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Abstract 

We evaluate the risk aspects of a simple portfolio of real options to invest for a duopoly. After 

summarizing the basic model, covering three sequences, two thresholds, and three strategic and 

rival options, we look at five risk elements: delta, vega, rho (the conventional option Greeks) along 

with epsilon (drift) and alpha (market share).  The value function of both the leader and follower 

is most sensitive to revenue (delta), interest rate (rho), drift (epsilon) and market share (alpha) 

variations, which we view in terms of sensitivities (to percentage changes), partial derivatives 

(analytical confirmed by numerical) and to a range of each of the input variables. Naturally, delta 

and rho hedging are plausible and appropriate risk avoidance actions. Maintaining final stage 

market share is particularly important for the follower.  

 
1 Corresponding author. 

mailto:rogeradkins2020@outlook.com
mailto:a.azevedo@aston.ac.uk


2 

 

Highlights 

• For a duopoly real option investment model, an analytical method is formulated to derive 

the impact on the value function due to a change in each parameter value. 

• The analytical method is validated by comparing the solution with a numerical method based 

on ever finer differences which converge to the analytical.  

• The impact of a change in most parameter values is not constant and varies according to 

value of the state variable. 

• The function representing the impact of a parameter change on the value function is semi-

continuous for at least one of the players. 

 

 

 

Acknowledgements:  We thank in advance the discussant and participants in the Real Options 

Conference Bologna 2024 for helpful comments.  
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1 Introduction 

What is the appropriate measure of risk for real options in a duopoly? We address this issue through 

studying (i) the sensitivities of changes in the value functions to 1% changes in the model 

parameter values, (ii) through calculating the analytical partial derivatives for the thresholds, 

option coefficients and value functions (reconfirmed with numerical partial derivatives), and (iii) 

through calculating the changes in value functions across the regimes along a range of changes for 

each input parameter value2.  Which is the most appropriate method for observing (and eventually 

managing) risk? 

 

There is limited literature on most of these approaches. Both pre-emptive and non-pre-emptive 

duopoly real options usually require a numerical solution for the leader’s threshold, and ignore 

risk exposure, partial derivatives and risk management.  Few of the models allow for an operating 

cost.  Few models offer the proofs that the differential equation is solved (or not), and that the 

value matching and smooth pasting conditions are satisfied.  Few authors are concerned with 

market share derivatives, with risk assessments.  

 

Fudenberg and Tirole (1985) created the foundations of real options in a competitive setting while 

developing a model of games of timing with a continuous time version of strategy equilibrium. 

Smets (1993) considered a strategic setting where firms can act under the fear of pre-emption, 

clearly presented by Dixit and Pindyck (1994) Chapter 9.3. Joaquin and Butler (2000) consider the 

first mover advantage of lower operating costs. Smit and Trigeorgis (2001) modelled different 

investment strategies under quantity or reciprocating price competition.  

Tsekrekos (2003) studied the sensitivity of the leader and follower value function to market share 

(with both temporary and pre-emptive permanent market share advantages for the leader), assumed 

to be constant after the follower enters. Paxson and Pinto (2003) model a leader with an initial 

market share advantage, which then evolves as new customers arrive (birth) and existing customers 

depart (death)3.  Paxson and Pinto (2005) suggest a two-factor model with permanent quantity 

 
2 Provisionally, these are shown only in Appendix F. 
3 Appendix H reviews the innovations in these two articles regarding some analytical partial derivatives (delta, and 
alpha), and discussions of the respective leader/follower choices and actions. 
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advantages accorded to the leader. Paxson and Melmane (2009) provide a two-factor model where 

the leader starts with a larger but stochastic market share. Bobtcheff and Mariotti (2013) consider 

a pre-emptive game of two innovative competitors, whose existence may be revealed only by first-

mover investment. Azevedo and Paxson (2014) review the literature on developing such real 

option games. Huberts et al. (2019) show that for a duopoly, entry may be deterred by competitive 

actions, possibly in a war of attrition or pre-emption, following interesting strategies. Adkins et al. 

(2022) provide quasi-analytical solutions for switching and divesting opportunities in a duopoly 

with mutually exclusive options. 

We provide six innovations for basic once-off investment opportunities in a duopoly (non-pre-

emptive) with variable operating costs: analytical solutions for the thresholds and option 

coefficients; analytical solutions for the partial derivatives for all of the inputs (except K); 

confirming all of these solutions with numerical solutions; confirming that these solutions with 

solve the conventional different equations, and the value matching and smooth pasting conditions 

(except for the special case of crossing the follower’s threshold); confirming that the sensitivities, 

partial derivatives and simulation of value functions across the basic revenue range are consistent; 

and finally showing how the delta partial derivative can be used for delta hedging to sharply reduce 

risk.  

The rest of the paper is organized as follows. Section 2 derives the investment real options model 

for a duopoly with variable operating costs. Section 3 shows sensitivities of the value functions for 

each of the parameter inputs.  Section 4 derives analytical results for each of the partial derivatives, 

and discusses some of the option coefficient characteristics. Section 5 reviews the additional 

insights available from considering the evolution of value function across a range of values for 

each input parameter, useful in hedging risk exposure. Section 6 summarizes and concludes and 

provides some suggestions for further research and applications.  

2 Real Option Model for a Duopoly with Variable Operating Costs 

 

We demonstrate the analytical procedure based on partial derivatives for determining the impact 

of input parameter variations on the value function of a leader and follower in a duopoly investment 

opportunity.  We find that for one of the rivals in a duopoly model, the derivative of their value 
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function with respect to market share, volatility, interest rate and revenue drift are semi-continuous 

functions with a jump, which can be both positive and negative, and varies according to the value 

of the state variable. The partial derivatives have similar characteristics, regarding thresholds and 

option coefficients, as opposed to the revenue (delta) derivative (where the thresholds and option 

coefficients remain the same). 

 

Our basic model builds on a monopoly context, where the firm, with no current cash-flow, has a 

perpetual opportunity to invest in an operating asset that it intends to exercise and operate forever 

as soon as the asset’s prevailing cash-inflow, denoted by v,  is sufficiently high. The optimal policy 

is to retain the investment option for 10 v v  , where 1v  denotes the threshold cash-inflow, and 

to exercise the option for 1v v   . While the cash-inflow remains within the inaction region, 

( )10v ,v ,  the firm does nothing. Whenever v  departs from the inaction region, where ( )10v ,v ,  

the firm makes the investment. We assume the state variable, the cash-inflow, follows a geometric 

Brownian motion process: 

 d d dv v t v W , = +   

where ,   denote the instantaneous drift and volatility, respectively, and dW  an increment of the 

standardized Wiener process.    

 

As an extension, we assume there is a simple duopoly where a first mover leader, and a follower 

share the final market. The leader’s initial market share on entering the market is denoted by 

1Lm =  from capturing the entire market. When the follower subsequently enters the market, its 

market share is denoted by 0 1FLm   and simultaneously the leader’s final market share reduces 

to 0 1LFm   with 1LF FLm m+ =  and FL LFm m  due to the leader’s first mover advantage. Then: 

 0 1 1FL LF L LF FLm m m , m m .   = + =  
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The nature of the duopoly game is that the leader always commits to a policy change ahead of the 

follower.  By backwardation, we first examine the follower’s value function. The value ( )FG v  of 

the follower’s perpetual opportunity is: 

 

( )

( )

1

1 1 1

2 1

0

0

F F F

F
FL FL

F F

g A v , v ,v ,

G m v m f
g K , v ,v .

r r





 = 
 

=  
= − −  

− 

F1,F2    (1) 

 

where K  denotes the investment cost, f  the operating cash-outflow, and r  the risk-free rate with 

the net adjusted return shortfall =r-, with an unknown threshold, 1Fv , an investment option 

coefficient, 1FA ,  and the option power parameter, 1 , .  We assume that, where v=p*q, where q is 

a constant market volume quantity, p is stochastic, and f is equivalent to a variable operating cost.  

In (1), the term 1

1FA v
 represents the real option value for the follower of eventually entering  the 

market. 

 

The value ( )LG v  of the leader’s opportunity is: 

 

( )

 )
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2 11 1 1

3 1

0
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L L L

L L
L L L L F

LF LF
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m v m f
G g A v K , v v ,v ,

r r

m v m f
g K , v ,v .

r r









 
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 
 

= = + − −  
− 

 
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L1, L2, L3 (2) 

In (2), the term 1

11LA v
 represents the value for the leader of the rival option (negative value for 

the leader, when the follower enters the market). The coefficient 11LA  is obtained from the value 

conserving condition ( ) ( )2 1 3 1L F L Fg v g v .=  

 

The solutions for the follower’s entry threshold, 1Fv , and coefficient, 1FA ,  the leader’s entry 

threshold, 1Lv , and coefficients, 1 11L LA , A , and 1  are derived as follows. 
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From (1), the value-matching relationship and smooth-pasting condition4 for the follower’s value 

function are, respectively: 

( ) ( )

( ) ( )( )

1

1

1
1 1 2 1 1 1

1 1 2 1 1
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FL F FL
F F F F F F
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r r
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 −
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                                              (3a, 3b) 

Solving for 1Fv  and 1FA  yields: 
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                              (4a, 4b) 

From (2), the value-conserving condition for the leader when the follower exercises is: 

 ( ) ( ) 1 1 1
2 1 3 1 11 1 0L F L LF F LF

L F L F L F

m v m f m v m f
g v g v A v .

r r r r



 
− = + − − + =

− −
                                   (5) 

Solving for 11LA  yields: 

 ( ) 11
11 1

F
L L LF F

v f
A m m v .

r r





− 
= − − − 
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 (6) 

From (2), the value-matching relationship and smooth-pasting condition for the leader’s value 

function are, respectively: 
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0
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                                     (7a, 7b) 

Solving for 1Lv  and 1LA  yields: 

 
4 The conventional approach to such an optimal stopping problem is that if v follows a geometric Brownian motion 
process, the solution G(v) must satisfy an ordinary differential equation,  

2 21
0

2
v G"( v ) ( r )vG'( v ) rG( v ) + − − = , along with the value matching and smooth pasting boundary 

(v*) conditions, 3a,b, 5, 7a,b, see Dixit and Pindyck (1994), page 141. 
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The power parameter 1  is the positive root of the characteristic Q  function: 

 ( ) ( ) ( )21
1 1 1 1 12

1 0 0Q r r , .      = − + − − =   (9) 

In summary, all option coefficients and thresholds have an analytical solution, with the option 

coefficients simplified using the threshold expressions: 
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 (10) 

 

 

Table 1A 

Mathematica Thresholds & Option Coefficients for Duopoly Model5 

1Lv  1Fv  1LA  1FA  11LA  1  

8.63437 18.70780 3.88276 1.43595 -2.35747 1.71508 

      

 
5 Based on the parameter values (INPUT) in Table 1B. 
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Table 1B ODE, VM & SP Conditions6

 

 
6 This spreadsheet shows that the analytical equations solve the ODE, and that the VM and SP conditions are 
satisfied, except for the special case of the Leader SP post-investment with a jump if the Follower invests.  

1
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29
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31

32

33
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35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

A B C D

CROR MODEL ODE  

INPUT   

v 14.00

K 140.00

 0.16

r 0.05

 0.03

f 2.00

mLF 0.60

mFL 0.40

OUTPUT    

F1(v) 132.6927 IF(B3<B14,B16*(B3^B19),B13) 1a

F2(v) 124.0000 B10*(B3/(B6-B7)-B8/B6)-B4 1b

vF1 18.7078 (B19/(B19-1))*((B6*B4+B10*B8)*(B6-B7))/(B6*B10) 4a

vL1 8.6344 (B19/(B19-1))*(B6*B4+B8)*(B6-B7)/B6 8a

AF1 1.4360 (B10/(B19*(B6-B7)))*(B14^(1-B19)) 4b

AL1 3.8828 B18+(1/(B19*(B6-B7)))*(B15^(1-B19)) 8b

AL11 -2.3575 (-(B10)*(B14/(B6-B7)-B8/B6)*(B14^-B19)) 6

1 1.7151 0.5-(B6-B7)/(B5^2)+SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 9

L(v) 302.1527 IF(B3<B15,B21,IF(AND(B3>B15,B3<B14),B22,B23)) 2

L1(v) 358.7955 B17*(B3^B19) 2a

L2(v) 302.1527 B18*(B3^B19)+(B3/(B6-B7)-B8/B6)-B4 2b

L3(v) 396.0000 B9*(B3/(B6-B7)-B8/B6) 2c

Leader Pre-Invest v=5

ODE 0.0000 0.5*(B5^2)*(B3^2)*B27+(B6-B7)*B3*B26-B6*B21

F'(v) 43.9546 IF(B3<B14,B19*B17*(B3^(B19-1)),1)

F''(v) 2.2451 IF(B3<B14,B19*(B19-1)*B17*(B3^(B19-2)),0)

F(vL1) 156.6229 B17*(B15^B19) VM1

V*-K 156.6229 B18*(B15^B19)+(B15/(B6-B7)-B8/B6)-B4 VM1

SP1 0.0000 B19*B17*(B15^(B19-1))-(B19*B18*(B15^(B19-1))+1/(B6-B7)) SP1

Leader Post-Invest L, Pre-Invest F v=14  

ODE 0.0000 0.5*(B5^2)*(B3^2)*B34+(B6-B7)*B3*B33-B6*B22+(B3-B8)  

F'(v) 23.3124 B19*B18*(B3^(B19-1))+1/(B6-B7)  

F''(v) -1.3631 B19*(B19-1)*B18*(B3^(B19-2))  

F(vL1) 537.2340 B18*(B14^B19)+(B14/(B6-B7)-B8/B6) VM2

V* 537.2340 B9*((B14/(B6-B7)-B8/B6)) VM2

SP2 -12.8349 B19*B18*(B14^(B19-1))+1/(B6-B7)-B9/(B6-B7) SP2

Follower Post-Invest L, Pre-Invest F v=14  

ODE 0.0000 0.5*(B5^2)*(B3^2)*B41+(B6-B7)*B3*B40-B6*B12

FF'(v) 16.2557 B19*B16*(B3^(B19-1))

FF''(v) 0.8303 B19*(B19-1)*B16*(B3^(B19-2))

FF(vF) 218.1560 B16*(B14^B19) VM3

V*-K 218.1560 B10*((B14/(B6-B7)-B8/B6))-B4 VM3

SP3 0.0000 B19*B16*(B14^(B19-1))-B10/(B6-B7) SP3

Follower Pre-Invest L&F v=5

ODE 0.0000 0.5*(B5^2)*(B3^2)*B41+(B6-B7)*B3*B40-B6*B12

FF'(v) 16.2557 B19*B16*(B3^(B19-1))

FF''(v) 0.8303 B19*(B19-1)*B16*(B3^(B19-2))

FF(vF) 218.1560 B16*(B14^B19) VM4

V*-K 218.1560 B10*((B14/(B6-B7)-B8/B6))-B4 VM4

SP4 0.0000 B19*B16*(B14^(B19-1))-B10/(B6-B7) SP4
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Figure 1A 

 

 

 

 

Figure 1A shows that the value functions is an almost linear function of increasing v, despite leader 

market share falling to 60% after the follower invests.  A decomposition of the value function in 

Figure 1B shows that the follower’s value function strategic option value (blue) to invest steadily 

increases with v, the leader’s value is split into the PV of operations after investing (grey) less the 

negative value of the rival option (orange); when the follower invests, the leader’s value is entirely 

the PV of operations (60% of the market).  
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Figure 1B 

 

3 Sensitivities 

 

Figure 2 (v=5, regime L1 before either has invested) shows a quick and easy way to assess the 

sensitivity of the leader and follower value functions to changes in each of the eight parameter 

values separately.  Significance (more than 2%) is indicated in bold. Thresholds are highly 

sensitive to changes in interest rates and revenue drift, but not generally to changes in the other 

parameter values (except for the follower’s threshold to the leader’s final market share). 

 

                                                                    Figure 2 

                  Percentage Change in Thresholds, Option Coefficients & Value Functions  

                                          for a 1% Increase in the Parameter Value 

AF1 v^b1 0.0005 4.7145 15.4783 31.0267 50.8179 74.5118 101.8656 132.6927 166.8431 204.1922 0.0000 0.0000 0.0000 0.0000

PV Ops MSF=.4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 244.0000 284.0000 324.0000 364.0000

VF L 0.0014 12.7477 41.8528 83.8949 137.4093 197.6708 252.7628 302.1527 346.0866 384.7690 436.0000 496.0000 556.0000 616.0000

AL1 v^b1 0.0014 12.7477 41.8528 83.8949 137.4093 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AL11 v^b1 0.0000 0.0000 0.0000 0.0000 0.0000 -122.3292 -167.2372 -217.8473 -273.9134 -335.2310 0.0000 0.0000 0.0000 0.0000

PV Ops  MSL=1 0.0000 0.0000 0.0000 0.0000 0.0000 320.0000 420.0000 520.0000 620.0000 720.0000 0.0000 0.0000 0.0000 0.0000

PV Ops  MSL=.6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 436.0000 496.0000 556.0000 616.0000
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All sensitivities are logical, with the value functions of both the leader and follower with the same 

sign, except for the increase in mLF=1-mFL, that is the leader’s final market share.  Naturally, each 

value function increases with an increase in v, and decreases with an increase in K. Consistent 

with expected sensitivity for a call option (investment opportunity), each value function increases 

with increases in volatility and in the net drift rate, but decreases with increases in interest rates, 

which is the most significant in percentage terms.  Changes in the operating costs does not seem 

to make much of a difference.  Also shown are the sensitivities when v=10 (L2 middle regime after 

the leader has invested) and v=22 (L3 final regime, after both have invested). Observations are 

K  r  f mLF mFL

  vF1 0.0090 0.0050 0.0298 -0.0230 0.0010 0.0137 -0.0089

  vL1 0.0078 0.0050 0.0286 -0.0230 0.0022 0.0000 0.0000

 AF1 -0.0064 0.0181 -0.0209 -0.0035 -0.0007 -0.0245 0.0165

  AL1 -0.0053 0.0124 -0.0260 0.0058 -0.0019 0.0145 -0.0098

 AL11 0.0060 -0.0147 0.0242 -0.0020 0.0011 0.0239 -0.0161

 1 0.0000 -0.0036 -0.0040 0.0059 0.0000 0.0000 0.0000

  v K  r  f mLF mFL

v=5 % L 0.0172 -0.0053 0.0025 -0.0368 0.0222 -0.0019 0.0145 -0.0098

 % F 0.0172 -0.0064 0.0081 -0.0318 0.0129 -0.0007 -0.0245 0.0165

v=10 % L 0.0146 -0.0034 -0.0003 -0.0351 0.0227 -0.0013 0.0148 -0.0099

 % F 0.0172 -0.0064 0.0038 -0.0364 0.0200 -0.0007 -0.0245 0.0165

v=22 % L 0.0104 0.0000 0.0000 -0.0249 0.0158 -0.0004 0.0100 -0.0067

 % F 0.0155 -0.0049 0.0000 -0.0372 0.0236 -0.0006 -0.0224 0.0149
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-0.0200
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0.0200
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v K s r d f mLF mFL

Sensitivities of VF to Input 1% Increase, v=5

% L % F
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that the sensitivities to increases in v are much the same over the regimes.  Naturally, increases in 

K are not relevant for the leader in L3, who spends K in the transition from L1 to L2.  Change in 

the interest rate and drift are important in L1 (affecting the thresholds and option coefficients), and 

continue to be important in L2 and L3 affecting the present value of operations. Note that there is 

no effect of changes in volatility in L3, since there are no options in that regime.  Maintaining 

market share is critical for the follower in all regimes, less important for the leader  

 

4 Partial Derivatives  

  

Market Share Partials 

From (1), the impact of the market share LFm  change on the follower’s opportunity value is: 
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 (11a, 11b) 

From (2), the impact of the market share LFm  change on the leader’s opportunity value is: 
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   (12a, 12b, 12c) 

The derivation of the partial derivatives for each variable with respect to the leader’s market share 

after the follower’s entry, LFm , follows the procedure described in Appendix A & B.  
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1 0

LF

.
m


=


 (17) 

 

 

Using the base case parameter values, the results calculated in Mathematica are in Table 2A. 

Table 2A 

Leader’s Market Share Partial Derivative Values   

 

1L

LF

v

m




 

1F

LF

v

m




 

1L

LF

A

m




 

1F

LF

A

m




 

11L

LF

A

m




 

1

LFm




 

0.0 41.97263 9.43960 -5.89367 9.43960 0.0 

      

Table 2B 

                                    Market Share Partial Derivative Equation Solutions 
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Note that the leader’s threshold is not affected by the final market share, but the follower’s 

threshold increases significantly with increases in that final market share, naturally. The follower’s 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

A B C D

CROR MARKET SHARE Partials  

INPUT  

v 5.00

K 140.00

 0.16

r 0.05

 0.03

f 2.00

mLF 0.60

mFL 0.40

OUTPUT

F1(v) 22.6952 IF(B3<B14,B16*(B3^B19),B13) 1a

F2(v) -56.0000 B10*(B3/(B6-B7)-B8/B6)-B4 1b

vF1 18.7078 (B19/(B19-1))*((B6*B4+B10*B8)*(B6-B7))/(B6*B10) 4a

vL1 8.6344 (B19/(B19-1))*(B6*B4+B8)*(B6-B7)/B6 8a

AF1 1.4360 (B10/(B19*(B6-B7)))*(B14^(1-B19)) 4b

AL1 3.8828 B18+(1/(B19*(B6-B7)))*(B15^(1-B19)) 8b

AL11 -2.3575 (-(B10)*(B14/(B6-B7)-B8/B6)*(B14^-B19)) 6

1 1.7151 0.5-(B6-B7)/(B5^2)+SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 9

L(v) 61.3668 IF(B3<B15,B21,IF(AND(B3>B15,B3<B14),B22,B23)) 2

L1(v) 61.3668 B17*(B3^B19) 2a

L2(v) 32.7404 B18*(B3^B19)+(B3/(B6-B7)-B8/B6)-B4 2b

L3(v) -14.0000 B9*(B3/(B6-B7)-B8/B6)-B4 2c

(mLF) PARTIALS  

vF1/LF 41.9726 ((B14^(1-B19))/((B19-1)*B19*B16))*B35 13

AF1/LF -5.8937 -(B14^-B19)*((B6*B14-B8*(B6-B7))/(B6*(B6-B7))) 15

AL1/LF 9.4396 (-B14*(1-B9)*(B14^(-2*B19)))*B39/B37+B38-B40 14

AL11/LF 9.4396  B42-(1-B9)*(B14^(1-2*B19))*B43/B45-B18*(B14^-B19)*B43/B44 16

F(v)/LF -93.1490 IF(B3<B14,B26*B3^B19,B30) 11a, 18a

-210.0000 -B3/(B6-B7)+B8/B6 11b

L(v)/LF 149.1923 IF(B3<B15,B32,IF(AND(B3>B15,B3<B14),B33,B34)) 12

149.1923 B27*(B3^B19) 12a

149.1923 B28*(B3^B19) 12b

210.0000 (B3/(B6-B7)-B8/B6) 12c

A 600.2796 (((B19-1)*B14/(B6-B7))-B8*B19/B6)

AL1/LF Parts  

B 0.0000 (B6*((B6-B7)^2)*B16*(B19-1)*B19)

C 5.8937 (B14^-B19)*((B6*B14-B8*(B6-B7))/(B6*(B6-B7)))  

D 0.6003 (B6*B14*(B19-1)-B8*(B6-B7)*B19)  

E -9.0714 (B18*B39*(B14^-B19))/(B16*(B19-1)*B6*(B6-B7))

AL11/LF Parts  

F 5.8937 (B14^-B19)*((B6*B14-B8*(B6-B7))/(B6*(B6-B7)))

G 0.6003 (B6*B14*(B19-1)-B8*(B6-B7)*B19)

H 0.0010 B6*(B6-B7)*B16*(B19-1)

I 0.0000 B6*((B6-B7)^2)*B16*B19*(B19-1)
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strategic option to invest declines as the final market share increases; but the leader’s strategic and 

rival option coefficient partial derivatives are the same, (14)=(16). Note that the equations for (14) 

and (16) have been simplified by using parts (B37:B40) and (B42:B45). 

 

Inserting Table 2 values into (11) and  (12) yields respectively: 

 
( )

( )

1 71508 0

40 0 50 0
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18 700 780
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.
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. . v
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., v , ,
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                       (18a, 18b) 

and: 
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. .

. . .

. .
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                  (19a, 19b,19c) 

Figure 3A  v=10 

 

 

Figure 3A shows that both leader and follower values when vL<v<vF are linear functions of 

increasing market share (follower negative, naturally) The partial derivatives are also linear, with 

the follower’s increasing as leader’s final market share increases, in Figure 3B.  

 

F(v) 107.29 103.82 100.40 97.01 93.67 90.36 87.11 83.89 80.72 77.59 74.51

L(v) 145.57 151.05 156.47 161.83 167.13 172.38 177.56 182.68 187.74 192.74 197.67
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Figure 3B 

 

 

 

The plots of  
LFL,mG '  and 

LFF ,mG '  are presented in Figure 4, as a function of v. 
LFF ,mG '  is a 

decreasing continuous function of the prevailing cash-inflow v, since a positive change in LFm  

implies a negative change in FLm  and adverse consequences for the follower. Although the 

function is continuous, it is not smooth at the follower’s market entry at 1Fv v= . In contrast, 

LFL,mG '  is a semi-continuous function with a downward jump at 1Fv v= . The function is increasing 

for 10 Fv v   and for 1Fv v  since a positive change in LFm  benefits the leader.  

 

 

 

 

 

Figure 4 

Impact of Market Share Change on the Leader’s and Follower’s Value Functions  
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So, at all levels of v, in this case the leader will benefit from an increase of mLF, except at the 

follower’s threshold vF1, when there is a sudden drop in the leader’s value function, which, 

however, is still positive as a function of v thereafter. 

 

Volatility Partials 

The impact of volatility changes on the follower’s opportunity value is found from: 
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 (21a, 21b, 21c) 

 

The derivatives expressed in (20) and (21) are determined in Appendix C, and their solutions are 

presented below: 
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Consequently, the partial derivatives of the value functions with respect to volatility are: 

 
( )    ( )

( )
1

1 1

2

1 11

2 2

12

11

1
0

FF
F

FA vg
, v ,v ,

log v log v

r

 

 

 



−
= 

+

−
 (28) 
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FG '  is a continuous but not a smooth function for Rv .+ The value of the function 1Fg    is 

non-negative for ( )4 10 Fv ,v , equals zero at its two end-points, 10 Fv ,v v ,=   and exhibits a point 

of maximum at  1 1Exp 1Fv v .= −  

 

 

Figure 5 

Impact of Volatility Changes on the Leader’s and Follower’s Value Functions  

 

 

 

 

 

Figure 5 corroborates the predicted properties for the follower’s and the leader’s value functions. 

The effect of volatility changes on the follower’s value FG '  behaves as a continuous function but 

not continuously differentiable at 1Fv v= , attaining a maximum at 10 25626F ,MAXv .= . The effect 

of volatility changes on the leader’s value LG '  behaves as a semi-continuous function, continuous 

for 1Fv v  and for 1Fv v  but discontinuously differentiable at 1Lv v= , while having a down-

jump discontinuity at 1Fv v= . For 1 1L Fv v v  , LG '  is an increasing function.  
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In contrast7, the shape and behaviour of LG '  is less straightforward by being most likely a semi-

continuous function and displaying both positive and negative values. First, we note that 

( )1 1
0

L Lg v
,







 so LG '  displays both positive and negative values and is concave for 1Lv v .  

Second, since  

 
( ) ( )1 1 2 1L L L Lg v g v

,
 

 
=

 
 

LG '  is a continuous function for 1Fv v , for all revenue values prior to the follower’s market 

entry. For 1Lv v , 2Lg






 is an increasing function, which intersects the abscissa only if the 

expression:  
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−

                                                                                    (31)  

is positive, in which case LG '  experiences a discontinuous downward jump at 1Fv v= . If  (31) is 

negative, then 2 0Lg







 for  1 1L Fv v ,v , in which case LG '  experiences a discontinuous upward 

jump at 1Fv v= .  If in the unlikely event (31) is zero, then LG '  becomes a continuous function for 

all 0v  . Clearly, since 11LA  is negative, the magnitude of L LFm m−  is critical in deciding the sign 

of (31) and determining whether the jump is upwards or downwards.  

 

These properties of  LG '  and FG '  can be illustrated numerically. Table 3A presents the solution 

values obtained using Mathematica and their derivative values with respect to volatility. 

Substituting these values into (20) and (21) yields the  impact of volatility changes on the 

followers’ and the leader’s opportunity value, respectively: 
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'
g

, ,., v






=  

= 


=


−

 


  (32a, 32b) 

  

 
7 The background for some of the statements made in this paragraph is in Appendix C. 
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  (33a,33b, 33c) 

 

 

 

As expected, all thresholds and strategic option coefficients have a positive “vega” (sensitivity to 

changes in volatility), but the rival option for the leader has a negative vega.  This means that the 

negative value of this rival option becomes more negative as volatility increases, which does not 

benefit the leader when v is between the leader and follower thresholds. 

 

 

 

Table 3A 

Mathematica Solution and Volatility Partial Derivative Values for Competitive Model  
  

  
  

1Lv






 1Fv






 1LA






 1FA






 11LA






 1






 

27.03195 58.56922 30.08801 16.14882 -21.56416 -3.83963 
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Table 3B

 
 

Which of the two competitors benefits most from a volatility change, and when? Figure 5 can be 

decomposed into four segments. (I) While (0 L,MAXv ,v  , the leader gains more from positive 

volatility changes due to first mover advantage. (II) For v increasingly greater than L,MAXv ,  the 

follower gains from volatility increases as the leader loses, approaching ( 2Lg   ) a minimum at 

16 00676 L.v v=  .) (III) The follower vega becomes negative, and 2Lg






 and 1Fg






 intersect at 

2 1 12 96882L ,F .v = . Finally, the leader increasingly benefits more from positive volatility changes 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

A B C D E

CROR VOLATILITY  Partials

INPUT  CROR

v 5.00

K 140.00

 0.16

r 0.05

 0.03

f 2.00

mLF 0.60

mFL 0.40

OUTPUT  

F1(v) 22.6952 IF(B3<B14,B16*(B3^B19),B13)  

F2(v) -56.0000 B10*(B3/(B6-B7))-(B10*B8/B6)-B4

vF1 18.70780 (B19/(B19-1))*((B6*B4+B10*B8)*(B6-B7))/(B6*B10)  

vL1 8.63437 (B19/(B19-1))*(B6*B4+B8)*(B6-B7)/B6  

AF1 1.43595 (B10/(B19*(B6-B7)))*(B14^(1-B19))  

AL1 3.88276 B18+(1/(B19*(B6-B7)))*(B15^(1-B19))  

AL11 -2.3575 (-(B10)*(B14/(B6-B7)-B8/B6)*(B14^-B19))  

1 1.7151 0.5-(B6-B7)/(B5^2)+SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2))  

L(v) 61.3668 IF(B3<B15,B21,IF(AND(B3>B15,B3<B14),B22,B23))  

L1(v) 61.3668 B17*(B3^B19)

L2(v) 32.7404 B18*(B3^B19)+B3/(B6-B7)-B8/B6-B4  

L3(v) -14.0000 B9*B3/(B6-B7)-B9*B8/B6-B4
() PARTIALS  Table 4A

vL1/ 27.0319 (B15*B5*B19)/B38 22 27.0320

vF1/ 58.5692 (B14*B5*B19)/B38 23 58.5692

AF1/ 16.1488 B39/B38 25 16.1488

AL1/ 30.0880 B40/((B38*(B6-B7)*(B14^B19)))+B41*(B19-1)*LN(B14)/B38+B42-B41/B38 24 30.0880

AL11/ -21.5642 (B40/((B38*(B6-B7)*(B14^B19))))+(B41*(B19-1)*LN(B14)/B38)-B41/B38 26 -21.5616

F(v)/ 114.9829 IF(B3<B14,B27*(B3^B19)+B36*B16*(B3^B19)*LN(B3),B31) 28  

   

L(v)/ 96.3139 IF(B3<B15,B33,IF(AND(B3>B15,B3<B14),B34,B35))   

96.3139 B28*(B3^B19)+B36*B17*(B3^B19)*LN(B3) 29  

-110.5688 B29*(B3^B19)+B36*B18*(B3^B19)*LN(B3) 30  

0.0000  21c  

1/ -3.8396 (-B5*(B19^2)*(B19-1))/B38 27 -3.8363

 Parts   

A 0.0877 B6+0.5*(B19^2)*(B5^2)

B 1.4155 B16*(B19^2)*(B19-1)*B5*LN(B14)

C -2.0535 (-(1-B9)*B14*B19*B5)

D -1.1095 B18*B5*(B19^2)

E 51.6522 B40/((B38*(B6-B7)*(B14^B19)))+B41*(B19-1)*LN(B15)/B38

ELASTICITY 

(/F)(F/) 0.8106 (B5/B12)*B30

(/L)(L/) 0.2511 (B5/B20)*B32
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while ( )2 1 1L ,F Fv v ,v , because those changes defer the market entry for the follower since 1 0Fv







 

and thereby prolong the monopoly position for the leader. Note the equations (24) and (25) have 

been simplified using parts (B38:B42). 

Table 3C                                                             

 

Table 3C shows in detail what parts of the leader strategic option (before investing), and rival 

option (after investing, before follower invests) contribute to the positive and negative vegas. In 

the first phase I  both vegas are positive. In the second phase II the leader’s vega is negative, 

follower’s vega is positive, a contrasting risk exposure. In the third phase III both vegas are 

positive, a similar risk exposure. In the fourth phase IV the leader’s vega is positive, the follower’s 

vega is negative, a contrasting risk exposure. 

 

Delta Partials 

The leader delta (34) does not involve any change in the thresholds or option coefficients, while 

the other partial derivatives do.  
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( )

( )

( )
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1
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


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



−

−


= 

 −


 = +  
=  −
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
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                        (34) 

Differentiate the follower’s value function with respect to v yields: 

43

44

45

46

47

48

49

50

51

52

53

54

A B C D E F G H I J K L M N O P Q R S T U

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

L SO 33.22 92.62 168.73 258.23 359.22 470.42 590.90 719.95 856.97 1001.50 1153.13 1311.53 1476.38 1647.43 1824.44 2007.20 2195.51 2389.22 2588.15 2792.16

L SO Part 0.00 -27.76 -80.14 -154.77 -249.95 -364.41 -497.13 -647.25 -814.08 -997.00 -1195.46 -1409.01 -1637.21 -1879.67 -2136.05 -2406.03 -2689.32 -2985.63 -3294.72 -3616.35

L RO -23.94 -66.74 -121.58 -186.07 -258.84 -338.97 -425.78 -518.77 -617.50 -721.65 -830.91 -945.04 -1063.83 -1187.08 -1314.63 -1446.31 -1582.01 -1721.59 -1864.93 -2011.94

L RO Part 0.00 18.12 52.31 101.01 163.13 237.83 324.45 422.43 531.31 650.69 780.22 919.59 1068.52 1226.76 1394.09 1570.29 1755.18 1948.56 2150.29 2360.20

F SO 20.85 58.14 105.91 162.09 225.48 295.28 370.90 451.90 537.91 628.63 723.81 823.23 926.71 1034.07 1145.18 1259.89 1378.10 1499.68 1624.55 1752.61

F SO Part 0.00 -12.67 -36.58 -70.63 -114.07 -166.31 -226.88 -295.39 -371.53 -455.00 -545.58 -643.04 -747.18 -857.83 -974.84 -1098.05 -1227.34 -1362.57 -1503.63 -1650.41

F(v)/ 20.85 45.47 69.34 91.45 111.41 128.97 144.03 156.51 166.38 173.63 178.23 180.19 179.53 176.24 170.34 161.84 150.76 137.12 120.92 102.20

L(v)/ 33.22 64.87 88.59 103.46 109.27 106.01 93.78 72.69 42.89 4.50 -42.33 -25.45 4.69 39.68 79.47 123.98 173.17 226.98 285.36 348.27

I I II II II II II II III III III III III IV IV IV IV IV

Vega F + + + + + + + + - - - - - - - - -

Vega L + + - - - - - - + + + + + + + + + +
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                                                          (35) 

In line with conventional option pricing theory, it could be argued that for L1 and L2    

( )

( )

1

1

1 1

1 1

2 1

1 11

21 0498 5

1
23 3124 14

L

L

L

L

V v
A v . v

v

V v
A v . v

v r










−

−


= = =




= + = =

 −

                                                     (36) 

a short position 21.0498 when v =5, and VFL=61.3668 should be used to delta hedge the L value 

function which includes the strategic investment option 1 1

1LA v
 −  in the initial L1 regime. A short 

position 23.3124 when v =14, and VFL=302.1527 should be used to delta hedge the L value 

function which includes the negative value of the rival investment option 1

11LA v
 .  These hedging 

guidelines are not well presented in the literature.     

Interest Rate and Drift Partial Derivatives 

See Appendix D and E. 

5 Value Functions Across Ranges of Input Parameter Values & Hedging 

Appendix F shows the effect on the value functions of changes of each of the eight inputs across 

a range of parameter values and regimes, assuming changes are independent.  The summaries for 

each parameter v, K, , r, , f, mLF and mFL are given below.   

 

Changing v does not affect the thresholds but may move the L/F across the regimes, as shown in 

Figure 1A.   The follower’s value function consists solely of the investment option value, until 

past v=18.7 the value function is the present value (PV) of operations.  Over L1, the leader’s value 

function consists solely of the investment option value; over L3, the PV of operations with the 

effective market share reduced from 100% to 60%. Over L2 the value function L2(v) consists of 
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the PV of operations less the value of the rival option (reduction of market share when the follower 

invests).  

 

Naturally, both thresholds increase if K increases, and both value functions decrease. But over the  

range of K increasing by 5 over each interval from 115 to 165 in Appendix Figure F4, the absolute 

decrease of the VF when v=5 is half of that even for the leader, since there is still the option of 

making the investment.  But when v=22 over the L3 regime, the leader’s value function decreases 

by 184, and the follower’s by 70 if K increases from 115 to 165 as the follower invests, and the 

leader’s market share is reduced.  Such an illustration shows that the value of investment tax credits 

or subsidies increases as v increases, more for the leader than for the follower.  

 

As expected, both thresholds increase (about the same) as  increases. At L1 when v=5, the value 

functions consisting solely of the investment option values increase as shown in Figure 5, also at 

L2 for the follower. At L3 volatility changes do not affect the PVs of either the leader or follower.  

 

As noted in the sensitivities analysis, increases in r significantly affect all thresholds and option 

coefficients, increasing the thresholds, and reducing the investment option coefficients (and 

reducing the negative value of the rival option).  As also noted in sensitivities, increasing r reduces 

both value functions at all v levels.   

 

In contrast to r, increases in  significantly reduce the thresholds, and increase the investment 

option coefficients (and increase the negative value of the rival option) over this range. Curiously, 

the investment coefficients first decrease and then increase as  goes from 1.75% to 4.25%.  As 

noted in sensitivities, increasing  increases both value functions at all v levels.   

 

Changing f does not change much of anything, perhaps because this such an in-the-money 

investment option after v=7.5 for the leader.  The signs for the effect on the thresholds, option 

coefficients and value functions are the same as indicated in the sensitivities. 

 

As indicated in sensitivities, changes in the leader’s final market share mLF do not affect the 

leader’s threshold but negatively affect the strategic option coefficient, and reduce the negative 
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rival option coefficient, thus increasing the leader’s value function over all regimes, reducing the 

follower’s value function significantly, as shown in Figure 4. As indicated in sensitivities, 

increases in the follower’s final market share mFL do not affect the leader’s threshold but reduce 

the follower’s threshold, and increase the investment option coefficient. The leader’s investment 

coefficient is slightly reduced, and the rival option coefficient becomes more negative. As 

expected, the value functions move in opposite directions, but the effect seems to be constant, as 

the spread between the value function decreases with the narrowing of the difference in market 

shares.  

 

Risk hedging may be the most useful activity using these partial derivatives, especially over one 

regime such as L2 where there are no jumps.   Table 4 is an illustration of delta hedging based on 

equations 34 and 35 for the middle regime L2. Suppose the leader is satisfied with maintaining the 

value function of 384 after investing (cost 140), with a PV of operations 720 and a rival option 

value of -355 when v=18.  The leader seeks to maintain this value function value (in case v 

declines) by shorting v for each price interval (adjusting the delta at each interval), and marking-

to-market (or model) at each interval, as shown in Table 4 down to v=9.  The leader’s experiences 

an unhedged loss for each integer if v declines, which increases with the v decline because the 

rival option becomes less negative. The deltas are all positive since increasing v benefits both,  

F2<L2 until just before the follower’s investment threshold of 18.7.  When v=18, v=

( )
12 1

1 1

1
50 0000 31 9416 18 0584

L

LSS

V v
A v . . .

v r




−
= + = − =

 −
, so a short position /18=1.003 in v 

should be used to delta hedge the L value function, minimizing the combined unhedged loss and 

hedge gain8.    

  

Table 4 shows the leader and follower gross loss (unhedged) for the value function VF as v falls 

from 18 to 9 in the L2 (after the leader invests).  The largest component of the loss for the leader 

is in the PV of operations, which is constant at 50 for each interval.  There is a small loss for the F 

investment option value at lower v.  The mean hedged loss (combining the unhedged and hedging 

gain/loss) is sharply reduced for both the leader and follower.                                                                            

 
8 This ignores transaction costs and other practical considerations like whether there is an active market in p or p 
futures, roll-over costs for finite futures, margins, and credit risks. 
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       Table 4 

Delta Hedging over v=18 to 9, L2 

 

 

For the leader,  the mean loss (mostly due to the PV operations) and variability is significant 

unhedged, but sharply reduced with this academic hedging based on the delta partial derivatives, 

and choice of hedging intervals over these limited intervals. By hedging, the standard deviation of 

the leader’s unhedged losses of 3.79 is reduced to .04. However, trying to delta hedge over the 

investment thresholds is likely to be problematic. 

 

                                                  

6 Summary and Conclusions 

 

We provide several possibly unique contributions for the real option solutions and derivatives for 

basic once-off investment opportunities in a duopoly with variable operating costs: analytical 

solutions for the thresholds and option coefficients, and for the partial derivatives for all of the 

inputs; confirming all of these solutions with numerical solutions, and that all of the conventional 

conditions are satisfied; based on simulations of the solutions and partial derivatives over a range 

of input parameter values, we show how the delta partial derivative can be used for delta hedging 

to sharply reduce risk of this portfolio of real options.  

v 9 10 11 12 13 14 15 16 17 18     

HEDGED LOSS=+ NET LOSS NET LOSS NET LOSS NET LOSS NET LOSS NET LOSS NET LOSS NET LOSS NET LOSS NET LOSS MEAN STDEV MAX MIN

VF F  -0.46 -0.45 -0.44 -0.43 -0.42 -0.41 -0.40 -0.40 -0.39 -0.42 0.02 -0.39 -0.46

VF L  0.76 0.74 0.72 0.70 0.69 0.67 0.66 0.65 0.64 0.69 0.04 0.76 0.64

UNHEDGED L0SS=+  LOSS 10->9       LOSS 17->16 LOSS 18->17 MEAN STDEV MAX MIN

VF F  12.32 13.23 14.12 14.99 15.84 16.67 17.48 18.28 19.07 15.78 2.31 19.07 12.32

VF L  29.78 28.28 26.82 25.39 24.00 22.64 21.30 19.99 18.70 24.10 3.79 29.78 18.70

DELTA HEDGE  GAIN 10->9      GAIN 17->16 GAIN 18->17     

VF F GAIN=+  12.78 13.68 14.56 15.42 16.26 17.08 17.88 18.68 19.46 16.20 2.28 19.46 12.78

VF L  29.02 27.54 26.10 24.69 23.31 21.96 20.64 19.34 18.06 23.41 3.75 29.02 18.06

dVF/dv  12.78 13.68 14.56 15.42 16.26 17.08 17.88 18.68 19.46

dVL/dv  29.02 27.54 26.10 24.69 23.31 21.96 20.64 19.34 18.06
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We proposed three measures of the risk exposure of the real option portfolio of duopoly investment 

opportunities: sensitivities, partials, and value functions across a range of input parameter values9. 

(i) Sensitivities show the change in each threshold, option coefficient, value function 

for a 1% change in the input parameter value for a single v, easy to calculate but 

not shown (yet) across regimes. 

(ii) Partials show the change in continuous time, which are also compared to 

proportionate change over an almost infinitesimal interval (.0000000001). 

(iii) VF Vary Integers enables on a single chart viewing the analytical results over a 

wide range of integer input parameter values, including across regimes, illustrating 

L jumps at the F threshold. 

 

An advantage of the analytical solutions for the thresholds and option coefficients (rather than a 

numerical solution for the leader’s threshold as in other papers, and all thresholds as in Adkins et 

al., 2022) is that all of these calculations can be done immediately, changing other variables as 

well.  

Future research is to use these analytical solutions to introduce stochastic K.  What is the 

relationship between Delta, Vega, Rho, and Alpha in this basic duopoly investment model? How 

should one use volatility swaps to hedge Vega, interest-rate futures to hedge Rho, and arrangements 

with third parties and marketing experts (or collusion through industry associations) to hedge 

Alpha risk? Is there a simple measure like VaR which can be constructed out of these analytical 

formulae to assess risk for this basic model?  Practical examples are warranted. 

  

 
9 Of course, each of these formats can be replicated for volatility changes for instance using the Appendix Table C1 

(CROR Num PD Vol), using in C2=1.0000000001 for (ii), C2=1.01 for (i), and C2=.17 for the  interval .16->.17 (iii). 
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