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1 Introduction

Real option analysis (ROA) is recognized as a superior method to quantify the value of real-world

investment opportunities where managerial flexibility can influence their worth, as compared to stan-

dard discounted cash-flow methods typically used in industry. The ability for managers to react to

uncertainties at a future time adds value to projects, and since this value is not captured by standard

DCF methods, erroneous decision making may result (Trigeorgis (1996)). A comprehensive ROA of

an oil, gas or mineral mining project can improve the allocation of capital and managerial decision

making and the methodology is currently used, to some degree, in the commodity extraction sectors.

However, realistic models that try to account for a number of risk factors can be mathematically

complex, and in situations where many future outcomes are possible, many layers of analysis may

be required. Typically, managers are usually unable to understand the models and dismiss results

that seem unintuitive to them.

An excellent empirical review of ex-post investment decisions made in copper mining showed that

fewer than half of investment timing decisions were made at the right time and 36 of the 51 projects

analyzed should have chosen an extraction capacity of 40% larger or smaller (Auger and Guzman

(2010)). The authors were unaware of any mining firm basing all or part of their decision making on

the systematic use of ROA and emphasize that the “failure to use ROA to assess investments runs

against a basic assumption of neoclassical theory: under uncertainty, firms ought to maximize their

expected profits”. They make the case that irrational decision making exists within the industry

due to a lack of real option tools available for better analysis. A number of surveys across industries

have found that the use of ROA is in the range of 10-15% of companies, and the main reason for lack

of adoption is model complexity (Hartmann and Hassan (2006), Block (2007), Truong, Partington,

and Peat (2008), Bennouna, Meredith, and Marchant (2010), Dimitrakopoulos and Abdel Sabour

(2007)).

Previously, we introduced a methodology based on exercise boundary fitting (EBF) in an effort

to develop a practical Monte Carlo simulation-based real options approach (Bashiri, Davison, and

Lawryshyn (2018)). We showed that our methodology converges in the case of simple Bermudan and

American put options. More recently, we expanded on the model to solve a staged manufacturing

problem (Fleten, Kozlova, and Lawryshyn (2021)). As we presented, utilizing boundary fitting
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allowed us to solve a computationally difficult problem. In another study we explored the use of the

EBF methodology for a number of cases, one being a build and abandon mining example (Davison

and Lawryshyn (2021)). We showed that while the methodology provided good convergence on

option value, under certain scenarios, where the optimal exercise boundaries occurred in regions

where there were few Monte Carlo paths, the optimization algorithm struggled to converge. In

Davison and Lawryshyn (2022) we explored convergence issues associated with the methodology

and for the build and abandon mining example, we showed that by utilizing heuristic non-convex

optimization, namely genetic algorithm (GA), we were able to circumvent the convergence issues,

achieving satisfactory results.

Our theoretical and numerical presentation of the EBF method shows how the complexity can

be overcome through the use of Monte Carlo simulation and feel that the EBF methodology is very

tractable in an industry setting for it is simple enough for managers to understand, yet can account

for important real world factors that make the real options model suitable for valuation. However,

we recognize that in an effort to account for real world complexities, multiple stochastic factors will

need to be modelled. In such cases, the exercise boundaries will be multi-dimensional hyper surfaces.

Modelling such surfaces will have its own challenges and will further tax the optimization required

with the EBF method. A promising solution to the problem may be the use of reinforcement learning

(RL). The purpose of this paper is to explore the opportunity to use RL as a substitute to the EBF

method. We note that this study is a work in progress.

The rest of this paper is organized as follows. In the following section we provide a brief review of

the literature. We first consider real options in the mining context, as we see this specific application

an excellent test case for developing practical multi-factor real real option valuation methods, and

then we present a brief review of the application of RL in option valuation. In Section 3 we present

our methodology, briefly summarizing our work related to the EBF methodology and then presenting

our RL framework. We present our preliminary results in Section 4, and discussion and conclusions

in Section ??.

2 Relevant Literature

Mining Context

The academic literature is very rich in the field of mining valuation. Mining projects are laced

with uncertainty and many discounted cash-flow (DCF) methods have been proposed in the lit-

erature to try to account for the uncertainty (Bastante, Taboada, Alejano, and Alonso (2008),

Dimitrakopoulos (2011), Everett (2013), Ugwuegbu (2013)). Several guidelines/codes have been

developed to standardize mining valuation (CIMVAL (2003), VALMIN (2015)). The main mining

valuation approaches are income (i.e. cash-flows), market or cost based and the focus of this paper is

on income-based real option valuation, which resemble American (or Bermudan) type financial op-

tions. Earlier real option works focused on modelling price uncertainty only (Brennan and Schwartz

(1985), Dixit and Pindyck (1994), Schwartz (1997)), however the complexity in mining is significant

and there are numerous risk factors. Simpler models based on lattice and finite difference methods

(FDM) are difficult to implement in a multi-factor setting (Longstaff and Schwartz (2001)) and, also,

it is extremely difficult to account for time dependent costs with multiple decision making points

(Dimitrakopoulos and Abdel Sabour (2007)). Nevertheless, the simpler models continue to merit at-

tention (Haque, Topal, and Lilford (2014), Haque, Topal, and Lilford (2016)). Dimitrakopoulos and



Lawryshyn 3

Abdel Sabour (2007) utilize a multi-factor least squares Monte Carlo (LSMC) approach to account

for price, foreign exchange and ore body uncertainty under multiple pre-defined operating scenarios

(states). However, the model only allows for operation and irreversible abandonment — aspects

such as optimal build time, expansion and mothballing are not considered. Similarly, Mogi and

Chen (2007) use ROA and the method developed by Barraquand and Martineau (2007) to account

for multiple stochastic factors in a four-stage gas field project. Abdel Saboura and Poulin (2010)

develop a multi-factor LSMC model for a single mine expansion.

A review of 92 academic works found that most real options research is focused on dealing with

very specific situations where usually no more than two real options are considered (Savolainen

(2016)). While the LSMC allows for a more realistic analysis, methods presented to date are

applicable only for the case where changes from one state to another does not change the fundamental

stochastic factors with time. For example, modular expansion would be difficult to implement in

such a model if the cost to expand was a function of time and impacts extracted ore quality due to

the changing rate of extraction – these issues were considered in Davison, Lawryshyn, and Zhang

(2015) and Kobari, Jaimungal, and Lawryshyn (2014). Also, modelling of multiple layers is still

complex and will not lead to a methodology that managers can readily utilize.

Option Valuation Using Reinforcement Learning

Several recent papers apply RL to price/hedge financial options. Buehler, Teichmann, and Wood

(2019) used RL and deep neural networks (NN) to approximate an optimal hedging strategy of a

portfolio of derivatives considering market frictions. Their model outperformed simple delta hedging

on a call option of the S&P500 index. Cannelli, Nuti, Sala, and Szehr (2022) formulated the optimal

hedging problem as a risk-averse contextual k-armed bandit problem and showed that their model

outperforms deep Q-networks (DQN) in terms of sample efficiency and hedging error when compared

to delta hedging on simulated data. Cao, Chen, Hull, and Poulos (2021) used Q-learning and deep

deterministic policy gradient (DDPG) to hedge a short position in a call option with transaction

costs and showed reduced hedging costs compared to delta hedging on simulated data. Recent other

studies applied several different RL models on simulated data and also showed superior performance

to delta hedging (Kolm and Ritter (2019), Du, Jin, Kolm, Ritter, Wang, and Zhang (2020)). The

application of RL to price options is arguably in its infancy but shows significant promise and may

prove to be an excellent solution methodology for complex RO with multiple factors.

3 Methodology

EBF Methodology

In Bashiri, Davison, and Lawryshyn (2018) we presented details of the theory and methodology of

applying EBF for the following cases: 1) a Bermudan put option, 2) a Bermudan put option with

a variable strike, 3) an American put option and 4) a build / abandon real option. In this section

we present the general simulation framework and refer the reader to our previous papers for more

details.

The EBF framework assumes that the (real) option valuation is based on a single or multiple

stochastic processes, say X⃗t, which are simulated using Monte Carlo simulation. Depending on the

valuation model, these processes may be risk-neutral or actual and are general in that standard
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and non-standard processes can be used. We let f⃗B(x⃗, t; θ⃗) be a general function that represents

NB exercise boundaries parametrised by θ⃗, where x⃗ represents possible realizations of the process

X⃗t. We note that f⃗B(x⃗, t; θ⃗) can be a single point, multiple points, a curve or multiple curves of

fixed dimensional surfaces. Based on the path dependent journey of X⃗t we define appropriate first

passage of time for the i-th path crossing the j-th boundary as

τ
(i)
Bj

≡ min{t > 0, X⃗
(i)
t ≥ ±fBj (x⃗, t; θ⃗) | λ(i)(X⃗

(i)
t )}, (1)

where we use ± to signify that the process could be hitting the exercise boundary from below or

above, depending on the problem at hand, and state λ(i)(X⃗
(i)
t ) ≡ λ

(i)
t with j ∈ {1, 2, ..., NB}, where

there could be NS possible states, also dependent on the problem at hand.

For each simulated path X⃗
(i)
t , we define a cash-flow or payoff at time t as CF (i)(X⃗

(i)
t , λ

(i)
t ) ≡ CF

(i)
t

and thus the value generated by the i-th path can be determined by

V
(i)
0 (X⃗

(i)
t , λ

(i)
t ) ≡ V

(i)
0 =

Nt∑
j=0

CF
(i)
tj

e(−rtj), (2)

where Nt is the number of time steps in the simulation such that t ∈ {t0, t1, ..., tNt}. We emphasize

that V
(i)
0 is a function of λ

(i)
t and is therefore a function of the exercise boundary parameters, θ⃗.

The overall option value becomes

V0 =
1

N

N∑
i=1

V
(i)
0 (θ⃗), (3)

where N is the number of paths used in the simulation for X⃗t. Our task reduces to maximizing V
(i)
0

by finding optimal exercise boundary parameters,

θ⃗∗ = argmax
θ⃗

1

N

N∑
i=1

V
(i)
0 (θ⃗) (4)

and thus, the option value becomes

V ∗
0 =

1

N

N∑
i=1

V
(i)
0 (θ⃗∗). (5)

Thus, by parametrizing the exercise boundary our solution methodology becomes an optimization

of equation (4).

RL Framework

RL is a sub-field of machine learning (ML) where the model automatically learns optimal decisions

(actions) over time, typically in a stochastically changing environment. A comprehensive treatment

of the topic is provided in Sutton and Barto (2018). As mentioned, this paper is a work in progress

and our RL solution methodology will be based on Q-learning, specifically, the model-free frame-

work based on DQN. Since our actions will be discrete for the problems considered here, the DQN

framework is appropriate. We explore the application of DQN to value the following scenarios: 1) a

Bermudan put option, 2) an American put option, and 3) the build / abandon real option. We will

compare the RL results to pseudo-analytical and EBF results. To date, we have not yet been able
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to solve the build / abandon problem in a RL framework but hope to have successful results soon.

We plan to present some of the challenges faced by the RL framework for this case.

The RL solution framework is formulated within the Markov decision process (MDP) model

(again, for details see Sutton and Barto (2018)). The MDP consists of an agent that interacts with

its environment and is represented by states, actions and rewards. In the RL framework, the agent

acts to optimize expected reward based on the current state of the environment. The agent develops

a policy by learning to maximize the total expected reward, given current state and action pairs

(Q-learning) by playing multiple games. In the context of real options, each game is represented

by a Monte Carlo path of the underlying stochastic factor, or, in the case of a multi-factor setting,

the (correlated) paths of the underlying stochastic factors. In the model-free setting, the model

and optimal actions are learned through exploration of the environment. In the Deep Q-Network

(DQN) framework, a (deep) neural network model is trained to provide actions to optimize the total

expected reward for a given state. More sophisticated Q-learning models will be explored in future

work.

Bermudan and American Put Options

For the Bermudan and American put options, we consider a GBM stock price process, Xt, as

dXt = rXtdt+ σXtdŴt, (6)

where r is the risk-free rate, σ is the volatility and Ŵt is a Wiener process in the risk-neutral

measure. We assume the payoff of the option to be max(K −Xt, 0) and can be exercised at times

tj ∈ {t1, t2, ..., tNs , T}, j ∈ {1, 2, ..., Ns} where Ns represents the number of steps for which the agent

must decide on an action1. For the Bermudan option, Ns = 1 and we set t1 ≡ τ . In the RL model,

for each episode or game, we generate a two- or mulit-step Monte Carlo simulation. Specifically, for

the i-th episode, we have

X
(i)
tj

= Xtj−1e
(r−σ2/2)(tj−tj−1)+σ

√
tj−tj−1Z

(i)
j , (7)

where Xt0 ≡ X0 is the stock price at t = 0, Z
(i)
j is a standard normal random variable with

i ∈ {1, 2, ..., Ne}, and Ne is the number of episodes.

The RL reward is modelled as the discounted payoff such that for the j-th step, the reward for

the i-th episode is

R(i) =

0, if action = 0, (do not exercise),

max
(
K −X

(i)
tj
, 0
)
e−rtj if action = 1 (exercise).

(8)

For the Berumudan option, our state space consists of only one variable, namely S = {Xτ} and

our action space consists of two discrete actions, at time τ , namely 0 for not exercising and 1 for

exercising the option; i.e. A = {0, 1}. For the American option, our state consists of two variables

at each tj , namely Stj = {Xtj , T − tj}, where at each tj the agent has the option to exercise or not,

thus Atj = {0, 1}.
In the DQN formulation, a deep neural network is utilized to estimate the action value function,

Q(S,A), where A is the action space. Specifically, the neural network takes as inputs the states and

1Note that the agent is not required to take action at t = T as the “exercise” action is automatically dictated by

the value of XT relative to K
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produces as output the estimated Q-values for the different actions taken. Thus, for the Bermudan

option our network consists of a single input and two outputs whereas for the American option the

network consists of two inputs and two outputs.

Build / Abandon Real Option

In the build / abandon real option, we assume the stochastic process, Xt, represents the price of

the underlying mineral / material produced or mined. There are four possible states related to the

plant, namely,

• plant is not constructed,

• plant is under construction,

• plant is operating,

• plant has been abandoned.

In the RL framework we add two one-hot encoded variables, ξ1 and ξ2, where

ξ1 =

{
1, plant is not constructed

0, otherwise,

ξ2 =

{
1, plant is operating

0, otherwise,

and note that one and only one of ξi,tj = 1 at any time tj . Furthermore, we do not need a state

variable for the case where the plant is under construction nor abandoned. During the time the plant

is being constructed we assume abandonment is not possible. Thus, as soon as the agent decides

to construct, the episode time jumps ahead by the time to construct, τc, and enters the operating

phase (state). This assumption ensures that the environment obeys the Markov property, thus

ensuring the problem is a MDP, which RL solution methodologies are based on. We note that this

assumption is not restrictive since the probability of the underlying process Xt reaching an abandon

boundary in the time to construct after hitting the construction boundary is very low under normal

circumstances. Thus, our state at time tj consists of four variables, Stj = {Xtj , T − tj , ξ1,tj , ξ2,tj}.
Before construction, the agent must decide whether to do nothing, i.e. continue waiting (not

exercise, action = 0) or construct (exercise, action =1). As discussed above, as soon as the decision

to construct is made, the episode jumps to the operating state, so again, the agent must decide

whether to continue operating (not exercise, action = 0) or abandon (exercise, action =1). Thus,

similar to the American put option above, at each time, tj , as long as we are not in the construction

phase, Atj = {0, 1}.
The episode is terminated as follows:

• if tj >= T − τc if the plant is not constructed,

• if action = 1 (abandonment) while the plant is operating (ξ1,tj = 1),

• if t = T if the plant is operating.
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At each tj except during construction the reward is calculated as follows,

Rtj =



−Cw∆te−rtj , plant is not constructed and action = 0,

−Ke−rtj , plant is not constructed and action = 1,

γ
(
S
(i)
tj

− Co

)
∆te−rtj , plant is operating and action = 0,

−Cae
−rtj , plant is operating and action = 1,

−Cae
−rT , plant is operating and tj = T,

(9)

where Cw is the cost rate of waiting (we use Cw = 0), −K is the cost of construction, Co is the

operating cost rate, γ is the rate of production (extraction) of the product, ∆t is the time step in

the simulation and Ca is the cost of abandonment.

Deep Q-Network

In the DQN methodology, a neural network is used to to estimate the action value function, Q(S,A).

We used the keras-rl2 library. Our DQN agent was run with with the following parameters:

• the model paremeter, i.e. the neural network, was setup as follows

– number of inputs was set to one for the Bermudan put option, two for the American put

option and four for the build / abandon real option (see above)

– the neural network was fully connected with varying number of layers and the ReLU

(rectified linear unit) activation function was used between layers, except for the last

layer leading to the output nodes where a linear activation function was used

– the output layer consisted of two outputs (as mentioned above, representing Q(S,A) for

the two possible actions, do not exercise or exercise)

• the memory parameter was set using the SequentialMemory option with a limit value of 50,000

and window size of 1

• the policy parameter was set to LinearAnnealedPolicy using the EpsGreedyQPolicy, with

epsilon set to a maximum value of 1 and decaying to 0.1 over 5000 steps

• the target model update was set to the default value of 0.01, so that the target network was

updated at a rate of 1% of the total steps taken during training.

As described above, each training episode is based on a single random path for Xt and the number

of such paths was varied. In the next section we present preliminary results of our work, exploring

the impact of varying certain hyper-parameters such as the neural network size and structure and

number of episodes.

4 Results

In this section we summarize our results from previous EBF work and present our preliminary RL

results. As will be further discussed below, RL requires significantly longer run times than the EBF,

but seems to be better suited to solve the more complicated problems, like the American put and

build / abandon real options.
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4.1 Bermudan Put Option

As mentioned, we presented the results of using the EBF method in Bashiri, Davison, and Lawryshyn

(2018). For the Bermudan option, we used the following parameters:

• S0 = 5

• K = 5

• τ = 1

• T = 2

• r = 3%

• σ = 10%.

For these parameters the pseudo-analytical optimal values are:

• V0 = 0.1688

• θ∗ = 4.7571.

In Davison and Lawryshyn (2022) we presented some detailed convergence results for the EBF

method, repeated here in Table 1. We note that even if an accurate optimal exercise value, θ∗, is

determined, the option value, V0, will vary depending on the number of simulation paths used. As

can be seen in Table 1, we would expect (hope) that the RL agent would learn the optimal exercise

value (approximately 3 digits of accuracy) with 100,000 paths.

Table 1: Bermudan put option convergence for 1000 simulation runs; mean value and (standard

deviation).

100 Paths 1000 Paths 10,000 Paths 100,000 Paths 1,000,000 Paths

V0 0.1744 (0.0257) 0.1705 (0.0080) 0.1692 (0.0025) 0.1689 (0.0008) 0.1689 (0.0003)

θ∗ 4.7052 (0.2324) 4.7353 (0.0819) 4.7538 (0.0334) 4.7564 (0.0157) 4.7572 (0.0070)

For the Bermudan put option, the neural network used to estimate Q(S,A) in the RL consisted

of three fully connected hidden layers with 24 nodes per layer leading to 1298 trainable parameters.

A histogram plot for θ∗ run with 100,000 episodes 40 times is presented in Figure 1. For this set

of runs the mean value for θ∗ was 4.776 with a standard deviation of 0.034. Compared to the EBF

results when 100,000 sample paths were used, we see that the RL results appear to have a potential

bias and a higher standard deviation.

4.2 American Put Option

For the American put option we assumed the same parameters for S0,K, T, r and σ as in Subsection

4.1. As presented in Bashiri, Davison, and Lawryshyn (2018) using a binomial tree, the value of the

American put option was determined to be $0.1835. When simulating Xt we have the freedom to

pick both the number of paths N and the number of simulated time steps for each path, Nstep. To

better gauge appropriate values for N and Nstep, we utilized the exercise boundary determined from

the binomial tree and ran 20 simulations for varying N and Nstep. The mean and standard deviation

of each set of 20 simulations is presented in Table 2. As expected, as N and Nstep were increased,

convergence to the true American put option value was achieved. Normally, one would not have
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Figure 1: Histograms of θ∗ for Bermudan put option using RL with 100,000 episodes run 40 times.

the true exercise boundary a priori and clearly, a number of trial runs would need to be done. For

the purpose of presenting the merits of the EBF, we selected N = 100, 000 and Nstep = 500 for all

forthcoming EBF simulations. Using these values for N and Nstep we creatde a simulation set {S(i)
j },

where i ∈ {1, 2, 3, ..., N} and j ∈ {1, 2, 3, ..., Nstep}. For this particular simulation set the American

put option value was 0.1836 using the true exercise boundary. Naturally, in all forthcoming results

we would expect this value to be the upper bound of the American put option values calculated

through exercise boundary fitting.

Table 2: Mean and (Standard Deviation) of American Put Option Values with Known Exercise

Boundary (20 Simulations)

No. of Steps No. of Paths (N)

(Nstep) 1,000 10,000 100,000 500,000

100 0.1853 (0.00659) 0.1821 (0.00205) 0.1828 (0.00078) 0.1827 (0.00027)

500 0.1836 (0.00654) 0.1831 (0.00260) 0.1833 (0.00066) 0.1834 (0.00026)

1,000 0.1818 (0.00670) 0.1830 (0.00250) 0.1836 (0.00064) 0.1835 (0.00034)

In Davison and Lawryshyn (2019) we explored the use of cubic splines, polynomials and piecewise

linear functions to model the exercise boundary. In Figure 2 we plot the results of the optimization

using 4 to 8 node cubic splines. Also plotted in the figure are 20 randomly selected paths for Xt.

The nodes were spaced evenly over time. As can be seen, while the error in option calculation was

less than 5% on average, the exercise boundaries were oscillatory and exhibited significant error.
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Figure 2: American put option exercise boundary simulation using cubic splines for h(t; η⃗).

Next, we explored the use of second, third and fourth order polynomials for h(t; η⃗). The results are

plotted in Figure 3. The average error was approximately 0.5% and the exercise boundaries were

close to the optimal boundary. In Figure 4 we plot the results where we assumed a piecewise linear

function for h(t; η⃗). As can be seen, as the order increased, the optimal exercise boundary did not

necessarily lead to better results.

While not discussed in our previous work, the EBF methodology struggled to converge to an

optimal solution when we utilized a Bermudan option methodology with increasing number of ex-

ercise options spaced evenly through time. However, the RL American put option methodology is

implemented based on this method – namely, by incorporating multiple Bermudan exercise times

distributed evenly through time of the life of the option.

For the RL implementation of the American put option, the neural network used to estimate

Q(S,A) consisted of three fully connected hidden layers with 48 nodes per layer leading to 4946

trainable parameters. The agent was provided the option to exercise the put option starting at

t = 0.2 years2 with 10 evenly spaced times to T = 2 years. As a preliminary result, the exercise

boundary for one RL solution is plotted in Figure 5. The value of the option was determined to be

0.1776 for this one case.

4.3 Build / Abandon Real Option

Results are being generated

2Since there is a very low probability of the Xt process hitting the exercise boundary for low values of t we set the

first exercise time to be 10% of T .
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Figure 3: American put option exercise boundary simulation using polynomial functions for h(t; η⃗).
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Figure 4: American put option exercise boundary simulation using piecewise linear functions for

h(t; η⃗).
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Figure 5: American put option exercise boundary using RL with 100,000 episodes.

5 Conclusions

The focus of our onging research is to develop a real options valuation methodology geared towards

practical use. A key innovation of the EBF methodology is the idea of fitting optimal decision making

boundaries to optimize the expected value, based on Monte Carlo simulated stochastic processes

that represent important uncertain factors. RL provides another framework that shows significant

promise. There are a number of advantages that both methods offer. Monte Carlo simulation

provides an intuitive platform for managers to understand. Through simulation, complex processes

can be utilized and both methods show promise for solving more realistic multi-factor real options

problems. When there are fewer optimization variables, the EBF method seems to provide more

accurate results than RL. RL shows significant promise in more complicated real options cases where

the optimization is dependent on many variables. Drawbacks of RL include significant computational

times and a very large set of hyper-parameters that requires tuning.
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