also noted in sensitivities, increasing r reduces

both value functions at all v levels.

In contrast to r, increases in & significantly reduce the thresholds, and increase the investment
option coefficients (and increase the negative value of the rival option) over this range. Curiously,
the investment coefficients first decrease and then increase as 6 goes from 1.75% to 4.25%. As

noted in sensitivities, increasing & increases both value functions at all v levels.

Changing f does not change much of anything, perhaps because this such an in-the-money
investment option after v=7.5 for the leader. The signs for the effect on the thresholds, option

coefficients and value functions are the same as indicated in the sensitivities.

As indicated in sensitivities, changes in the leader’s final market share mLr do not affect the

leader’s threshold but negatively affect the strategic option coefficient, and reduce the negative
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rival option coefficient, thus increasing the leader’s value function over all regimes, reducing the
follower’s value function significantly, as shown in Figure 4. As indicated in sensitivities,
increases in the follower’s final market share mrL do not affect the leader’s threshold but reduce
the follower’s threshold, and increase the investment option coefficient. The leader’s investment
coefficient is slightly reduced, and the rival option coefficient becomes more negative. As
expected, the value functions move in opposite directions, but the effect seems to be constant, as
the spread between the value function decreases with the narrowing of the difference in market
shares.

Risk hedging may be the most useful activity using these partial derivatives, especially over one
regime such as L2 where there are no jumps. Table 4 is an illustration of delta hedging based on
equations 34 and 35 for the middle regime L2. Suppose the leader is satisfied with maintaining the
value function of 384 after investing (cost 140), with a PV of operations 720 and a rival option
value of -355 when v=18. The leader seeks to maintain this value function value (in case v
declines) by shorting v for each price interval (adjusting the delta at each interval), and marking-
to-market (or model) at each interval, as shown in Table 4 down to v=9. The leader’s experiences
an unhedged loss for each integer if v declines, which increases with the v decline because the
rival option becomes less negative. The deltas are all positive since increasing v benefits both, A

F2<AL2 until just before the follower’s investment threshold of 18.7. When v=18, Av=

oV, (v
L82v( ) == 15 + BA s V2 =50.0000-31.9416 =18.0584 , so a short position A/18=1.003 in v

should be used to delta hedge the L value function, minimizing the combined unhedged loss and

hedge gain®.

Table 4 shows the leader and follower gross loss (unhedged) for the value function VF as v falls
from 18 to 9 in the L2 (after the leader invests). The largest component of the loss for the leader
is in the PV of operations, which is constant at 50 for each interval. There is a small loss for the F
investment option value at lower v. The mean hedged loss (combining the unhedged and hedging

gain/loss) is sharply reduced for both the leader and follower.

8 This ignores transaction costs and other practical considerations like whether there is an active market in p or p
futures, roll-over costs for finite futures, margins, and credit risks.
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Table 4
Delta Hedging over v=18t0 9, L2

v 9 10 1 12 13 1 15 16 iy 18

HEDGED LOSS=+ ~ NETLOSS ~ NETLOSS NETLOSS NETLOSS ~NETLOSS NETLOSS NETLOSS NETLOSS NETLOSS ~ NETLOSS ~MEAN STDEV MAX  MIN

VFF -0.46 -0.45 -0.44 -0.43 -0.42 -0.41 -0.40 -0.40 039 -042 002 -039 -046
VFL 0.76 0.74 0.72 0.70 0.69 0.67 0.66 0.65 0.64 0.69 0.04 0.76 0.64
UNHEDGED L0SS=+ L0SS 10->9 0SS 17->16 L0SS18->17 MEAN ~ STDEV  MAX  MIN

VFF 1232 3.3 14.12 14.99 15.34 16.67 17.48 18.28 1907 1578 231 1907 1232
VFL 29.78 2828 26.82 25.39 24.00 22.64 21.30 19.99 1870 2410 379 2978 1870
DELTA HEDGE GAIN 10->¢ GAIN 17->16 GAIN 18->17

VFF GAIN=+ 12.78 13.68 14.56 15.42 16.26 17.08 17.88 18.68 1946 1620 228 1946 1278
VFL 29.02 27.54 26.10 24.69 2331 21.96 20.64 19.34 1806 2341 375 2902 1806
dVF/dv 12.78 13.68 14.56 15.42 16.26 17.08 17.88 18.68 19.46

dvi/dv 29.02 27.54 26.10 2469 2331 21.96 20.64 19.34 18.06

For the leader, the mean loss (mostly due to the PV operations) and variability is significant
unhedged, but sharply reduced with this academic hedging based on the delta partial derivatives,
and choice of hedging intervals over these limited intervals. By hedging, the standard deviation of
the leader’s unhedged losses of 3.79 is reduced to .04. However, trying to delta hedge over the

investment thresholds is likely to be problematic.

6 Summary and Conclusions

We provide several possibly unique contributions for the real option solutions and derivatives for
basic once-off investment opportunities in a duopoly with variable operating costs: analytical
solutions for the thresholds and option coefficients, and for the partial derivatives for all of the
inputs; confirming all of these solutions with numerical solutions, and that all of the conventional
conditions are satisfied; based on simulations of the solutions and partial derivatives over a range
of input parameter values, we show how the delta partial derivative can be used for delta hedging

to sharply reduce risk of this portfolio of real options.
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We proposed three measures of the risk exposure of the real option portfolio of duopoly investment
opportunities: sensitivities, partials, and value functions across a range of input parameter values®.
(1) Sensitivities show the change in each threshold, option coefficient, value function
for a 1% change in the input parameter value for a single v, easy to calculate but
not shown (yet) across regimes.
(i1) Partials show the change in continuous time, which are also compared to
proportionate change over an almost infinitesimal interval (.0000000001).
(ii1))  VF Vary Integers enables on a single chart viewing the analytical results over a
wide range of integer input parameter values, including across regimes, illustrating

L jumps at the F threshold.

An advantage of the analytical solutions for the thresholds and option coefficients (rather than a
numerical solution for the leader’s threshold as in other papers, and all thresholds as in Adkins et
al., 2022) is that all of these calculations can be done immediately, changing other variables as

well.

Future research is to use these analytical solutions to introduce stochastic K. What is the
relationship between Delta, Vega, Rho, and Alpha in this basic duopoly investment model? How
should one use volatility swaps to hedge Vega, interest-rate futures to hedge Rho, and arrangements
with third parties and marketing experts (or collusion through industry associations) to hedge
Alpha risk? Is there a simple measure like VaR which can be constructed out of these analytical

formulae to assess risk for this basic model? Practical examples are warranted.

9 Of course, each of these formats can be replicated for volatility changes for instance using the Appendix Table C1
(CROR Num PD Vol), using in C2=1.0000000001 for (ii), C2=1.01 for (i), and C2=.17 for the c interval .16->.17 {iii).
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