Real Option Games Between Rivals

Roger Adkins
School of Management, University of Bradford
Bradford BD7 1DP, UK
Alcino Azevedo
Aston Business School, University of Aston
Birmingham B4 7ET, UK
Dean Paxson ${ }^{1}$
Alliance Manchester Business School, University of Manchester
Manchester M15 6PB, UK

Submitted to the ROC23 Durham February 2023

JEL Classification: C70, D81, G13.
Key words: Market Share Games, Rival and Strategic Options, Switch/Divest, Real Options, Risk Games Acknowledgements: We thank Paulo Pereira, Helena Pinto, and Artur Rodrigues for helpful comments.

[^0]
Highlights:

Market Share Effects on Relative Values
Real Option Games of Increasing Market Share
Real Option Games of Changing Volatility
Analytical Formulae for Game Payoffs
Actions/Reactions Between Rivals

Abstract

We build on previous solutions for mutually exclusive options in a duopoly with switching and divestment alternatives. We examine the implications of increasing the leader's market share and/or changing volatility over progressive regimes. The consequences of market share and volatility changes on the values for both the leader and follower are often surprising, because of the unique effects on the various rival and strategic option values. The leader loses with increased initial market share at low revenues, both leader and follower lose with increased middle market shares (but both gain at higher revenues). There are interesting "risk" games when the portfolio of options for the leader has differential sensitivities to volatility changes than for the follower. Sometimes the leader should prefer less volatility particularly at higher revenues (the follower more). These characteristics provide a rich context for evaluating real option games involving market shares, volatilities and eventually altering other factors.

Real Option Games Between Rivals

I Introduction

A leader and follower are engaged in a real option game involving mutually exclusive options for a duopoly. There is the possibility of either party altering the market share over subsequent stages (regimes) (initial market share=IMS, or middle market share=MMS, or final market share=FMS) by paying $\$ \Delta$ for a 1% increase in market share. There is also the possibility of either or both parties getting the government (or market) to alter the (price) volatility, or (eventually) other critical common parameters such as rate, yield, investment cost or salvage value.

Adkins et al. $(2022,2023)$ develop duopoly real option models that derive the optional switching (to a lower cost technology) or divestment threshold for the leader/follower over regimes as the market revenue changes. These models are then used in building real option games (ROG) initially developed by Smets (1993) which have been applied to a wide range of problems, including decisions on investment projects whose value is exposed to both uncertainty and competition (Dixit and Pindyck, 1994, chapter 9; Pawlina and Kort, 2006; Azevedo and Paxson, 2014).

Various real option authors assume contexts which lead to different strategies for the leader and follower. Joaquin and Butler (2000) assume a first mover leader advantage of lower operating costs. Tsekrekos (2003) allows for both temporary and pre-emptive permanent market share advantages for the leader. Paxson and Pinto (2003) focus on the partial derivatives of the value function for the leader/follower with respect to changes in the market share, market revenue and volatility. Paxson and Pinto (2005) show the partial derivatives of the value function for the leader/follower in both preemptive and non-preemptive games with respect to changes in market revenue, changing as revenue approaches the thresholds. Kong and Kwok (2007) provide standard entry thresholds for leader/follower when asymmetric in investment cost and revenue, with real option values not separately disclosed. Paxson and Melmane (2009) assume the leader starts with a larger market share, which follows a subsequent random process. Dias and Teixeira (2010) focus on the entry of a leader/follower with symmetric/asymmetric costs, and covering several game strategies.

Bobtcheff and Mariotti (2013) look at a pre-emptive game of two competitors, revealed only by a first mover investment. Bensoussan et al. (2017) study a duopoly with the possibility of regime switching. Balliauw et al. (2019) is an empirical work on the investment thresholds of leader/follower ports with capacity choices, without identifying the precise real option values. Huberts et al. (2019) examines interesting strategies where entry by competitors may be deterred, possibly in a war of attrition or pre-emption.

A key element added by some models extending the monopolistic real options literature is a factor, which Adkins et al. (2022) named "rival options", that takes into account the effect of the follower's decision on the leader's behavior and vice versa. In a typical ROG, one of the firms decides first (leader), the other firm decides after the leader (follower). The framework allows for decision games where the leader's decision enhances the follower's value, rival options.

The analytical expression that is behind most of the ROG literature and that measures the drop or the enhancement in the leaders' (or the follower's) value, caused by the follower's (leader's) decision, has the following form:

$$
\begin{equation*}
\frac{v_{F}\left(D L_{\text {after }}-D L_{\text {before })}\right.}{\delta+\theta}\left(\frac{v}{v_{F}}\right)^{\beta_{1}\left(\text { or } \beta_{2}\right)} \tag{1}
\end{equation*}
$$

where v is the state (underlying) variable such as net revenue, v_{F} is the follower's threshold, $D L_{a f t e r}$ and $D L_{\text {before }}$ are the leader's market share for after and before the follower's decision, and $\delta=(r-\mu)$ with r the interest rate and μ the drift of the geometric Brownian process associated with the underlying variable; β_{1} and β_{2} are the roots of the following quadratic equation, $\frac{1}{2} \sigma^{2} \beta(\beta-1)+(r-\delta) \beta-r$, given by: ${ }^{2}$

$$
\begin{gather*}
\beta_{1}=\left(\frac{1}{2}-\frac{r-\delta}{\sigma^{2}}\right) \pm \sqrt{\left(\frac{r-\delta}{\sigma^{2}}-\frac{1}{2}\right)^{2}+\frac{2 r}{\sigma^{2}}}>1 \tag{2}\\
\beta_{2}=\left(\frac{1}{2}-\frac{r-\delta}{\sigma^{2}}\right) \pm \sqrt{\left(\frac{r-\delta}{\sigma^{2}}-\frac{1}{2}\right)^{2}+\frac{2 r}{\sigma^{2}}}<0 \tag{3}
\end{gather*}
$$

[^1]A key element in (1) is the so-called discounting stochastic factor $\left(\frac{v}{v_{F}}\right)^{\beta_{2}}$. Notice that, as v approaches $v_{F},\left(\frac{v}{v_{F}}\right)^{\beta_{2}}$ gets closer to 1 ; if v reaches v_{F}, the leader gains $\frac{v\left(D L_{\text {after }}-D L_{\text {before }}\right)}{\delta+\theta}$ if $D L_{\text {after }}>D L_{\text {before }}$, or loses $\frac{v\left(D L_{\text {after }}-D L_{\text {before }}\right)}{\delta+\theta}$ if $D L_{\text {after }}<D L_{\text {before }}$. These inequalities depend on the specificities of the duopoly real option game that is being modelled.

The Adkins et al. (2022) model specifies the following context: i) for some stages of the game, firms hold two mutually exclusive options, the options to switch and divest, ii) while in a standard ROG firms hold two market shares only (e.g., the leader gets 100% of the market when it is operating alone and, then, 50/50 after the follower has invested), in Adkins et al. (2022) the market share dynamic is richer since firms can hold three different market shares over time (initially 50/50, then when the leader switches 42.5/57.5, and then after the follower also switches 50/50 again). ${ }^{3}$ The sequence by which firms exercise their options altogether with the market share each firm holds at each stage of the game affect the firms' value. This latter characteristic leads to some peculiar characteristics in these ROG, namely the existence of a possible dynamic game equilibria regarding the firms' ex-ante strategic choices on their market shares at each stage of the game. That is, while optimizing the timing of their decisions, at a given stage of the game, firms should also conjecture about whether there is an optimal market share to hold at the game stage they are at, in order to maximize the firm value considering that in the future eventually the threshold to exercise the option to pass to the next stage is reached. This is a relevant issue because, if there is an optimal market share to be achieved in the current stage, that maximizes the firm value (which might be below or above the market share the firm would hold otherwise), then the firm should act accordingly (e.g., if the optimal market share is higher than that the firm currently holds, it may should invest in advertisement campaigns to increase its market share). See the results on the

[^2]partial derivatives on the firms' value with respect to the market share of the various stages of the game.

We assume that there is a duopoly of symmetric operating firms, except the leader has an advantage of obtaining full value Z in any divestment of the existing operating facility, while the follower obtains λZ, where $0<\lambda<1$. The follower obtains a larger market share (57.5%) after the leader has switched to a lower operating cost technology, policy Y. The order of divesting/switching thresholds divest $\left\{\hat{v}_{F D}, \hat{v}_{L D}\right\}$, switch $\left\{\hat{v}_{L S}\right.$ and $\left.\hat{v}_{F S}\right\}$ is indicated in Figure 1. Total market revenue " v " follows a geometric Brownian motion with constant (negative) drift and volatility ${ }^{4}$. Each firm holds the option to divest and receive a salvage value from the initial X stage. Once the divestment option is exercised, the firm exits the market which is referred to as policy 0 . Since Y is the more cost efficient, the full-market operating $\operatorname{cost} f_{X}>f_{Y}$. There is no salvage value after firms switch to policy Y. The two players in the duopoly game are designated the leader and the follower, referred to as L and F, respectively. We treat the two firms as being ex-ante symmetric, which implies that each firm has 50% of the market provided that the two firms are pursuing identical policies, so: $D_{L \mid X, X}=1-D_{F \mid X, X}$.

Figure 1: Leader and Follower Thresholds for a Random Revenue (v)

Regime 3 for the IMS indicates v between vLD and vLS, Regime 2 for the MMS indicates v between vLS and vFS, with Regime 1 when $\mathrm{v}>\mathrm{vFS}$, as indicated in Figure 1.

The value function for the leader is denoted by $V_{L}(v)$.

[^3]In (4), the first line R1 represents the expected present value of leader's net revenue once the follower has switched, when there are no further options; the second line R2 represents the expected present value of leader's net revenue plus the present value accruing to the leader when the follower switches, now denoted by $R O L S S v^{\beta_{1}}$; the third line R3 represents the expected present value of leader's net revenue plus the option values to switch, SOLS $v^{\beta_{1}}>0$, and to divest, SOLD $v^{\beta_{2}}>0$; the fourth line R4 represents the leader's receipt from divesting the incumbent policy. The interesting regimes are R2 and R3, since once the follower has switched or the leader has divested there are no more two party moves allowed in the game.

The value function for the follower is denoted by $V_{F}(v)$.

$$
V_{F}(v)=\left\{\begin{array}{lc}
F / Y Y\left(\frac{v}{\delta+\theta}-\frac{f_{Y}}{r}\right) & \text { if } v \geq \hat{v}_{F S} R 1 \tag{5}\\
F / Y X\left(\frac{v}{\delta+\theta}-\frac{f_{X}}{r}\right)+S O F S \quad v^{\beta_{1}}+S O F D \quad v^{\beta_{2}} & \text { if } \hat{v}_{L S} \leq v<\hat{v}_{F S} \boldsymbol{R} \mathbf{2} \\
F / X X\left(\frac{v}{\delta+\theta}-\frac{f_{X}}{r}\right)+S O F S v^{\beta_{1}}+S O F D v^{\beta_{2}} & \\
+R O F S S v v_{1}+R O F D D \quad v^{\beta_{2}} & \text { if } \hat{v}_{L D}<v<\hat{v}_{L S} \boldsymbol{R} \mathbf{3} \\
F / O X\left(\frac{v}{\delta+\theta}-\frac{f_{X}}{r}\right)+S O F S & v^{\beta_{1}}+S O F D \\
\lambda Z & v^{\beta_{2}} \\
\text { if } \hat{v}_{F D} \leq v<\hat{v}_{L D} R 4 \\
& \text { if } v<\hat{v}_{F D} R 5
\end{array}\right.
$$

In (5), the first line R1 represents the expected present value of follower's net revenue once the follower has switched; the second line R2 represents the expected present value of follower's net revenue plus the sum of the option values to switch, $S O F S v^{\beta_{1}}>0$ and to divest, $S O F S v^{\beta_{2}}>$ 0 , the third line R 3 represents the expected present value of follower's net revenue plus the sum of the option values to switch, $S O F S v^{\beta_{1}}$, and to divest, $\operatorname{SOFD} v^{\beta_{2}}$, and the sum of the present values (gains or losses) accruing to the follower when the leader switches, ROFSS $v^{\beta_{1}}$, and when the leader divests, $R O F D D v^{\beta_{2}}$; the fourth line R4 represents the expected present value of follower's net revenue plus the sum of the option values to switch, SO F Sv $v^{\beta_{1}}$, and to divest, SO F D $v^{\beta_{2}}$; the fifth line R5 represents the follower's value on divestment.

In Table $1 \mathrm{~A} 3: \mathrm{D} 11$ are the assumed constant parameter values, $\mathrm{C} 12: \mathrm{C} 19$ are the assumed base market shares over the three regimes, B23:D26 are the derived thresholds, B27:D33 are the real option coefficients, SO denotes strategic option (exercised by the owner), and RO denotes rival option (exercised by the rival, benefits the owner).

In Table 1, column B shows the thresholds and option coefficients if the leader obtains an IMS of 51%, by spending $\$ \Delta$. Column C is the base case scenario with market shares 50% (IMS, L/XX), 42.5\% (MMS, L/YX) and 50\% (FMS, L/YY). Column D shows the thresholds and option coefficients if the follower alone obtains an IMS of 51% by spending $\$ \Delta$. Notice that the leader's divest thresholds increase and switch thresholds decrease with the higher L's IMS, and that only the last four option coefficients are affected by the IMS change.

Table 1
Parameter Values and Derived Thresholds and Option Coefficients

	A	B	C	D
1		SHARE GAME R3A		
2	INPUT	L. 51	BASE	$F .51$
3	r	0.08	0.08	0.08
4	θ	0.04	0.04	0.04
5	$f X$	10	10	10
6	$f Y$	2	2	2
7	Z	25	25	25
8	K	35	35	35
9	σ	0.20	0.20	0.20
10	λ	0.2	0.2	0.2
11	δ	0.03	0.03	0.03
12	$L X X$	0.51	0.50	0.49
13	$F X X$	0.49	0.50	0.51
14	$L O X$	0.00	0.00	0.00
15	FOX	1.00	1.00	1.00
16	LYX	0.425	0.425	0.425
17	FYX	0.575	0.575	0.575
18	LYY	0.500	0.500	0.500
19	FYY	0.500	0.500	0.500
20	OUTPUT			
21	β_{1}	2.2656	2.2656	2.2656
22	β_{2}	(1.7656)	(1.7656)	(1.7656)
23	$v F D$	5.7392	5.7392	5.7392
24	vFS	12.2631	12.2631	12.2631
25	$v L D$	6.0996	6.0924	6.0851
26	vLS	8.2470	8.2585	8.2701
27	SOFS	0.0132	0.0132	0.0132
28	SOFD	1034.8147	1034.8147	1034.8147
29	$R O L S S$	0.0385	0.0385	0.0384948
30	SOLS	0.1394	0.1412	0.1430
31	$S O L D$	874.8282	862.9820	851.1407
32	RO FSS	0.1280	0.1252	0.1223447
33	RO F DD	-657.6421	-643.7031	-629.7797

A critical first observation is that the effect of changes in market shares on values is more-or-less linear for the initial market share changes when in regime 3. Because both the leader and follower

PV OPS are negative in regime 3, when $v=7.5$, the leader's PV OPS becomes slightly more negative as its initial market share increases, and the opposite occurs for the follower. ${ }^{5}$ If while still in regime 3, the leader could imagine reducing market share in the middle regime, the effect on the leader and follower values is similar but not proportional. If while still in regime 3, the leader could imagine increasing market share in the final regime, the effect on the leader's value is positive, while the effect on the follower's value is negative.

Table 2

Sensitivity of Value Functions to Changes in Market Shares R 3

[^4]What are lessons for the leader attempting to increase market share during any regime in a competitive Market Share Game? Game strategy is highly dependent on the level of the market revenue. As a preview, with the assumed parameter values, it is hard for the leader to benefit from increasing market share when v is low, but sometimes benefits when v is high. In a cooperative Risk Game, at the initial stage when v is low, the leader should lead a risk preferring strategy. More volatility please. At the middle and final stage, the follower benefits from more risk, the leader does not, so cooperation and collusion regarding future volatility are complex.

II Market Share Games

There are five interesting games envisioned between the parties regarding market share alterations. (1) R3A, either the L or F or both increasing IMS at the initial stage or regime 3, (2) R3B , either the L or F or both increasing MMS eventually, contemplated at the initial stage, (3) R3C, either the L or F or both increasing FMS eventually, contemplated at the initial stage, (4) R2A, either the L or F or both increasing MMS at the middle stage, or (5) R2B, either the L or F or both increasing FMS eventually, contemplated at the middle stage ${ }^{6}$.

The duopoly game is formatted in a normal form. Notice that this is not a game on the optimal time to exercise the option to invest (as usual) but on the consequences of market share strategies, given the option of firms to maximize their value in the future when the optimal time to exercise the switch/divest options arrive. Notice that in the game, the players are the leader and the follower, with normally the leader being the firm that decides first; the strategies available to each player are the choices of changing the market share: "Initial", "Initial L", or "Initial F" the base market share, or the market share (reversion to 50/50) if one rival reacts equally to one player trying to increase market share. Players' payoffs for each strategy are the leader's and the follower's value functions.

The idea behind the above game matrix is to determine, for given market conditions, what are the market shares for the leader and the follower that maximize total value functions for both firms.
(1) The game consists of the base case with $v=7.5$, between the leader's base case thresholds $\{6.09$, $8.26\}$, with the value function results in B83:C83 in Table 3. Then, the leader alone spends

[^5]$\$ \Delta=\mathrm{D} 80$ the maximum expense for the leader that equalizes the total VFs in $\mathrm{A} 83=\mathrm{A} 84{ }^{7}$, with the resulting separate value functions VF in $\mathrm{B} 84: \mathrm{C} 84$. An alternative is the follower alone spending $\$ \Delta$ with the VFs in D83:E83, and finally both the leader and follower each spending $\$ \Delta$ to alter IMS 1% with the result returning back to the base case less $\$ \Delta$ for each in D84:E84, all assuming $\mathrm{v}=7.5$. This is a type of Prisoner's Dilemma Game, where the best combined result is the base case $(\mathrm{VFL}+\mathrm{VFF}=44.7484)$, the worst case $(\mathrm{VFL}+\mathrm{VFF}=44.6298)$ where the leader and follower both spend $\$ \Delta$, thus returning to the base case less spending $\$ 2 \Delta$ together.

Table 3, R3A, v=7.5

Most of the benefit of the L increasing IMS would go to the follower when $v=7.5$, with a reduction in his negative PV OPS, and increase in RO F SS, the optional value for the follower of the leader switching (and thus giving the follower a temporary larger market share in Regime 2). The follower

[^6]could not do better than simply encouraging the leader to increase her market share in this IMS scheme, or alternatively do nothing.
(2) Table 4 shows the leader contemplating increasing the MMS while still in the Regime 3, since the leader could spend up to $\$.7445$ in increasing the MMS 1%, which is the maximum expense for the leader that equates the total VF, A83=A84. The gross VFL increases slightly, indicating some potential "bang for the buck".

Table 4 R3B

	A	B	C	D	E	F	G
80	REGIME 3 TOTAL VF	LEADER/FOLLOWER SPEND vLD<v<vLS		0.7445 1\% MMS		TOTAL VF	
81							
82		LEADER	FOLLOWER	LEADER	FOLLOWER		
83	44.7484	29.2381	15.5103	29.0661	14.2578	F . 585	43.3239
84	44.7484	28.6833	16.0651	28.4936	14.7658	L.425/F. 575	43.2594
85							
86		LEADER	FOLLOWER	LEADER	FOLLOWER		
87	L \& F VF BASE	C90	C94	D90	D94	F. 585	D83+E83
88	L . 435 \& F. 565	B90-D80	B94	C90-D80	C94-D80	L/F .425/.575	D84+E84
89		L . 435	BASE	F . 585			
90	VF L	29.4278	29.2381	29.0661	SUM(D91:D9		
91	L 3 PV OPS	-8.9286	-8.9286	-8.9286	D12*(D35/(D	24+D11)-D5/D	
92	L 3 SOLS	13.8938	13.5616	13.2565	D30*(D35^D	21)	
93	L 3 SOLD	24.4626	24.6051	24.7381	D31*(D35^D	22)	
94	VF F	16.0651	15.5103	15.0023	SUM(D95:D9		
95	F 3 PV OPS	-8.9286	-8.9286	-8.9286	D13*(D35/(D)	24+D11)-D5/D	
96	F 3 SO F S	1.4378	1.2644	1.0922	D27*(D35^D	21)	
97	F 3 SO F D	29.4455	29.5043	29.5631	D28*(D35^D	22)	
98	F 3 RO F SS	12.6864	12.0232	11.4171	D32*(D35^D	21)	
99	F 3 RO F DD	-18.5761	-18.3531	-18.1415	D33*(D35^D	22)	

(3) Table 5 shows a leader contemplating increasing the FMS while still in the Regime 3, with the leader spending up to $\$.1888$ in increasing the FMS 1%. While the L PV OPS in the initial regime is not affected by changing the MMS or FMS, both of the leader's strategic options to divest and switch in the initial stage are affected by the MMS and FMS. The VF net of $\$ \Delta$ actually increases for the leader increases FMS, which is an effective strategy for the leader as long as the follower does not retaliate. Look to the future options, in assessing current choices.

Table 5 R3C

	A	B	C	D	E	F	G
80	REGIME 3C TOTAL VF	LEADER/FOLLOWER SPEND vLD<v<vLS		0.1888 1\% FMS			TOTAL VF
81							
82		LEADER	FOLLOWER	LEADER	FOLLOWER		
83	44.7484	29.2381	15.5103	28.9196	15.4193 F	F . 51	44.3389
84	44.7484	29.3423	15.4060	29.0493	15.3215	L/F . 5	44.3708
85							
86		LEADER	FOLLOWER	LEADER	FOLLOWER		
87	L \& F VF BASE	C90	C94	D90	D94-D80	F 0.51	D83+E83
88	L. 51	B90-D80	B94	C90-D80	C94-D80	L/F . 50	D84+E84
89		L. 51	BASE	F . 51			Change
90	VF L	29.5311	29.2381	28.9196	SUM(D91:D93)		-0.6115
91	L 3 PV OPS	-8.9286	-8.9286	-8.9286	D12*(D35/(D4	+D11)-D5/D3)	0.0000
92	L 3 SOLS	14.0730	13.5616	12.9938	D30*(D35^D21		-1.0792
93	L 3 SOLD	24.3867	24.6051	24.8544	D31*(D35^D22		0.4676
94	VF F	15.4060	15.5103	15.6081	SUM(D95:D99)		0.2020
95	F 3 PV OPS	-8.9286	-8.9286	-8.9286	D13*(D35/(D4	+D11)-D5/D3)	0.0000
96	F 3 SO F S	0.7562	1.2644	1.7903	D27*(D35^D21)		1.0340
97	F 3 SO F D	29.6788	29.5043	29.3272	D28*(D35^D22)		-0.3515
98	F 3 RO F SS	12.2629	12.0232	11.7550	D32*(D35^D21)		-0.5079
99	F 3 RO F DD	-18.3634	-18.3531	-18.3359	D33*(D35^D22		0.0275

Table 6
Comparing Regime 3 Results

	B	C	D	E	F	G	H	I
1	P Game R3A							
2	TOTAL VF				0.0394	1\% IMS		TOTAL VF
3	$\mathrm{v}<\mathrm{VLS}$	7.5						
4			LEADER	FOLLOWER	LEADER	FOLLOWER		
5	44.7484	BASE	29.2381	15.5103	29.2517	15.4175	F . 51	44.6692
6								
7	44.7484	L . 51	29.1854	15.5630	29.1987	15.4709	L/F . 5	44.6696
8	P Game R3B							
9	$\mathrm{v}<\mathrm{vLS}$	7.5						
10	TOTAL VF				0.7445	1\% MMS		TOTAL VF
11								
12			LEADER	FOLLOWER	LEADER	FOLLOWER		
13	44.7484	BASE	29.2381	15.5103	29.0661	14.2578	F . 585	43.3239
14								
15	44.7484	L . 435	28.6833	16.0651	28.4936	14.7658	.425/.575	43.2594
16	P Game R3C							
17	$\mathrm{v}<\mathrm{VLS}$	7.5						
18	TOTAL VF				0.1888	1\% FMS		TOTAL VF
19								
20			LEADER	FOLLOWER	LEADER	FOLLOWER		
21	44.7484	BASE	29.2381	15.5103	28.9196	15.4193	F. 51	44.3389
22								
23	44.7484	L . 51	29.3423	15.4060	29.0493	15.3215	L/F . 5	44.3708

Table 6 compares regime 3 results when the PV Ops for both firms is negative, showing that for R3A the best strategy indicated in bold assuming the leader/follower spend .0394 is $\mathbf{E 7}$ for the follower (leader spends \$x to increase IMS to 51%), and F5 for the leader. For R3B the best strategy for the leader is to do nothing D13, for the follower to encourage the leader to spend .7445 to increase MMS to 43.5% E15. For R3C the best strategy for the leader is to spend .1888 to increase the FMS to $51 \% \mathbf{D 2 3}$, for the follower to remain in the base case E21. An in-depth explanation would examine the critical aspects of the effect of altering market share on the various option coefficients, involving the analytical and numerical partial derivatives. "Proofs" from the mathematical expression for each coefficient might show how an equilibrium is established as the best ultimate strategy in each of these games. One advantage of this approach using real options in game theory is the transparency in the payoff results, which are not necessarily obvious in most presentations of the Prisoners' Dilemma ${ }^{8}$.
(4) But if $v>v L S$, say 10 , the game is different, moving to Regime 2 (R2).

Table 7 shows the sensitivity of leader and follower value function to changes in the MMS, and FMS. If in regime 2 the leader increases market share from 42.5% to 47.5%, the value of both the leader and follower increase, but not proportionally. If while still in regime 2, the leader imagines increases FMS, the result is non-linear and opposite for the leader and follower.

Table 7

Sensitivity of Values to Changes in Market Share Regime 2

[^7]

Table 8 R2A, $v=10$

Now clearly the best strategy for the follower is for the leader to increase her MMS in Table 8 if $\$ \Delta<\$.3038$, which increases the follower's overall value, since no sensible follower would attempt to do the same.

Table 9 R2B, $v=10$

(5) In this case, any increasing the FMS by the leader has a negative effect on the combined total VF of the leader and follower even at 0 cost, but increases the leader's value function. But the follower could spend $\$.1335$ so that the combined total VF of both parties equals the base case, shown in Table 9, A83=G83. In that case, the decrease of the leader's value is due to the decrease in the L's RO L SS.

Table 10
Comparing Regime 2 Results

	A	B	C	D	E	F	G
1	SHARE GAME R2A						
2	v>vLS						
3	TOTAL VF				0.3038	1\% MMS	TOTAL VF
4							
5		LEADER	FOLLOWER	LEADER	FOLLOWER		
6	77.6327	47.1845	30.4481	47.0172	30.0278	F . 585	77.0450
7							
8	77.6327	47.0657	30.5670	46.8807	30.1443	L/F .425/.575	77.0251
9							
10	R2B						
11	$\mathrm{v}>\mathrm{vLS}$						
12	TOTAL VF		LEADER/FOLLO'		0.1335	1\% FMS	TOTAL VF
13							
14		LEADER	FOLLOWER	LEADER	FOLLOWER		
15	77.6327	47.1845	30.4481	46.4154	31.2173	F . 51	77.6327
16							
17	77.4565	47.8785	29.5781	47.0510	30.3146	L/F . 5	77.3657

Table 10 compares regime 2 results when the PV Ops for both firms is positive, showing that for R2A the best strategy for the follower is C8 (leader spends $\$ \Delta=.3038$ to increase MMS to 43.5%), and B6 for the leader (do nothing). For R2B the best strategy for the leader is to spend .1335 on increasing the FMS 1% B17, for the follower to spend .1335 to increase FMS to 51% E15, if neither retaliates as in D17:E17.

III Price Volatility

Now we turn to a cooperative game of both the leader and follower getting the government (or another third party) to change in the "effective price volatility" ${ }^{9}$ from 15% to 25% as indicated in Table 11. In regime 3 ($\mathrm{v}=7.5$), it will pay for both parties to get the price volatility increased.

Table 11

	A	B	C	D
1	INPUT	VOLATILITY GAME R3 BASE		
2				
3	r	0.08	0.08	0.08
4	θ	0.04	0.04	0.04
5	$f X$	10	10	10
6	$f Y$	2	2	2
7	z	25	25	25
8	K	35	35	35
9	σ	0.15	0.20	0.25
10	λ	0.2	0.2	0.2
11	δ	0.03	0.03	0.03
12	$L X X$	0.50	0.50	0.50
13	$F X X$	0.50	0.50	0.50
14	$L O X$	0.00	0.00	0.00
15	FOX	1.00	1.00	1.00
16	$\angle Y X$	0.425	0.425	0.425
17	FYX	0.575	0.575	0.575
18	$\angle Y Y$	0.500	0.500	0.500
19	FYY	0.500	0.500	0.500
20	OUTPUT			
21	β,	2.7228	2.2656	1.9757
22	β_{2}	(2.6117)	(1.7656)	(1.2957)
23	$v F D$	6.3599	5.7392	5.1441
24	VFS	9.9311	12.2631	16.5486
25	$v L D$	6.4101	6.0924	5.7394
26	vLS	7.6662	8.2585	9.0899
27	A1/IFS=SOFS	0.0138	0.0132	-0.0032
28	$A 2 I I F D=S O F D$	4641.9220	1034.8147	472.5265
29	$A 1 / / L S S=R O L S S$	0.0169	0.0385	0.0620
30	A1/ILS $=$ SO LS	0.0752	0.1412	0.1865
31	$A 2 / I L D=S O L D$	3824.5225	862.9820	390.8268
32	A1IIFSS=RO FSS	0.0591	0.1252	0.2005
33	$A 2 I I F D D=R O F D D$	-3330.4886	-643.7031	-267.8460

Table 12 shows that the L's switch option SOLS decreases with an increase in p volatility -8.1665 for 15% to 25%, while the leader's divest option SOLD increases 8.8935 , for a net gain of .727 .

[^8]The F's divest option SOFD increases lots with an increase in p volatility, more than offsetting the decrease in the other three options when volatility increases from 15% to 25%.

Table 12 R3, v=7.5

	A	B	C	D	E	F
95	R3, v=7.5					
96	Volatility	15\%	20\%	25\%		Change
97	VF L	29.0510	29.2381	29.7780	SUM(D98:D100)	0.7270
98	L 3 PV OPS	-8.9286	-8.9286	-8.9286	D12*(D35/(D4+D11)-D5/D3)	0.0000
99	L 3 SOLS	18.1557	13.5616	9.9892	D30*(D35^D21)	-8.1665
100	L 3 SO LD	19.8239	24.6051	28.7174	D31*(D35^D22)	8.8935
101	VF F	15.4749	15.5103	16.6836	SUM(D102:D106)	1.2087
102	F 3 PV OPS	-8.9286	-8.9286	-8.9286	D13*(D35/(D4+D11)-D5/D3)	0.0000
103	F 3 SO F S	3.3416	1.2644	-0.1691	D27*(D35^D21)	-3.5108
104	F 3 SO F D	24.0608	29.5043	34.7205	D28*(D35^D22)	10.6598
105	F 3 RO F SS	14.2642	12.0232	10.7417	D32*(D35^D21)	-3.5225
106	F 3 RO F DD	-17.2631	-18.3531	-19.6809	D33*(D35^D22)	-2.4178

This is a win-win game, since both the leader and the follower benefit if the volatility increases from $15 \% 25 \%$, if $v=7.5$ for Regime 3, even if the L has to pay $\$.727$ (lobbying expense?) or the F has to pay $\$ 1.2087$ to increase volatility. Perhaps the L and F could share in the expense of promoting more p volatility.

The consequences are reversed for the leader if $\mathrm{v}=9.5$, above the leader's switching threshold (below the follower's) for Regime 2, as shown in Table 13.

Table 13 R2, v=9.5

	A	B	C	D	E \quad F	G	
80	Regime 2, vLS $<\mathrm{v}<\mathrm{vFS}$		$\begin{aligned} & \text { L/F SPEND } \\ & v=9.5 \end{aligned}$	O 5\% Vol Change			
81							
82	TOTAL VF	LEADER		FOLLOWER	LEADER	FOLLOWER	
83	71.1281	43.3704	27.7577	42.3497	31.4511		
84	70.3199	44.8213	25.4986	44.8213	31.4511		
85							
86		LEADER	FOLLOWER	LEADER	FOLLOWER		
87	B83+C83	C90	C94	D90	D94-D80		
88	B84+C84	B90-D80	B94	B90-D80	D94-D80		
89	Volatility	15\%	20\%	25\%		Change	
90	VF L	44.8213	43.3704	42.3497	SUM(D100:D102)	-2.4716	
91	L 2 PV OPS	47.0536	47.0536	47.0536	D16*(D35/(D4+D11)-D6/D3)	0.0000	
92	L2 RO L SS	7.7677	6.3168	5.2961	D29*(D35^D21)	-2.4716	
93	L $2 \mathrm{~K}-\mathrm{Z}$	-10.0000	-10.0000	-10.0000	-(D8-D7)	0.0000	
94	VF F	25.4986	27.7577	31.4511	SUM(D104:D106)	5.9525	
95	F 2 PV OPS	6.1607	6.1607	6.1607	D17*(D35/(D4+D11)-D5/D3)	0.0000	
96	F 2 SOFS	6.3605	2.1600	-0.2698	D27*(D35^D21)	-6.6303	
97	F 2 SOFD	12.9774	19.4370	25.5602	D28*(D35^D22)	12.5828	
98	$v F D$	6.3599	5.7392	5.1441			
99	$v F S$	9.9311	12.2631	16.5486			
100	$v L D$	6.4101	6.0924	5.7394			
101	$v L S$	7.6662	8.2585	9.0899			

The leader would prefer less volatility, the follower more volatility. This pattern is consistent with the examination of the vegas, the sensitivity of option coefficients to change in the level of volatility (total volatility derivative), shown in Table 14. The leader has only one option left at Regime 2, the benefit of the follower switching, when then the leader's market share increases. The higher the volatility, the higher the vFS. There are two additional factors affecting RO LSS: as volatility increases the option coefficient increases but at a decreasing rate (partial); as volatility increases the power β_{1} falls; so. the net effect is the value of the RO LSS rival option falls. For the follower, while the value of the SOFS option to switch falls as the volatility increases, indeed at a rate which changes sign, the value of the SOFD increases slightly at a decreasing rate. The net effect is the value function of the leader falls, of the follower increases, as volatility increases.

Table 14

Now, suppose the actual market volatility is 25%, but this has been reduced to 20% by the government offering fixed prices at 9.5 for 20% of the production for both parties. The leader has
the opportunity to reduce volatility to 15% by hedging B84, and the follower has the chance of increasing volatility to 25% by declining the government assistance E83. The base case is B83:C83 for the leader/follower. The optimal equilibrium is for the leader to hedge and for the follower to "unhedge" (but this could change if the cost of altering "effective volatility" is not zero). In this case the follower benefits a lot, due to an increase in the SO FD (curiously, since $\mathrm{v}=9.5$ is far from the $\mathrm{vFD}=5.14$ at $\sigma=25 \%$). The leader loses from any volatility increase, due to the decline in RO LSS ${ }^{10}$.

There are many other interesting real option games in duopolies that can be imagined, changing other parameter values. For instance, what is the effect of changing interest rates, or the percentage of Z that the follower receives on divestment, on the L / F values?

IV Summary and Conclusion

We build on previous solutions for mutually exclusive options in a duopoly with switching and divestment alternatives. We examine the implications of increasing the leader's market share and/or changing volatility at progressive regimes. The consequences of market share and volatility changes on the values for both the leader and follower are often surprising.

What are lessons for the leader attempting to increase market share during any regime? Game strategy is highly dependent on the level of the market revenue. With the assumed parameter values, it is hard for the leader to benefit from increasing market share when v is low, but sometimes benefits when v is high. Surprisingly, (i) the leader loses with increased initial market share at low revenues, but (ii) both leader and follower lose with increased middle market shares but (iii) both gain at higher revenues. (iv) The leader gains with higher volatility at low revenue levels, but loses at higher revenues.

[^9]So, in a cooperative risk game, when v is low, the leader should lead a risk preferring strategy. When v is high, the follower benefits from more risk, the leader does not, so cooperation and collusion regarding future volatility are complex "risk" games.

There are many opportunities for future research on this topic. (1) Importantly, some of the "surprises" call for explanations and interpretations. (2) Recalculating option values as thresholds change with parameter value changes is warranted. (3) Showing that the changes in option values are consistent in sign and magnitude with the partial market share derivatives should be feasible. (4) Examining the trade-offs between the expense of changing market share and the value obtained should not be difficult. (5) Naturally, a probability of follower retaliation should be incorporated into almost all of these games.

References

1. Adkins, R., A. Azevedo and D. Paxson, 2022. "Get out or get down: Competitive strategies in declining industries." SSRN: 42877207.
2. Adkins, R., A. Azevedo and D. Paxson, 2023. "Rival and strategic options in a market sharing duopoly." Working paper, Aston Business School.
3. Azevedo, A. and D. Paxson, 2014. "Developing real option games". European Journal of Operational Research 237, 909-920.
4. Balliauw, M., P. Kort and A. Zhang, 2019. "Capacity investment decisions of two competing ports under uncertainty: a strategic real options approach," Transportation Research Part B Methodology 122, 249-264.
5. Bensoussan, A., S. Hoe, F. Yan and G., 2017. "Real options with competition and regime switching," Mathematical Finance 27, 224-250.
6. Bobtcheff, C., and T. Mariotti, 2013. "Potential competition in preemption games." Games and Economic Behavior, 53-66.
7. Décamps, J.-P., T. Mariotti, and S. Villeneuve, 2006. "Irreversible investment in alternative projects." Economic Theory 28, 425-448.
8. Dias, M.A.G, 2004. "Valuation of exploration and productive assets: an overview of real option models." Journal of Petroleum Science and Engineering 64, 93-114.
9. Dias, M.A.G. and J.P. Teixeira, 2010. "Continuous-time option games: review of models and extensions Part I: Duopoly under uncertainty", Multinational Finance 16, 63-82.
10. Dixit, A. and R. Pindyck, 1994. Investment under Uncertainty, Princeton University Press, Princeton, N.J.
11. Dockner, E., S. Jørgensen, N. van Long and G. Sorger, 2000. Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, UK.
12. Huberts, N. F. D., K. Huisman, P. Kort, and M. Lavrutich, 2015. "Capacity choice in (strategic) real options models: A survey." Dynamic Games and Applications 5, 424-439.
13. Joaquin. D.C. and K. C. Butler, 2000. "Competitive investment decisions: A synthesis", Chapter 16 of Project Flexibility, Agency and Competition (M. Brennan and L. Trigeorgis, eds.), Oxford University Press, Oxford: 324-339.
14. Kong, J. and Y. Kwok, 2007. "Real options in strategic investment games between two asymmetric firms," European Journal of Operational Research 181, 967-985.
15. Paxson, D., and H. Pinto, 2003. "Leader/follower real value functions if the market share follows a birth/death process", Chapter 12 of Real $R \& D$ Options (D. Paxson, ed.), Butterworth-Heinemann, Oxford: 208-227.
16. Paxson, D., and H. Pinto, 2005. "Rivalry under price and quantity uncertainty." Review of Financial Economics 14, 209-224.
17. Paxson, D., and A. Melmane, 2009. "Multi-factor competitive internet strategy evaluation: TSearch expansion, portal synergies." Journal of Modelling in Management 4, 249-273.
18. Pawlina, G. and Kort, P. (2006). Real Options in an Asymmetric Duopoly: Who Benefits from Your Competitive Disadvantage? Journal of Economics and Management Strategy 15, 1-35.
19. Smets, F., 1993. Essays on foreign direct investment. PhD Thesis, Yale University.
20. Tsekrekos, A., 2003. "The effect of first-mover's advantages on the strategic exercise of real options", Chapter 11 of Real R\&D Options (D. Paxson, ed.), Butterworth-Heinemann, Oxford: 185-207.

Supplementary Appendix

A Complete Sensitivities to Changing Market Shares
B Partial and Total Derivatives (to Market Share) across Three Regimes
C Complete Solutions for Real Option Games (Market Share)
D Real Option Values for High/Low Volatility Ranges
E Recalculation of the Risk Game Leader's Value Function

ROGs Appendix

A Formulae for Thresholds and Option Coefficients

The follower's two thresholds $\hat{v}_{F S}$ and $\widehat{v}_{F D}$ are the solutions from two non-linear simultaneous equations:

$$
\begin{gather*}
\hat{v}_{F D} \beta_{2}\left(\hat{v}_{F S} \frac{D_{F \mid Y, Y}-D_{F \mid Y, X}}{\delta+\theta} \frac{\beta_{1}-1}{\beta_{1}}-\frac{D_{F \mid Y, Y} f_{Y}-D_{F \mid Y, X} f_{X}}{r}-(K-\lambda Z)\right)-\hat{v}_{F S} \beta_{2}\left(\lambda Z-\frac{D_{F \mid O, X} \widehat{v}_{F D}}{\delta+\theta} \frac{\beta_{1}-1}{\beta_{1}}+\right. \\
\left.\frac{D_{F \mid O, X} f_{X}}{r}\right)=0 \tag{A1}\\
\hat{v}_{F D} \beta_{1}\left(\hat{v}_{F S} \frac{D_{F \mid Y, Y}-D_{F \mid Y, X}}{\delta+\theta} \frac{\beta_{2}-1}{\beta_{2}}-\frac{D_{F \mid Y, Y} f_{Y}-D_{F \mid Y, X} f_{X}}{r}-(K-\lambda Z)\right)-\hat{v}_{F S} \beta_{1}\left(\lambda Z-\frac{D_{F \mid 0, X} \hat{v}_{F D}}{\delta+\theta} \frac{\beta_{2}-1}{\beta_{2}}+\right. \\
\left.\frac{D_{F \mid 0, X} f_{X}}{r}\right)=0 \tag{A2}
\end{gather*}
$$

The leader's two thresholds $\hat{v}_{L S}$ and $\hat{v}_{L D}$ are the solutions to two non-linear simultaneous equations:

$$
\begin{gather*}
\hat{v}_{L D}{ }^{\beta_{2}}\left(\hat{v}_{L S} \frac{D_{L \mid Y, X}-D_{L \mid X, X}}{\delta+\theta} \frac{\beta_{1}-1}{\beta_{1}}-\frac{D_{L \mid Y, X} f_{Y}-D_{L \mid X, X} f_{X}}{r}\right)-(K-Z)-\hat{v}_{L S} \beta^{\beta_{2}}\left(Z-\frac{D_{L \mid X, X} \widehat{v}_{L D}}{\delta+\theta} \frac{\beta_{1}-1}{\beta_{1}}+\right. \\
\left.\frac{D_{L \mid X, X} f_{X}}{r}\right)=0 \tag{A3}\\
\hat{v}_{L D} \beta_{1}\left(\hat{v}_{L S} \frac{D_{L \mid Y, X}-D_{L \mid X, X}}{\delta+\theta} \frac{\beta_{2}-1}{\beta_{2}}-\frac{D_{L \mid Y, X} f_{Y}-D_{L \mid X, X} f_{X}}{r}+S O L S \quad \hat{v}_{L S} \beta_{1} \frac{\beta_{2}-\beta_{1}}{\beta_{2}}-(K-Z)\right)- \\
\hat{v}_{L S}{ }^{\beta_{1}}\left(Z-\frac{D_{L \mid X, X} \hat{v}_{L D}}{\delta+\theta} \frac{\beta_{2}-1}{\beta_{2}}+\frac{D_{L \mid X, X} f_{X}}{r}\right)=0 \tag{A4}
\end{gather*}
$$

The follower's strategic switching and divestment option coefficients are:

$$
\begin{array}{r}
\mathrm{SOFS}=\frac{1}{\beta_{1} \Delta_{F}}\left(\hat{v}_{F S} \frac{D_{F \mid Y, Y}-D_{F \mid Y, X}}{\delta+\theta} \hat{v}_{F D} \beta_{2}+\hat{v}_{F D} \frac{D_{F \mid O, X}}{\delta+\theta} \hat{v}_{F S} \beta_{2}\right) \\
S O F D=\frac{1}{\beta_{2} \Delta_{F}}\left(-\hat{v}_{F S} \frac{D_{F \mid Y, Y}-D_{F \mid Y, X}}{\delta+\theta} \hat{v}_{F D} \beta_{1}+\hat{v}_{F D} \frac{D_{F \mid O, X}}{\delta+\theta} \hat{v}_{F S} \beta_{1}\right) \tag{A6}
\end{array}
$$

$$
\begin{equation*}
\text { where } \Delta_{F}=\hat{v}_{F S}{ }^{\beta_{1}} \hat{v}_{F D}{ }^{\beta_{2}}-\hat{v}_{F S}{ }^{\beta_{2}} \hat{v}_{F D}{ }^{\beta_{1}} . \tag{A7}
\end{equation*}
$$

The follower's rival options (exercise determined by the leader, benefits the follower are:

$$
\begin{gathered}
\text { ROFSS }=\left(D_{F \mid Y, X}-D_{F \mid X, X}\right)\left(\frac{\hat{v}_{L S}}{\delta+\theta}-\frac{f_{X}}{r}\right) \frac{\hat{v}_{L D} \beta_{2}}{\Delta_{L}}-\left(D_{F \mid 0, X}-D_{F \mid X, X}\right)\left(\frac{\hat{v}_{L D}}{\delta+\theta}-\frac{f_{X}}{r}\right) \frac{\hat{v}_{L S} \beta_{2}}{\Delta_{L}} \text { (A8) } \\
\text { ROFDD }=-\left(D_{F \mid Y, X}-D_{F \mid X, X}\right)\left(\frac{\hat{v}_{L S}}{\delta+\theta}-\frac{f_{X}}{r}\right) \frac{\hat{v}_{L D} \beta_{1}}{\Delta_{L}}+\left(D_{F \mid O, X}-D_{F \mid X, X}\right)\left(\frac{\hat{v}_{L D}}{\delta+\theta}-\frac{f_{X}}{r}\right) \frac{\hat{v}_{L S} \beta_{1}}{\Delta_{L}} \text { (A9) }
\end{gathered}
$$

The leader's strategic switching and divestment option coefficients are:

$$
\begin{gather*}
S O L S=\frac{1}{\beta_{1} \Delta_{L}}\left(\left(\hat{v}_{L S} \frac{D_{L \mid Y, X}-D_{L \mid X, X}}{\delta+\theta}+\beta_{1} R O L S S \quad \hat{v}_{L S}^{\beta_{1}}\right) \hat{v}_{L D}^{\beta_{2}}+\hat{v}_{L D} \frac{D_{L \mid X X X}}{\delta+\theta} \hat{v}_{L S}^{\beta_{2}}\right) \tag{A10}\\
S O L D=-\frac{1}{\beta_{2} \Delta_{L}}\left(-\left(\hat{v}_{L S} \frac{D_{L \mid Y, X}-D_{L \mid X, X}}{\delta+\theta}+\beta_{1} R O L S S \quad \hat{v}_{L S}{ }^{\beta_{1}}\right) \hat{v}_{L D}^{\beta_{1}}-\hat{v}_{L D} \frac{D_{L \mid X, X}}{\delta+\theta} \hat{v}_{L S}^{\beta_{1}}\right) \tag{A11}
\end{gather*}
$$

where $\Delta_{L}=\hat{v}_{L S}{ }^{\beta_{1}} \hat{v}_{L D}{ }^{\beta_{2}}-\hat{v}_{L S}{ }^{\beta_{2}} \hat{v}_{L D}{ }^{\beta_{1}}$.

The leader's rival option (exercise determined by the follower, benefits the leader) is:

$$
\begin{equation*}
\operatorname{ROLSS}=\left(\frac{\hat{v}_{F S}}{\delta+\theta}-\frac{f_{Y}}{r}\right)\left(D_{L \mid Y, Y}-D_{L \mid Y, X}\right) \hat{v}_{F S}-\beta_{1} \tag{A13}
\end{equation*}
$$

Dias (2004) was the first to suggest that mutually exclusive options (MEO) must be treated differently than several perpetually available real options. Décamps et al. (2006) provided the essential theory for such MEO, as described in Adkins et al. (2022).

[^0]: ${ }^{1}$ dean.paxson@manchester.ac.uk, corresponding author

[^1]: ${ }^{2}$ We use β_{1} if the state variable reaches the threshold from below and β_{2} if the state variable reaches the threshold from above.

[^2]: ${ }^{3}$ In a typical ROG, each firm has two exogenously assigned market shares only: if inactive, both firms start the game with no market share (otherwise 50/50), then the leader invests first and gets 100% of the market, and finally the follower also invests and the leader's market share drops to 50\% (being the drop in the leader's market share the same as the gain in the follower's market share). It is also assumed that the ex-post pre-assigned market shares will hold forever and that the real options held by each firm at the beginning of the decision game are perpetual. In our base case, there is a varied set of possible firms' market shares for both the leader and the follower: LO/FO if both divest, L0/F100 if only the leader divests, L50/F50 if both firms operate with either the initial policy X or subsequent policy Y , and L42.5/F57.5 for when only the leader has switched to Y .

[^3]: ${ }^{4}$ These are also the assumptions in Adkins et al. (2022), except for the MMS proportions, along with the derived equations and solutions described in detail in Appendix A. There are many other possible configurations, with different consequences.

[^4]: ${ }^{5}$ Supplementary Appendix A shows the complete results for the three market share changes over Regime 3, and the two market share changes over Regime 2. SA B shows the partial and total derivatives for the option coefficients over Regimes 3,2 and 1.

[^5]: ${ }^{6}$ See SA C for complete ROG solutions.

[^6]: ${ }^{7}$ The leader could spend up to $\$.0394$ to increase IMS by 1%, which would result in a total value for the $L \& F$ equal to the base case with equal IMS.

[^7]: ${ }^{8} \mathrm{An}$ exception is Dockner et al. (2000).

[^8]: ${ }^{9}$ Increasing the "effective market price volatility" might be achieved by removing any price caps, as established in several European countries in 2022 for natural gas and electricity. See Appendix D for real option values over high ($25-35 \%$) and low (15-25\%) volatility ranges.

[^9]: ${ }^{10}$ This is not an accurate calculation, since the values for the leader are based on the recalculated vFS, see (13) Appendix A. If the RO LSS are based on the vFS with 25% volatility, the value function for the leader would be at best 42.3497, or 2.4716 lower than the B84 result. But since the follower's value function is worth 31.4511 , or 3.6934 more than the base case; part of this value increase might be used to compensate the leader (see Appendix E).

