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Abstract

In response to the recent outbreak of the SARS-CoV-2 virus governments have aimed to reduce the

virus’s spread through, inter alia, non-pharmaceutical intervention. We address the question when such

measures should be implemented and, once implemented, when to remove them.

These issues are viewed through a real-options lens and we develop an SIRD-like continuous-time

Markov chain model to analyze a sequence of options: the option to intervene and introduce measures

and, after intervention has started, the option to remove these. Measures can be imposed multiple times.

We implement our model using estimates from empirical studies and our main conclusions are that: (1)

measures should be put in place almost immediately after the first infections occur; (2) if the epidemic

is discovered when there are many infected individuals already, then it is optimal never to introduce

measures; (3) once the decision to introduce measures has been taken, these should stay in place until

the number of susceptible or infected members of the population is close to zero; (4) it is never optimal to

introduce a tier system to phase-in measures but it is optimal to use a tier system to phase-out measures;

(5) a more infectious variant may reduce the duration of measures being in place; (6) the risk of infections

being brought in by travelers should be curbed even when no other measures are in place. These results

are robust to several variations of our base-case model.

Keywords: Decision Analysis, Continuous-time Markov chains, SIRD model, COVID-19, Optimal Stop-

ping

∗Correspondence: nick.huberts@york.ac.uk and jacco.thijssen@york.ac.uk. The authors like to thank Job Thijssen, the

participants of the webinars organized by the York Mathematical Biology Seminar Series (May 2020) and The OR Society

(December 2020), and the participants of the workshop “Taming Uncertainty in Economics and Finance” in Bielefeld (June,

2020) for their comments. Finally, we are grateful for the many helpful comments that we received from the Editor and three

anonymous referees. This paper is dedicated to the memory of Ulco de Jong; teacher, mentor, and bon vivant.

1



1 Introduction

Non-pharmaceutical interventions can have a significant impact on the rate at which a virus spreads during an

epidemic (“flattening the curve”) as has been shown for previous influenza outbreaks, (see, e.g., Hatchett et al.

(2007), Cowling et al. (2009), Stern and Markel (2009), Wu et al. (2010), Kamigaki and Oshitani (2009)).

These are, therefore, seen as a vital element of government policy (Leung and Nicoll (2010), Ferguson et al.

(2005)). Recent contributions by, e.g., Acemoglu et al. (2020), show that social and economic interventions

can have a significant impact on public health and can significantly reduce economic damage. However, such

interventions, ranging from social distancing to complete lockdown, come at a significant costs of their own

(Atkeson (2020), Anderson et al. (2020)). These costs encompass obvious economic costs associated with

a partial or complete lockdown, but also health-related costs linked to, e.g., reduced mental health levels

in the population, missed diagnoses due to reduced availability of health-care workers, etc. In addition,

there are one-off sunk costs of imposing a lockdown, related to, e.g., individuals’ and institutions’ adoption

of homeworking. According to the Financial Times (24 August 2020), office owners can expect millions in

extra costs to adhere to government guidelines.1 An additional difficulty for policy makers who have to

balance the costs and benefits of non-pharmaceutical intervention, is that the evolution of an epidemic is

uncertain. Their cost-benefit analysis has to take this uncertainty explicitly into account.

The trade-off between costs and benefits in an uncertain environment makes the timing of the introduction

and subsequent relaxation of non-pharmaceutical interventions a crucial policy decision. A consequence of

the uncertainty over a virus’s evolution is that it is not straightforward to determine when measures should

be implemented and once implemented, when they should be relaxed. If measures are relaxed too early,

a second outbreak could occur. Interventions that last too long lead to unnecessary economic damage.

Our contribution is to develop an appropriate model and to apply dynamic programming techniques to

find the optimal intervention policy of a social planner with an application to the COVID-19 epidemic.

More specifically, this paper builds a continuous-time Markov chain (CTMC) of an SIRD-like model of non-

pharmaceutical interventions (which we refer to as “lockdown”) to study the questions of (i) when to enter a

lockdown and, consequently, (ii) when to exit it, under an uncertain evolution of the epidemic, by taking into

account the social (health and non-health) costs of both the epidemic and the lockdown. We, therefore, not

only contribute to the literature on policy making in the context of COVID-19 but also to the OR field that

concerns itself with CTMCs. We then calibrate our model using parameter estimates from the literature to

arrive at the optimal (dynamic) intervention strategy. From this base-case scenario we then proceed to study

the robustness of our policy conclusions, thereby providing a solid theoretical basis for policy evaluation by

public health officials.

As pointed out by Tsekrekos and Yannacopoulos (2016) the OR community is well equipped to deal with

problems where the objective is to determine the optimal timing decisions to commence and/or terminate

1https://www.ft.com/content/ece1bda0-8719-4987-8428-0f240748c5bb
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a process or operations, when the underlying problem is subject to uncertainty. An established wide range

of studies has shown how optimal stopping problems can be applied to, e.g., energy systems (Tseng and

Barz (2002), Thompson et al. (2004), Bøckman et al. (2008), Muñoz et al. (2011), Steffen and Weber

(2016), Ernstsen and Boomsma (2018)), infrastructure (Wang et al. (2019), Thijssen (2021)), climate change

adaptation (Truong and Trück, 2016), natural resources and commodities (Firoozi and Merrifield (2003),

Devalkar et al. (2011), Felix and Weber (2012), Støre et al. (2018)), forest plantations (Kallio et al., 2012),

adaptive clinical trials (Thijssen and Bregantini, 2017), and IT and technology (d’Halluin et al. (2007),

Pendharkar (2010)). For a review and discussion of the real option valuation literature in OR we refer to

Trigeorgis and Tsekrekos (2018).

We consider a model where a social planner can impose a sequence of lockdowns. Our model views the

timing issues through a real options lens: for each lockdown the social planner has two, nested, options,

which we value under the assumption that the social planner wants to minimize the expected present value

of total costs related to the virus and the lockdown. Briefly stated, our main conclusions are that:

1. lockdown should be entered almost immediately after the first infections occur;

2. if the epidemic is discovered too late, i.e., when there are too many infected individuals already, then

it is optimal never to introduce a sequence of measures;

3. once the decision to introduce measures has been taken, these should stay in place until the number

of susceptible or infected members of the population is close to zero;

4. it is never optimal to introduce a tier system to phase in measures but it is optimal to use a tier system

when exiting a lockdown;

5. a more infectious variant may not only shrink the stopping set so that, before it is imposed, lockdown

is less desirable as the virus spreads, but could also lead to a reduction in lockdown duration; and

6. lockdown is only optimal when combined with a strict policy at the country’s borders that aims to

minimize the risk of infections being brought in by travelers.

These results are, qualitatively, robust to several variations of our base-case model.

Some of the results are rather counter-intuitive when compared to the standard real options literature.

The third result confirms the usual intuition that when switching between regimes involves sunk costs, then

it is optimal to delay taking the decision. So, once lockdown is entered, one should wait until one is certain

enough that the benefits of lifting lockdown are sufficiently higher than the associated costs (also see, e.g.,

Smith et al. (2009) and Keogh-Brown et al. (2010)). The first result is less intuitive. One might expect that

the decision to enter lockdown should only be taken when one is sufficiently sure that its benefits outweigh

its costs and, therefore, that the decision is taken when “enough” members of the population have been

infected. However, our results belie this intuition. The reason is that the benefits from switching arise from
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the difference in the rate of infection and the expected evolution of the number of infected, which is greatest

at the start of the epidemic (also see, e.g., Farboodi et al. (2021), Shin (2020)). When there is not enough

time left for benefits to be realized, as is the case when a lot of members of the population have already been

infected and/or recovered, then it is never optimal to incur the costs of lockdown, which explains the second

result. Our result is supported by Nova Scotia’s (Canada) success with its strategy involving early and harsh

measures to keep infections low in the COVID-19 epidemic (The Globe and Mail, 18 January 2021).2 The

same intuition feeds into our fifth result. An increase in the infection rate has several implications. When

the virus spreads more quickly, the expected time between infections reduces. As a result, the cost of staying

in lockdown may no longer outweigh its benefits, especially when a higher proportion of the population has

had the virus. This increases the incentive the come out of lockdown earlier when the infection rate is higher.

COVID Literature The OR literature has seen various contributions in the context of the recent COVID

epidemic. Examples of empirical studies include the use of predictive analytics tools for forecasting and

planning (Nikolopoulos et al., 2021), studying the effectiveness of social media as a humanitarian response

(Kumar et al., 2021b), establishing the socio-economic impact of the epidemic (Amaratunga et al., 2021),

how the Chinese government can stimulate consumption (Liu et al., 2021), studying the role of social learning

on closure decisions by firms (de Vaan et al., 2021), providing evidence that countries that did not experience

SARS in 2003 delayed action (Ru et al., 2021), forcasting moratility rates in the USA (Taylor and Taylor,

2021), addressing the capacity planning decisions of a hemodialysis clinic in Istanbul (Bozkir et al., 2021),

the use of an integrated epidemics-testing allocation model to minimize infections (Abdin et al., 2021), and

evaluating and optimizing social distancing policies (Chen et al., 2021).

Theoretical work, for example, aid vaccination decision making (Ni et al., 2020), use matheuristic algo-

rithms for resource planning problems in a home health care (Nikzad et al., 2021), study pricing during

disruptions (Feng et al., 2020), use game theoretical mechanisms to study supply chain networks with labor

constraints (Nagurney, 2021), look at communication strategies by governments to induce compliance with

measures (de Véricourt et al., 2021), establish how test accuracy and availability impact demand and thereby

the social outcome by a social planner (Drakopoulos and Randhawa, 2021), find out how minimize disrup-

tions to customer service level due to infrastructural deficiencies (Sinha et al., 2021), reduce social planner’s

cost through optimal policies of safety stock and capital reserve (Zhang et al., 2021), find facility layouts that

minimize risk of infections (Fischetti et al., 2021), develop a model to estimate and study local coronavirus

outbreaks (Chang and Kaplan, 2021) or to study the spread of infections in an agent-based model (Ghaderi,

2021), optimize the implementation of measures with a reaction-diffusion process to minimize the economic

burden (Rezapour et al., 2021), apply an efficient large neighbourhood search algorithm to a ‘contagious

disease testing’ problem (Wolfinger et al., 2021), and address vaccine and testing kit allocations in a multi-

2https://www.theglobeandmail.com/opinion/editorials/article-go-early-go-hard-stay-vigilant-how-atlantic-

canada-beat-the-virus/
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agent sequential decision problem (Thul and Powell, 2021). Other contributions include studies by Ely et al.

(2021) and Bekaert et al. (2021). Silal (2021) discusses opportunities for OR to contribute to infectious

disease management and to improve health outcomes (also see Choi (2021)). Tippong et al. (2021) review

OR applications in emergency medical response coordination in disaster management. Our contribution to

the OR literature is to look at the optimal timing decisions of (non-pharmaceutical) interventions.

Other recent theoretical work on optimal policy within an epidemiological framework uses optimal control

theory, sometimes incorporating economic trade-offs (see, e.g., Caulkins et al. (2021), Kantner and Koprucki

(2020), Djidjou-Demasse et al. (2020), Garriga et al. (2020), Piguillem and Shi (2020), Toxvaerd (2020)).

However, only a handful of papers incorporate optimal timing, including Alvarez et al. (2020), Farboodi

et al. (2021), Shin (2020), Patterson-Lomba (2020), Zhang and Enns (2020), and Kruse and Strack (2020).

Their findings are generally mixed. For instance, Patterson-Lomba finds that the timing strongly depends

on the natural reproduction number (R0) and Kruse and Strack find that the social distancing can be

delayed, whereas some others find that it is optimal to intervene when the first cases of infectives have been

confirmed. The study by Federico and Ferrari (2020) is closest to our set-up in the sense that they incorporate

stochasticity in a SIR-like model as well. However, in their model only the infection rate is stochastically

evolving over time whereas in our model all transitions are stochastic. In contrast to our results, they find

that immediate lockdown is not optimal. Other relevant and related studies include Kumar et al. (2021a)

who empirically show that rigid measures are less effective to combat infections than moderate long-lasting

preventive measures in an SEIR model, Jia and Chen (2021) who develop an SEIAR model with human

uncertainty factors, Bliman et al. (2021) who look at optimal immunity control with the aim to minimize

the epidemic final size in an SIR model, and Doyle (2021) who predicts the spread of infections in a SEIRD

model with heterogeneous agents.

Although some studies have highlighted that any optimal policy is highly sensitive to parameterizations

(e.g., Manski and Molinari (2021), also see Avery et al. (2020) for a discussion), we argue that this is

only partly true of our main results. When varying the parameters associated with the process, our main

conclusions hold irrespective of the specific parameter values. Although our results are qualitatively the

same for a wide range of parameter values, we do not want to underestimate the importance of accuracy

when it comes to estimation of the infection rate, mortality rate, and immunity.

The remainder of this paper is organized as follows. Section 2 introduces the mathematical framework.

Section 3 solves the social planner’s problem for our benchmark model, which is analyzed and extended in

Section 4. Section 5 concludes and an online appendix contains the proofs of propositions as well as further

robustness checks.
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2 Model Description

Our model considers the problem of a social planner in the context of an infectious disease outbreak. The

social planner needs to decide when to undertake action and temporarily intervene in an environment where

infections of members of the host population result in a (collateral) social cost. Temporal intervention could

range from self-isolation to a complete lock-down. In this paper, we will consider two models: a simplified

benchmark model and a more realistic extended model. This allows us to identify the impact of each model

characteristic. For our benchmark model, we assume that the form of intervention is exogenously given and

that the costs and benefits (in terms of reduced infection/enhanced recovery) are known. Once temporal

intervention has started, the social planner has to decide when to stop it. After that second decision, the

social planner has no further decisions to take. In our extended model, we allow the social planner to impose

a sequence of lockdowns and the social planner could opt to phase in and/or phase out measures.

For each lockdown, the social planner is assumed to hold two nested options, which we will value under

the assumption that she wants to minimize the expected present value of total social costs related to the

virus and the lockdown over the planning horizon, which we assume to be infinite here. These costs are

assumed to include (health and non-health) costs related to the number of infected people, the (health and

non-health) cost of intervention, and the costs of lost lives and lost QALYs3 due to the disease. For simplicity

we will, throughout this paper, refer to intervention as “lockdown”, although, of course, interventions could

entail different types of non-pharmaceutical measures.

The time parameter is continuous and is measured in days. Let N ∈ N be the size of the host population.

Our basic model describes a continuous-time Markov chain (CTMC) in which at any time t ≥ 0, the N

individuals in our population are split into four groups, as in a typical SIRD model: It members are infected,

Rt members are recovered, Dt members are deceased, and S(It, Rt, Dt) := N − It − Rt − Dt members are

susceptible. In our benchmark model we will assume that there are only three groups, setting Dt = 0 for

all t. Initially, all individuals are susceptible, after which they might move to be infected, after which they

will either recover or die in finite time (a.s.). Our CTMC has state dependent transition rates, in which the

interarrival times of events (i.e., infections, recoveries, and deaths) are exponentially distributed.

When the social planner decides to intervene, a lockdown starts, which is assumed to decrease the infection

rate and/or increase the recovery rate. We, therefore, initially, define two policy modes m = 0, 1. At time

t = 0, the system is in m = 0, where no action is undertaken, and the social planner has an option to move

to mode m = 1 where a lockdown is in place. In our extended model we assume that there is an intermediate

mode where only mild measures are introduced. The social planner, then, has the option to either switch to

the intermediate mode first before imposing lockdown but could also choose to skip this mode. Her objective

is to minimize expected costs, which consist of sunk costs, associated with switching between modes, and

(state-dependent) running costs. We assume that all costs are monetized.

3Quality Adjusted Life Years are a commonly-used unit of measurement for the benefits of health technologies.
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Let NN = {0, 1, . . . , N}. The state space of our CTMC is given by

E = {(i, r, d) ∈ N3
N | i+ r + d ≤ N}.

Here, i, r, and d denote the number of infected, recovered, and deceased members of the population, re-

spectively. Let E be the power set of E. For (i, r, d) ∈ E, the number of susceptible members is given by

s = N − i − r − d ≥ 0. That is, the population is closed. We denote by int(E) all points (i, r, d) ∈ E such

that i+ r + d < N and i, r, d > 0.

In our CTMC the number of states the Markov chain can transition to is at most three: either a susceptible

member becomes infected so that the Markov chain moves from (i, r, d) to (i+1, r, d), or an infected member

recovers so that the Markov chain moves from (i, r, d) to (i− 1, r + 1, d), or an infected member dies, which

implies a move from (i, r, d) to (i − 1, r, d + 1). The first can only happen if i + r + d < N and the second

and third can only happen if i > 0. This implies that any state (0, r, d) such that r + d = N is always an

absorbing state.

We shall proceed with formulating the full model description for our SIR-like benchmark model for which

there are only two modes and for which lockdown can only be imposed once. In our extended, SIRD-like,

model, we will reformulate where necessary. In addition we will, for simplicity, first focus on the simplified

case where there are no deaths and all infectives recover. In that case we can think of the state space as

E = {(i, r) ∈ N2
N | i+ r ≤ N}.

The interarrival times between state transitions are assumed to be exponentially distributed with mode- and

state-dependent infection and recovery rates λm(i, r) and µm(i, r), respectively. In order to stay close to

standard SIR models, we assume for each mode m = 0, 1, that

λm(i, r) = βmi
S(i, r)

N
, and

µm(i, r) = γmi,

respectively, for some βm, γm ∈ R++. Note that the epidemic is over when the number of infectives is equal

to 0, resulting in the process being absorbed. For our specification, the set of absorbing states of the chain

is, therefore, given by

Λ = {(i, r) ∈ E |i = 0}.

In our extended model we consider the possibility of infections occurring as long as St > 0, i.e., even when

It = 0. This could happen, for instance, when infections can take place from neighboring countries. In that

case, the set of absorbing states is redefined as all states such that i = 0 and s = 0.

Let Xt := (It, Rt) ∈ E represent the state of the system at any time t ≥ 0, so that X := (Xt)t≥0 =

((It, Rt))t≥0 is our stochastic process. For m = 0, 1, we define the Markov generator Qm = (qmxy)x,y∈E with,
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for all x, y ∈ E, y 6= x,

qmxy =


λm(x1, x2) if y − x = (1, 0),

µm(x1, x2) if y − x = (−1, 1),

0 otherwise,

(1)

and qmxx = −
∑
y 6=x q

m
xy. Note that when y − x = (1, 0) an infection occurs and when y − x = (−1, 1) an

infected member recovers. We then define the (infinitesimal) transition function for m = 0, 1 as

pmxy(h) =

hq
m
xy + o(h) if y 6= x

1 + hqmxx + o(h) if y = x

, h > 0,

where o(h) collects all terms for which limh↓0
o(h)
h = 0.

From the Kolmogorov extension theorem it follows that there exists a measurable space (Ω,F) and, for

each x ∈ E and m ∈ {0, 1}, a unique probability measure Px such that for all 0 ≤ t1 < · · · tk, k ∈ N, and all

F1, F2, . . . , Fk ∈ E , it holds that

Pmx (F1, . . . , Fk) =
∑
y1∈F1

∑
y2∈F2

· · ·
∑
yk∈Fk

pmxy1(t1)pmy1y2(t2 − t1) · · · pmytk−1
ytk

(tk − tk−1).

With each mode m ∈ {0, 1}, state x ∈ E, and probability measure Pmx , we associate the expectation operator

Emx . Throughout we will use the natural filtration F := (FXt )t≥0. The set of F-stopping times is denoted by

M.

Switching from mode m to mode m′, m,m′ ∈ {0, 1}, m 6= m′, is associated with an immediate and sunk

cost Kmm′ ≥ 0, which represent all costs that are incurred once and are associated with entering or exiting

lockdown. One could think of, e.g., a change in bureaucracy, hiring people to work on legislation, local

governments’ work on policies, shops to make investments to accommodate new rules, home workers needing

office chairs at home, etc.

For each mode m = 0, 1, we define a bounded function cm : E → R+, which represents the running

health and non-health costs related to the number of infected members and, for mode m = 1, additional

economic and indirect health costs (e.g., due to missed diagnoses of other diseases) as a result of lockdown.

Letting χ{v} denote the characteristic function that is equal to 1 if v is true and 0 otherwise, we take

cm(i, r) = δE(i, r)i+ δLχ{m=1},

for some epidemic related per-patient cost function δE : E → R+, with δE(0, r) = 0, and fixed lockdown

cost flow δL > 0. Although in our analyses the cost functions are chosen to be linear, our methodology can

be applied to, e.g., convex specifications of the cost functions.

The social planner is assumed to discount costs at a constant rate ρ > 0. The decision problem is modeled
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as a nested optimal stopping problem:

V (i, r) = inf
τ1∈M

Em=0
(i,r)

{∫ τ1

0

e−ρtc0(It, Rt)dt+ e−ρτ1K01

+ inf
{τ2∈M|τ2≥τ1}

Em=1
(Iτ1 ,Rτ1 )

[ ∫ τ2

τ1

e−ρtc1(It, Rt)dt+ e−ρτ2K10

+ Em=0
(Iτ2 ,Rτ2 )

(∫ ∞
τ2

e−ρtc0(It, Rt)dt
)]}

.

(2)

The first, second, and third terms represent the present values of the costs incurred before lockdown (0 ≤

t < τ1), during lockdown (τ1 ≤ t < τ2), and after lockdown (t ≥ τ2), respectively.

Finally, we denote the basic reproduction number by Rm0 , for modes m = 0, 1. The basic reproduction

number represents the average number of infectives emerging from the introduction of a single infectious

member into a completely susceptible population. In our model, this is given by

Rm0 =
βm
γm

.

Discussion of Modeling Assumptions

After having introduced our basic model, we will now briefly discuss some of our assumptions before analysing

the model.

1. The basic reproduction number, Rm0 , is observed without error. This assumption is reasonable when

prevalence of the disease can be accurately observed even at low levels (Mutesa et al. (2020)).

2. The system is closed, i.e., we assume no births and no (non-COVID) deaths. Births can be interpreted in

two ways: either they could represent migration into the population or they could represent newborns.

For the former, the impact of migration can be studied separately, as we do in Section 4.5. The latter

is not expected to drive any of our results and is, therefore, ignored.

3. We restrict the social planner’s policy choice to two or three modes. While, theoretically, a social

planner could consider an infinite set of modes, many governments have opted for a relatively simple

traffic-light system in their responses to the COVID-19 pandemic. Hence, our model is reasonably

close to observed practice. In fact, we show in Section 4.4 that when measures are added or taken

away from the intermediate mode only the speed with which measures are phased out is impacted, but

not the sequencing of the optimal policy.

4. The social planner can only impose new restrictions once mode m = 0 is reached. While this as-

sumptions looks restrictive, we will assume throughout that switching from the intermediate mode to

mode m = 0 is costless. Therefore, in principle, mode m = 0 can be skipped and stricter measures be

introduced at any time.

5. The cost of infection is constant over the population. Throughout we use the weighted average of the

cost per patient when in need of (hospital) treatment and the cost when no treatment is necessary. In
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the latter case, costs could be related to, e.g., self-isolation. Although this assumption might not be as

realistic when It is small, since the population in our model aims to represent a country’s population

(in our case the UK), small values of It may still represent a large number of individuals.4

6. The cost of being in lockdown is constant over time. This may not always be a realistic assumption,

especially when measures are in place for a long time. Therefore, we will relax this assumption in

Appendix C.3 and show that our results do not change qualitatively.

7. Recovered members of the population are assumed to acquire immunity and that infection, recovery,

and death rates are known to the social planner. These are standard assumptions in SIR(D) models,

which we further discuss in Section 5 where we point to avenues for future research to weaken these

assumptions. In our model, the recovery rate incorporates the weighted sum of the average recov-

ery times of patients with and without symptoms, including those receiving hospital treatment (see

Section 3.2). The incubation time can be incorporated in a similar way.

2.1 Properties of the stochastic process

We first look at how X behaves as a function of time in our benchmark model. Therefore let us first study

the change in Xt = (It, Rt). One can easily see that this can be written as

1

dt
Emx

[
(dIt,dRt)

∣∣∣ Xt

]
=

1

dt
Emx

[
dXt

∣∣∣ Xt

]
=

1

dt

∑
y∈E\{x}

qmxy(y − x)dt

= ( λm(It, Rt)− µm(It, Rt) , µm(It, Rt) ),

for all x ∈ int(E), m = 0, 1, where the last step follows from (1). This gives the intuitive result that the

number of infectives is expected to go up if, and only if, λm(It, Rt) > µm(It, Rt) and the number of recovered

members is always expected to increase. If control measures in mode 1 lead to a decrease in the transmission

rate, i.e., if λ2(·) < λ1(·), then there exists a set of states in E for which the number of infections is expected

to go down in mode 1, whereas it is expected to go up for the same states in mode 0. For our SIR-like model,

the expected change in Xt equals

1

dt
Emx [dIt | Xt] = βmIt

S(It, Rt)

N
− γmIt, and

1

dt
Emx [dRt | Xt] = γmIt,

so that in expectation we obtain the dynamics of the traditional deterministic SIR model.

4An alternative way of modeling would be to consider δE as two branches where a fraction of It receives hospital treatment.

Since we already take into account that different members require different treatment (if at all), we do not expect that this

more complicated version would lead to qualitatively different results.
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One of the convenient features of the SIR model is that the state space, E, can equivalently be represented

by a simple lattice structure; that is, states can be ordered to form a very simple tree describing all potential

paths. Figure 1 illustrates this lattice structure for the case N = 4. These lattice structures are useful

in determining the value functions in all modes and determining the stopping sets of our optimal stopping

problems.

The volatility of the process is given by

1

dt
Emx [(dI2t ,dR

2
t )] =

1

dt

∑
y∈E

pmxy(dt)(y − x) � (y − x)

=
∑

y∈E\{x}

qmxy(y − x) � (y − x)

= λm(It, Rt)((1)2, 02) + µm(It, Rt)((−1)2, (1)2)

= ( λm(It, Rt) + µm(It, Rt) , µm(It, Rt) ),

where � denotes the component-wise multiplication of vectors and where we use that (Emx dIt)
2 = (Emx dRt)

2 =

0 for all m = 0, 1.

Note that when the function λm(·) and/or µm(·) changes, there is a direct effect on the speeds with which

the process moves through the tree. When the volatility increases, costs are incurred over a shorter period of

time (in expectation). Therefore, an increase in, e.g., β has two effects. Individuals are infected at a higher

rate, but at the same time, the volatility of the process is also increased. The basic reproduction number is

given by Rm0 = βm
γm
, for modes m = 0, 1. Therefore one can alternatively write

1

dt
Emx [(dI2t ,dR

2
t )] = ( βmIt

S(It, Rt)

N
+ γmIt , γmIt ) = γmIt (Rm0

S(It, Rt)

N
+ 1, 1).

as more commonly done for SIR models.

(0,0)∗ (0,1)∗ (0,2)∗ (0,3)∗ (0,4)∗

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2)

(3,0) (3,1)

(4,0)

��
�*

��
�*

��
�*

��
�*

j j j j

HHHj
HHHj

HHHj��
�*

��
�*

��
�*

H
HHj �

��*

��
�*

��
�*HHHj

HHHj

Figure 1: Example of a lattice for N = 4, describing all potential paths. All absorbing states in the

benchmark model are labeled with an asterisk. For our full model we add the additional transitions with

the dotted arrows when there is an exogenous source of infections.
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3 Model Solution

We solve the optimal stopping problem (2) by working backwards. So, we start with the situation where the

social planner has come out of lockdown and there are, thus, no options left. We will illustrate our findings

with our benchmark model. In Section 4 the full model is analyzed. Note that then, the social planner has

a new option to go into lockdown.

3.1 Value after lockdown

For our benchmark model, after lockdown has been entered and exited, the social planner has no more

decisions to take, i.e., we remain in mode m = 0 perpetually. For each x ∈ E, we denote the total expected

discounted costs after lockdown (under P0
x) by G(x). That is,

G(x) = Em=0
x

[∫ ∞
0

c0(Xt)e
−ρtdt

]
. (3)

The following proposition shows that G(x) can be defined recursively, that is, it can be written as a function

of all states the chain can transition to when leaving x.

Proposition 1 Let x ∈ E. Then, G(x) is recursively defined as

G(x) =
c0(x)

ρ− qm=0
xx

+
∑

y∈E\{x}

qm=0
xy

ρ− qm=0
xx

G(y). (4)

Moreover, for x ∈ Λ, it holds that

G(x) =
c0(x)

ρ
.

Proof: See Appendix A.

The expression in (4) consists of two terms. The first term relates to the costs incurred while being in

state x. After a transition to some state y 6= x, the costs after the transition are represented by G(y). The

present value of these costs after the event of a transition, for all possible subsequent states, is then given

by the second term multiplied by qmxy from the Markov generator which relates to the transition probability.

Thus, the second term is the expected present value of costs after the next transition.

We observe that it is not guaranteed that the recursive formulation has a solution. However, due to the

nature of the lattice that corresponds to our problem, a sufficient condition would be that if the process

starts in a state that is not in Λ, i.e., the process is not absorbed, then the process will reach a state in Λ

a.s. at some future point in time.

Since the chain is absorbing, it is easy to see that G(x) can be determined for all x by working recursively

through the tree. First, for x ∈ Λ, G is explicitly given. For x ∈ E\Λ, G in (4) can be determined using a

lattice method, finding G(x) for all x = (i, r) ∈ E such that i + r = N,N − 1, N − 2, . . . , 1. Then, for any

x ∈ int(E), one can check that G(x) is equal to

G(x) =
c0(x)

ρ+ µ0(x) + λ0(x)
+

µ0(x)

ρ+ µ0(x) + λ0(x)
G(x+ (−1, 1)) +

λ0(x)

ρ+ µ0(x) + λ0(x)
G(x+ (1, 0)).
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3.2 Value in lockdown

In mode 1, the social planner has lockdown in place. This ends when the social planner decides to switch

back to mode m = 0 at sunk cost K10. After this switch, the value function is given by G, cf., (3).

Therefore, in mode 1, the social planner is faced with the optimal stopping problem

F (x) = inf
τ∈M

Em=1
x

[
e−ρτ (G(Xτ ) +K10) +

∫ τ

0

c1(Xt)e
−ρtdt

]
. (5)

The integral captures the present value of costs while being in mode m = 1, i.e., until lockdown is exited at

time τ . The present value of costs incurred after τ are given by the first term.

To find the value in this mode we need to distinguish states where it is decided to switch to mode 0

and where it is decided to delay exiting lockdown. The following proposition shows that problem (5) has

a solution that allows us to split the state space E into a continuation set C1 ∈ E and a stopping set

D1 = E\C1 ∈ E such that the social planner decides to stay in mode 1 for all x ∈ C1 and to switch to

mode 0 for x ∈ D1.

Proposition 2 There exists a unique function ϕ : E → R+ such that

ϕ(x) = min

G(x) +K10 ,
c1(x)

ρ− qm=1
xx

+
∑
y 6=x

qm=1
xy

ρ− qm=1
xx

ϕ(y)

 . (6)

The function ϕ solves the optimal stopping problem in (5), i.e., F = ϕ. The optimal stopping time is the

first exit time of the set C1, where

C1 = {x ∈ E : ϕ(x) < G(x) +K10}.

Proof: See Appendix A.

The first term on the right-hand side in (6) represents the value if the social planner decides to switch to

mode m = 0 immediately, i.e., when x is in the stopping set. The second term is the value when x is in the

continuation set so that the decision to come out of lockdown is “delayed”: it is the sum of the costs while

being in state x and the expected present value of costs after transition.

The stopping set, for mode m = 1, is then given by

D1 = E\C1 = {x ∈ E : ϕ(x) = G(x) +K10}.

Since for all x ∈ Λ it holds that qmxy = 0 for all y ∈ E, F in (6) can directly be determined. For

x ∈ E\Λ, F (x) is recursively determined as a function of the states the chain can transition to when leaving

x. Equivalent to what we found for G, F can be found using an induction method where (6) is solved for all

(i, r) ∈ E, such that i+ r = N,N − 1, N − 2, . . . , 0.

For further reference, the first exit time of a set C ∈ E is defined as the stopping time

τC := inf{t ≥ 0 | Xt 6∈ C}.
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Notice that for the set C1 ∈ E it follows that

F (x) =


c1(x)

ρ− qm=1
xx

+
∑

y∈E\{x}

qm=1
xy

ρ− qm=1
xx

F (y) if x ∈ C1,

G(x) +K10 if x ∈ E\C1.

Illustration Table 1 summarizes our baseline parameterization. The resulting corresponding basic repro-

duction numbers are R0
0 = 3, R1

0 = 1.5 for modes 0 and 1, respectively. Starting with mode 0, the empirical

literature is not unanimous in its estimates for the basic reproduction rate R0
0. However, as pointed out

by, e.g., Liu et al. (2020), the median and average estimates are roughly 3 for empirical studies on mostly

China. Toda (2020) estimates R0
0 to be equal to 2.7 for the UK and 3.7 for the USA. An estimate close to

3 is also in line with empirical studies by, e.g., Roques et al. (2020), Zhao et al. (2020), Salje et al. (2020),

and You et al. (2020). The value of γm is estimated to be around 1
10 by, e.g., Zhou et al. (2020), i.e. it takes

on average 1
γm

= 10 days for people to recover. Setting γm = 1
10 is also done by, e.g., Roques et al. (2020),

Patterson-Lomba (2020), and Toda (2020). He et al. (2020) find 9.5 days: 2.5 for being infected without

symptoms and 7 days with symptoms. Moreover, it was estimated by Salje et al. (2020) that it takes 2.3

days for patients to recover with mild symptoms and, estimated by Di Domenico et al. (2020), it takes 17

days for people in ICU.

For mode 1, we follow, e.g., Garriga et al. (2020), Patterson-Lomba (2020), and Kruse and Strack (2020),

in assuming that R1
0 is roughly half of R0

0 (for some empirical studies see, e.g., You et al. (2020)), while

assuming that the rate of recovery is not affected by the lockdown.

We assume that all costs are measured in thousands GBP. For the epidemic related cost parameter δE

we use the study by Bethune and Korinek (2020) and assume that the virus imposes a cost of $50k for each

infective, so that, using the exchange rate $1=£0.8, δE = (0.8)(50)µm = 4. The lockdown related costs can

Param. Description Value

β0 Infection rate in mode 0 [days−1] 0.3

β1 Infection rate in mode 1 [days−1] 0.15

γ0, γ1 Recovery rate [days−1] 0.1

N Size of host population 500

ρ Discount rate 0.1/365

K01 Sunk costs of entering lockdown £2 mln

K10 Sunk costs of exiting lockdown 0

δE cost per patient £4,000 per day

δL per-period cost of lockdown £18,840 per day

Table 1: Model parameters and their baseline values. Our choice of N can be interpreted as saying that the

fraction of the population that is susceptible/infected/recovered is measured in discrete steps of 0.2% of the

total population.
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(a) Stopping set mode 1. (b) F and G as functions of It with Rt=0 = 0.

Figure 2: Stopping set (Panel (a)) and value function (Panel (b)) for the optimal stopping problem for

switching to mode 0.

R0
0 = 3, R1

0 = 1.5, γ0 = γ1 = 0.1, N = 500, ρ = 0.1/365, K01 = 2000, K10 = 0, δE = 4, and δL = 1200
63.7

.

be estimated to be £2.4b per day5, which then translates to δL = 2.4b N
63.7m = 1200

63.7 ≈ 18.84, assuming the

British population to be 63.7m.

We solve (6) employing a lattice method as described above. When starting with states in Λ, it can be

easily determined whether staying in lockdown perpetually is optimal or whether coming out of lockdown is

optimal. When assuming Dm and Cm to be empty at the outset, states in Λ can either be allocated to Dm or

Cm. Next, states that transition to states in Λ can be studied: the value as given by (6) can be determined

and these states can be assigned to the appropriate set. Recursively, one can continue this process until all

states have been treated.

Panel (a) of Figure 2 illustrates the stopping set for this parameterization. Throughout this paper, we

will use orange to represent states where it optimal to come out of (full) lockdown. Generally, the stopping

set consists of two types of states: states that are in Λ, i.e. all absorbing states, or are close to Λ, and states

(i, r) such that i + r is close to N . In the former case, the process is close to absorption or is absorbed,

which means that lockdown-related costs outweigh any benefits of suppressing the epidemic. Therefore, it is

optimal to lift lockdown. In the latter case, the number of susceptibles is relatively small. Since staying in

mode 1 only keeps the infection rate low, staying in mode 1 is costly and, therefore, it is optimal to switch

and lift lockdown.

Panel (b) of Figure 2 shows a cross-section of the value function F , as well as the cost function G, for the

case where Rt = 0 for t = 0. Other cross-sections of the functions F and G, qualitatively, look the same.

Panel (b) illustrates that the value function F (X) in the continuation set exhibits lower total costs than

G(X) +K10, i.e. if it were to stop. To understand this, consider the total expected accumulated discounted

costs if the social planner decides ex-ante to always stay in mode 1. In that case, the lockdown related costs

5The Times, April 6 2020, https://www.thetimes.co.uk/edition/business/consumer-confidence-at-its-lowest-since-

the-financial-crisis-p6phf7x3k.
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are incurred even when the number of infectives is low, but exhibits lower expected costs per unit of time

when the number of infectives is high relative to being in mode 0. The curve F takes advantage of lower

expected cost per unit of time when the number of infectives is high, with the prospect of not incurring

lockdown related cost when the number of infectives is low. Comparing G(X)+K10 to F (X) illustrates that

the option to switch has led to a lower present value of expected total costs in the continuation set. In the

stopping set, F (X) = G(X) +K10.

Figure 3 illustrates the development of the disease as a function of time. Panel (a) relates to the situation

depicted in Figure 2(b), and shows the expected number of infectives when starting in state (i, r) = (200, 0)

for modes 0 and 1, respectively. The total number of infectives and the resulting (health and economic)

related costs are lower in mode 1 but, in addition, lockdown costs are incurred. Irrespectively, there is a

steep incline of infectives in mode 0 at t = 0 (a “second wave”), which results in it being optimal for the

social planner to delay the moment of exiting lockdown. Therefore the optimal total costs are lower when

remaining in mode 1 for a (short) period of time and then switching to mode 0.

Panel (b) depicts the incurred cost per unit of time after lockdown (black) and when starting while

in lockdown (dotted), when considering the expected path of (It, Rt), i.e. cm(EmX0
(Xt)), m = 0, 1, with

X0 = (I0, R0) = (1, 0). For the dotted curve, i.e. when starting in mode 1, notice that at t = 0 the curve

exceeds the solid curve representing costs incurred when starting in mode 0. Even though in both cases

(It, Rt) = (1, 0), in mode 1 additional lockdown-related costs are incurred which are independent of the

number of infectives. Clearly, the costs peak earlier for mode 0, reflected by the solid curve, and at the same

time the expected costs for all t < 68 are higher than the costs incurred when in mode 1. This also illustrates

that lockdown is lifted only when the number of infectives is well past its peak to prevent a (severe) second

(a) Expected number of infectives when (I0, R0) =

(200, 0).

(b) Expected instantaneous costs when starting in

mode 0 and mode 1 with (I0, R0) = (1, 0).

Figure 3: Expected development of It for both modes (Panel (a)) when (I0, R0) = (200, 0) and expected

instantaneous costs cm (Panel (b)) for the optimal stopping problem for switching to mode 0 as functions of

time.

R0
0 = 3, R1

0 = 1.5, γ0 = γ1 = 0.1, N = 500, ρ = 0.1/365, K01 = 2000, K10 = 0, δE = 4, and δL = 1200
63.7

.
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wave.

3.3 Value before lockdown

In mode 0, before lockdown has started, the social planner is faced with the optimal stopping problem

V (x) = inf
τ∈M

Em=0
x

[
e−ρτ (F (Xτ ) +K01) +

∫ τ

0

c0(Xt)e
−ρtdt

]
. (7)

The integral captures the present value of costs while being in mode m = 0, i.e., until lockdown is imposed

at time τ . The present value of costs incurred after τ are given by the first term.

The following proposition shows that also for the stopping problem in (7) the solution splits the state

space into a stopping set and a continuation set.

Proposition 3 There exists a unique function ψ : E → R+ such that

ψ(x) = min

F (x) +K01 ,
c0(x)

ρ− qm=0
xx

+
∑
y 6=x

qm=0
xy

ρ− qm=0
xx

ψ(y)

 . (8)

The function ψ solves the optimal stopping problem (7), i.e., V = ψ. The optimal stopping time is the first

exit time of the set C0, where

C0 = {x ∈ E : ψ(x) < F (x) +K01}.

Proof: See Appendix A.

Similar to Proposition 2, (8) contains two terms: the first term giving the value when going into lockdown

immediately and the second term representing the present value of costs when x is in the continuation set

so that lockdown is delayed.

The stopping set, for mode m = 0, is then given by

D0 = E\C0 = {x ∈ E : ψ(x) = F (x) +K01}.

It is easy to see that (8) can be determined using an induction method as described for G and V .

Illustration We illustrate Proposition 3 for the parameterization of Section 3.2. Figure 4 illustrates the

stopping sets for both stopping problems: the blue and orange areas represent all states for which it is

optimal to switch from mode 0 to mode 1 and vice versa, respectively. The gray area is the set of all states

for which there is a positive probability that the blue area can be reached. So, when the process is in a state

in the white area, then it will never be optimal to enter lockdown. Going back to Figure 3(b), the difference

between the two curves illustrates that instantaneous costs, when not in lockdown, increase more rapidly for

small values of t. As such, an expected positive gain from switching to mode 1 vanishes if the social planner

waits too long, demonstrating that switching in early stages of the process (when It and Rt are both “small”)

is optimal and that switching is not optimal in later stages of the process.
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(a) Stopping set for switching to mode 1 (blue) and to

mode 0 (orange). Gray states are states in the continu-

ation set for which the blue area may be reached.

(b) V , F , and G as functions of It with Rt=0 = 0.

Figure 4: Stopping set (Panel (a)) and value functions (Panel (b)) for the optimal stopping problem for

switching to mode 1.

R0
0 = 3, R1

0 = 1.5, γ0 = γ1 = 0.1, N = 500, ρ = 0.1/365, K01 = 2000, K10 = 0, δE = 4, and δL = 1200
63.7

.

The value functions V and F as well as the total costs function G are depicted in Figure 4(b). The

dash-dotted curve represents the value in mode 0, V , at time t = 0. Note that the solid curve representing

the graph of the function G, i.e., the value in mode 0 after the second switch, also represents the graph of

the value function V if it is optimal to stay in mode 0 from time t = 0 onward, i.e., when lockdown is never

implemented.

We can now observe the following for the two options. The continuous pasting principle is visible for the

option to switch to mode 0 from mode 1: the dotted curve and the solid curve have approximately the same

ascend around the boundary of the stopping set. For the first switching option, instantaneous switching

is optimal when I0 is small, as Panel (a) illustrated. Therefore, V (I0, 0) coincides with F (I0, 0) + K01 for

sufficiently small I0, the latter represented by the upper dotted curve in Panel (b). Then, instantaneous

switching is optimal as long as the value to permanently stay in mode 0 exceeds F+K01. Indeed, V coincides

with G for high values of I0 where switching to mode 1 is not optimal.

Nevertheless, for I0 (very) close to zero, there is a positive value of waiting: it is optimal for the social

planner to delay switching until D0 is reached. For these values there is a positive probability that at the

next transition, or in a small number of transitions, the process hits an absorbing state and in that case,

the disease will not be able to spread further so that lockdown is redundant. Since lockdown is associated

with a fixed switching cost, the expected total cost involved with entering lockdown is not outweighed by

the expected gain. This is illustrated by Figure 5. Panel (a) shows for the same parameterization as before

that, for I0 < 3 and R0 = 265, waiting is optimal. The graphs of the resulting functions V , F , and G are

shown in Panel (b).
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(a) F + K01 as a function of It with Rt=0 = 265 and

the expected total cost if the social planner decided to

stay in mode 0 permanently (dashed).

(b) F , V , and G as functions of It with Rt=0 = 265.

Figure 5: Value functions and total cost functions with R0 = 265 for the optimal stopping problem for

switching to mode 1 as functions of time.

R0
0 = 3, R1

0 = 1.5, γ0 = γ1 = 0.1, N = 500, ρ = 0.1/365, K01 = 2000, K10 = 0, δE = 4, and δL = 1200
63.7

.

4 Optimal Policy

In this section we first study the social planner’s optimal stopping strategy in our SIR-like base-case model

further. Then, we expand our benchmark model in the following ways.

1. We will first extend the number of classes individuals can be in. In addition to agents being infected

(I), recovered (R), and susceptible (S), we will allow for events where individuals are deceased (D).

This model is the equivalent of a standard SIRD model.

2. Next, we relax the assumption that lockdown can only be imposed once.

3. Additional modes are introduced, allowing the social planner to phase lockdown in and/or out.

4. The policy regarding open borders is studied. Infections can occur even when It = 0.

5. Restrictions imposed by health care capacity are taken into account.

Finally, we execute an extension where we study the stopping sets in a scenario where the lockdown

related costs are increasing over time. The analysis is concluded by a short summary of the comparative

statics; the full analysis can be found in Appendix C.
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4.1 SIR

Recall that the transition rates are given by

λm(It, Rt) = βmIt
S(It, Rt)

N

= Rm0 γmIt
N − It −Rt

N
,

µm(It, Rt) = γmIt,

for modes m = 0, 1, where Rm0 = βm
γm

. In this section, we will parameterize the dynamics by Rm0 and µm, for

modes m = 0, 1. Recall that the process has the following properties

1

dt
Emx

[
(dIt,dRt)

∣∣∣ Xt

]
= γmIt

(
Rm0

S(It, Rt)

N
− 1, 1

)
, (9)

1

dt
Emx

[
(dI2t ,dR

2
t )
∣∣∣ Xt

]
= γmIt

(
Rm0

S(It, Rt)

N
+ 1, 1

)
. (10)

For the illustrations we will use the same parameterization as before.

Figure 6 depicts the expected evolution of the number of infected, susceptible, and removed individuals

as a function of time t. For panels (a) and (b), the brown region represents the total number of active cases

of infectives at each moment in time. The blue area depicts the number of susceptible individuals and the

red area, then, are all remaining individuals that are labeled as removed/recovered. At time t = 0, 490

individuals are susceptible and at time t = 80, in mode 0, a very large share of the host population has

been infected and subsequently recovered. This is different for mode 1 where a significant share of the host

population has not been infected. This would apply if at time t = 0, the social planner had decided to

immediately switch to mode 1. Notice that the curve of infectives in mode 1 is flatter than the curve in

mode 0. Panel (c) juxtaposes the expected number of infectives at each point in time for modes 0 and 1.

(a) Mode 0. (b) Mode 1. (c) Expected number of infections as a

function of time.

Figure 6: Expected number of infected (brown), susceptible (blue), and recovered/removed (red) individuals

for mode 0 (Panel (a)) and mode 1 (Panel (b)). Panel (c) shows the number of infectives in expectation

together. Here, (I0, R0) = (10, 0).

R0
0 = 3, R1

0 = 1.5, γ0 = γ1 = 0.1, and N = 500.
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Figure 7 illustrates the stopping sets. In both panels the blue area is the set of all states where it is

optimal to switch from mode 0 to mode 1. The orange area represents all states where it is optimal to switch

back to mode 0 from mode 1. The panels also feature stream plots for the system

İ = Rm0 γmI(N − I −R)− γmI,

Ṙ = γmI.

This system represents the expected evolution of It and Rt for modes m = 0, 1 for any point in the grid that

represents the state at time t = 0. The black affine curve represents all points (i, r) such that the expected

change in the number of infectives is 0 in the next instance of time, i.e., İ = 0. Panels (a) and (b) show the

stream plot for modes 0 and 1, respectively. The plot shows that, in expectation, the maximum number of

infectives at any time t is lower for mode 1, i.e. supt E
m=1
x It ≤ supt E

m=0
x It. From the blue area in the figure,

two implications for the optimal decision to impose lockdown jump out. First, in mode 0, it is optimal to

undertake action as soon as the first infectives have been confirmed. The stopping set in mode 0, the blue

area, covers the combinations of infectives and recovered individuals close to the origin of the plot, which

indicates that switching is optimal during the early stages of a potential epidemic. Second, if the social

planner waits too long or when the disease is discovered late, the process may start outside the blue and

gray areas, implying that it will a.s. never be optimal to switch to mode 1. This could happen, for instance,

due to a lack of testing in the early stages. If the epidemic gets discovered when the state is in the gray area,

then it might be optimal to impose a lockdown in the future, but not immediately. So, the social planner

should act swiftly if the disease is detected early on. If the process leaves the blue area, before switching has

taken place, the expected gain from switching is not enough to compensate for the total expected lockdown

costs and the sunk cost of entering lockdown.

(a) Stream plot for expected paths in mode 0. (b) Stream plot for expected paths in mode 1.

Figure 7: Stopping sets for switching between mode 0 and 1 (blue) and for switching between mode 1 back

to mode 0 (orange). Figures include a vector/stream plot which indicate the direction of It and Rt in

expectation.

R0
0 = 3, R1

0 = 1.5, γ0 = γ1 = 0.1, N = 500, ρ = 0.1/365, K01 = 2000, K10 = 0, δE = 4, and δL = 1200
63.7

.
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4.2 SIRD

In our SIR-like model it is assumed that all infected individuals will recover. In order to study the impact

of infection fatality rates on the optimal switching times, the model can be extended, as described in

Section 2, to include an additional class of individuals: deceased (D). For our continuous-time Markov chain,

Xt = (It, Rt, Dt) represents the state of the system at each time t ≥ 0 such that Xt ∈ E with E = {(i, r, d) ∈

N3
N | i+ r+d ≤ N}, where Dt is the number of deceased individuals. Denote by θm(It, Rt, Dt) = φm

1−φm
γmIt

the mortality rate, where φm denotes the death rate, i.e., the fraction of member that dies due to an infection

(also see, e.g., Bastos and Cajueiro (2020)). Then, the Markov generator is defined as Qm = (qmxy)x,y∈E

with, for m = 0, 1,

qmxy =



λm(x1, x2, x3) if y − x = (1, 0, 0),

µm(x1, x2, x3) if y − x = (−1, 1, 0),

θm(x1, x2, x3) if y − x = (−1, 0, 1),

0 otherwise.

We will use an estimate of 2% for the death rate.6 The estimated average number of years lost per deceased

individual is estimated to be 16 (Pifarré i Arolas et al. (2021)) and for the quality-adjusted life-year (QALY),

we will assume that the cost per QALY is equal to £6.8k.7 Thus, per time unit the cost per individual in

D is δD = (16)(6.8)ρ in each mode. Note that this model can be solved recursively as well, using the same

lattice method as described in Section 3.2.

Results What we find is that if in our SIR-like model a state (i, r) is in a stopping set, then any state

(i, r′, d′) ∈ E such that r′ + d′ = r is in the equivalent stopping set for the SIRD model. Intuitively, since

the cost associated with any deceased individual is sunk, further actions taken by the social planner cannot

change outcomes that happened in the past. Rather, the social planner will need to take into account the cost

of future deaths. Note that this result does not depend on our parameterization. In the SIRD-like model the

total costs are higher compared to the SIR-like model because, in addition to the lockdown related costs and

the epidemic related per-patient costs, we add that, on average 2% of the transition out of I are associated

with a positive shock of (16)(6.8)k to the present value of total costs. Since the costs are higher, we find

that the blue area has slightly increased and the orange area has slightly shrunk, as illustrated by Figure 8a.

Figure 8b then shows the impact of the mortality rate. Setting the rate as high as 5% allows us to more

6We base ourselves on the data presented on https://coronavirus.data.gov.uk/ where one can check that the death rate

is highly volatile and varies between roughly 0.4% and 3.5%.
7To estimate the cost per QALY, we refer to a report presented by the UK’s Department of Health and Social Care (DHSC)

and Office for National Statistics (ONS), published on 9 September 2021, “Direct and Indirect health impacts of COVID-19

in England”. The cost per QALY differs per region and we have chosen to use Yorkshire’s estimate, which is below London’s

but above estimates for some other regions (e.g., North East). We will argue that a deviation from this estimate will not

qualitatively change our results.
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(a) φm = 2%. (b) φm = 5%.

Figure 8: Stopping sets for SIRD model.

R0
0 = 3, R1

0 = 1.5, γm = 0.1, N = 500, ρ = 0.1/365,

K01 = 2000, K10 = 0, δE = 4, δL = 1200
63.7

, and δD = 10.88
365

.

clearly observe the impact. In line with what we saw for Panel (a), a higher mortality rate leads to an

expansion of the blue set, especially for states where Rt is small. In addition, we observe a slight change in

the orange area in a way that the social planner delays coming out of lockdown, predominantly for states

where Rt is small.

An alternative way to model the cost associated with D is by incurring a one-off cost at each transition,

i.e., when an individual moves from R to D, a cost of (16)(6.8)k is incurred. This way of modeling would

result in the same (qualitative) result.

For what follows, we will continue by illustrating the stopping sets in a way as done in Figure 8, i.e., by

adding up all individuals in R and D.

In a similar way other models can also be studied using our set-up, by extending the number of classes

of individuals. This includes for instance, the SEIR model (see, e.g., Wang et al. (2020), Atkeson (2020))

where susceptible individuals become exposed before infected.

4.3 A Sequence of Lockdowns

Since costs associated with lockdown can be high, it might be optimal for the social planner to impose a

sequence of shorter lockdowns, rather than imposing one long one. This means the social planner has the

option to alternate between modes. In terms of our value function, for any lockdown k = 1, . . . ,K,8 we

can denote Vk, Fk, and Gk as the value functions equivalent to (7), (5), and (3), respectively. Then, Gk

coincides with Vk+1 and thus has embedded the option to go back into lockdown. This applies to any k < K,

8For illustration purposes we will assume that the social planner can only impose K ≥ 2 lockdowns. However, this may not

be an unrealistic assumption when people are more reluctant to obey restrictions as more lockdowns are imposed.
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i.e., for k = K, Gk is the value as defined in (3). We assume that the switching costs associated with the

first time lockdown is imposed is not smaller than the costs assumed for the benchmark model. These costs

include, e.g., investments undertaken by companies to provide a safe environment such as the provision of

sneeze guards or, e.g., the purchase of equipment and software to be able to work from home. However, for

subsequent lockdowns these investment do not need to be undertaken again and as such the switching costs

for later lockdowns are assumed to be a fraction of the K01.

Results We start by assuming that the switching costs are equal 1% of K01. Figure 9 shows the stopping

set for our parameterization. Panel (a) shows that the stopping set for the first lockdown is not qualitatively

different from what we have found before. The result that when the epidemic is discovered too late (i.e.,

when the number of infected individuals is sufficiently high), intervention is no longer optimal is also present

here. Since the first lockdown is concerned with substantial switching costs, the intuition as found for the

SIR-like model applies here as well: the time period during which there are gains from interventions is too

short to weigh against the costs. In addition, we find again that it is optimal to go into lockdown immediately

when the first infections occur.

Panels (b) and (c) illustrate that, when switching costs are very low, subsequent lockdowns are always

immediately imposed unless we have reached a state that lies in the stopping set for coming out of lockdown.

In other words, lockdown ends when the number of infections or the number of susceptible individuals is low,

as before, but is imposed again when infections are rising. Surprisingly, the orange area in Panel (a) is not

substantially larger than the orange area in the SIR model. This means that, despite our initial intuition,

it is not optimal to come out of lockdown temporarily: the increase in the infection rate and thereby the

increase in infections is not outweighed by a recess of control measures. The only noticeable difference is for

states where It is close to 0. Then, for Rt +Dt > 290 we see that the orange area is somewhat thicker which

(a) Stopping sets for first time going in

and coming out of lockdown.

(b) Stopping sets for subsequent lock-

downs k = 2, . . . ,K − 1.

(c) Stopping set for lockdown K.

Figure 9: Stopping sets when the social planner can alternate between modes K times with switching costs

0.01K01 for imposing subsequent lockdowns.

R0
0 = 3, R1

0 = 1.5, γm = 0.1, φm = 2%, N = 500, ρ = 0.1/365,

K01 = 2000, K10 = 0, δE = 4, δL = 1200
63.7

, and δD = 10.88
365

.
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indicates that the option for subsequent lockdowns makes that the social planner comes out of lockdown

sooner. Intuitively, these are the states where the increase in infection rate is least “harmful”. The same

applies to subsequent lockdowns.

Figure 10 illustrates the same figures but when switching costs for later lockdowns are 50% of K01 and

confirms what we found before. Although the blue area has shrunk for lockdowns k ≥ 2, the social planner

does not change its strategy for the first lockdown.

In what follows we will analyze the stopping sets for the first lockdown as long as subsequent lockdowns

are not qualitatively different from what we have discussed above.

(a) Stopping sets for first time going in

and coming out of lockdown.

(b) Stopping sets for subsequent lock-

downs k = 2, . . . ,K − 1.

(c) Stopping set for lockdown K.

Figure 10: Stopping sets when the social planner can alternate between modes K times with switching costs

0.5K01 for imposing subsequent lockdowns.

R0
0 = 3, R1

0 = 1.5, γm = 0.1, φm = 2%, N = 500, ρ = 0.1/365,

K01 = 2000, K10 = 0, δE = 4, δL = 1200
63.7

, and δD = 10.88
365

.

4.4 Phased Lockdown

So far, we have only considered two states: state m = 0 where no intervention takes place and state m = 1

where a lockdown is imposed. Our set-up allows for extensions where more modes can be considered. Thereto

an intermediate mode is introduced. In this mode only mild measures are in place, such as social distancing.

These come with a running cost that is lower than those of a full lockdown and higher than in mode m = 0.

Costs for the intermediate mode can be associated with, e.g., shops and restaurants allowing a lower number

of consumers and investments made to be able to adhere to these measures.

We redefine and relabel the modes in the following way. In mode m = 0 there is no intervention, in mode

m = 1 mild measures are in place, and mode m = 2 represents a full lockdown. In other words, what was

previously called mode 1 is now mode 2. Correspondingly, we can distinguish lockdown related costs δmL
for modes m = 1 and m = 2. Our parameterization for illustration purposes for modes m = 0 and m = 2

is the same as before, i.e. R0
0 = 3, R2

0 = 1.5, and γ0 = γ2 = 0.1. For mode 1 we will consider two cases:

R1
0 = 2 and R1

0 = 2.25, with γ1 = 0.1. For mode m = 2, lockdown related costs are equal to 1200
63.7 , as

before, and for mode m = 1 we consider three cases: δ1L = 1
3δ

2
L,

1
2δ

2
L, and

2
3δ

2
L. Finally, switching costs are
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K01 = K02 = 2000 and K12 = K21 = K10 = K20 = 0. Assuming K12 = 0 allows us to consider scenarios

where the social planner decides to never stay in mode 2 with a positive period of time and to therefore

decide to switch to mode m = 0 from m = 1, thereby essentially skipping mode m = 2. Later we will study

what happens if K12 > 0. We will again use blue to denote states where it is optimal to leave mode 0 and,

for consistency, we use orange for states where it is optimal to leave the mode with the highest R0, in this

case mode 2. We introduce brown as the color related to coming out of our, new, intermediate mode.

Figure 11 illustrates the stopping sets for R1
0 = 2 and δ1L = 1

2δ
2
L. Panel (a) illustrates the sets for the

scenario with only 2 modes as in the previous section. Panel (b) illustrates the stopping sets for the scenario

with 3 modes. The brown area contains all states of the stopping set where it is optimal to switch from

the intermediate mode to mode 0, and the orange area contains states that are part of the stopping set for

switching from a full lockdown to social distancing. Although not visible, states of the brown set are also

states of the stopping set for switching from full lockdown to social distancing: if (I0, R0) is in the brown

area, then it is optimal to switch from mode 2 immediately to mode 0. The orange set in Panel (a) contains

fewer states than the orange (plus brown) region in Panel (b), but more than the brown region itself.

The blue area consists of all points where it is optimal to switch from mode 0 to mode 1. Panel (c)

distinguishes the sets for switching to mode 1 (blue) from mode 0 and to mode 2 (blue and light blue) from

mode 1. This panel illustrates that all states for which it is optimal to introduce social distancing form

a subset of area where switching to a full lockdown is optimal. Therefore, the only optimal policy is to

implement a full lockdown. Numerical analysis shows that this result holds for a wide range of a parameter

values. Further, notice that there are two light blue areas in Panel (c). The set close to the line i+ r = N

denotes all points such that, when currently in mode 1, it is optimal to switch to mode 0 without spending

a positive amount of time in mode 2, since these states are also part of the orange and brown area.

Figure 12 illustrates what happens when changing δ1L and R1
0. In all panels, the blue area is not qual-

itatively different, which does not come as a surprise since no time is spent in mode 1 after leaving mode

(a) Stopping stets with two modes. (b) Stopping sets with three modes. (c) Stopping sets for phasing in.

Figure 11: Stopping sets with three modes with R1
0 = 2 and δ1L = 1

2δ
2
L.

Brown: switching from mode 1 to mode 0, orange: from mode 2 to mode 1, blue: from mode 0 to 1 and 1 to 2

(light). R0
0 = 3, R2

0 = 1.5, γm = 0.1, φm = 2%, N = 500, ρ = 0.1/365,

K01 = K02 = 2000 and K· = 0 otherwise, δE = 4, δ2L = 1200
63.7

, and δD = 10.88
365

.
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(a) R1
0 = 2, δ1L = 2

3
δ2L. (b) R1

0 = 2, δ1L = 1
3
δ2L. (c) R1

0 = 2.25, δ1L = 1
2
δ2L. (d) R1

0 = 2.25, δ1L = 1
3
δ2L.

Figure 12: Stopping sets with three modes with different R1
0 and δ1L.

Brown: switching from mode 1 to mode 0, orange: from mode 2 to mode 1, blue: from mode 0 to 1 and 1 to 2

(light). R0
0 = 3, R2

0 = 1.5, γm = 0.1, φm = 2%, N = 500, ρ = 0.1/365,

K01 = K02 = 2000 and K· = 0 otherwise, δE = 4, δ2L = 1200
63.7

, and δD = 10.88
365

.

0. Panels (a) and (b) show the stopping sets for R1
0 = 2 with δ1L = 2

3δ
2
L > 1

2δ
2
L and δ1L = 1

3δ
2
L < 1

2δ
2
L,

respectively. When staying in mode 1 is more expensive, it is no longer optimal to switch to mode 1 before

switching to mode 0, when currently in mode 2. The opposite applies when the lockdown related cost is

smaller so that the region where the social planner switches from mode 1 to mode 0 shrinks, and the region

where the social planner switches from mode 2 to mode 1 expands. For the cases where R1
0 = 2.25, it is also

less attractive to spend a positive amount of time in mode 1, as illustrated by Panel (c) and Panel (d).

Finally, Figure 13 illustrates the effect of K12, assuming that the social planner always switches to mode

2 before lifting control measures. As switching to mode 2 becomes more expensive, the set of states where

it is optimal to switch shrinks, in line with the intuition for our main model. However, the light blue area

has not shrunk considerably, which means that once switched to mode 1, from mode 0, it remains optimal

to immediately switch to mode 2 for almost all states.

(a) K12 = 1000. (b) K12 = 2000. (c) K12 = 4000.

Figure 13: Effect of K12 on stopping sets.

Brown: switching from mode 1 to mode 0, orange: from mode 2 to mode 1, blue: from mode 0 to 1 and 1 to 2

(light). R0
0 = 3, R2

0 = 2, R2
0 = 1.5, γm = 0.1, φm = 2%, N = 500, ρ = 0.1/365,

K01 = K02 = 2000 and K· = 0 otherwise, δE = 4, δ2L = 1200
63.7

, δ1L = δ2L/2, and δD = 10.88
365

.
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4.5 Open Border Policies

This section studies the effect of a strict border policy makes a on lockdown timing decisions. Thus far it

has been assumed that no new infections can occur when states are reached where It = 0. We will continue

to make this assumption when in mode m = 2, but will not when in mode m = 0. For mode m = 1 the

social planner can choose whether or not to restrict entry at the border. Note that no infections occurring

when It = 0 is not only equivalent to a closed border policy but could also include, e.g., the requirement of

individuals entering the country to quarantine in a hotel. In mode m = 1, the social planner could opt to

ask individuals to self-isolate so that the infection rate is somewhere between the infections rates of modes 0

and 2.

We model this extension using the infection rate

λm(i, r) = βm(i+ ĩm)
S(i, r)

N
,

where ĩ2 = 0 and 0 ≤ ĩ1 ≤ ĩ0 are constants.9

Results Figure 14 illustrates how the stopping sets have changed when ĩ1 = ĩ2 = 0. Panels (a) and (b)

illustrate the case where ĩ0 = 0.02, while Panels (c) and (d) depict the case ĩ0 = 0.04. We first note that

the blue area for the first lockdown has significantly shrunk, relative to a situation where ĩ0 = 0. Our

numerical exploration reveals that for any lockdown to ever be potentially optimal, ĩ0 should not be larger

than 0.05, i.e., for any larger risks it is never optimal to impose restrictions. Intuitively, any increase in the

infection rate leads to an increase in costs: it takes longer, on average, to bring the number of infectious

individuals down and, in addition, more infections occur. This leads to our conclusion that because open

borders heavily reduce the effectiveness from lockdown, any gains from lockdown cannot weigh against the

(sunk) cost involved with imposing restrictions.

(a) Lockdown 1 with ĩ0 = 0.02

and ĩ1 = 0.

(b) Lockdowns k = 2, . . . ,K

with ĩ0 = 0.02 and ĩ1 = 0.

(c) Lockdown 1 with ĩ0 = 0.04

and ĩ1 = 0.

(d) Lockdowns k = 2, . . . ,K

with ĩ0 = 0.04 and ĩ1 = 0.

Figure 14: Stopping sets with different border policies.

R0
0 = 3, R1

0 = 2, R2
0 = 1.5, γm = 0.1, φm = 2%, N = 500, ρ = 0.1/365,

K01 = K02 = 2000 and K· = 0 otherwise, δE = 4, δ2L = 1200
63.7

, δ1L = δ2L/2, and δD = 10.88
365

.

9In this extension, in order to be able to focus on the impact of ĩm, additional effects that stem from costs associated with

restrictions at the border are not taken into account.
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The blue areas in Panels (b) and (d) are very similar, i.e., the main impact of a change in the infection

rate from abroad has an impact on strategy for the first lockdown only. Thirdly, the orange area has slightly

expanded for the states where It is close to zero. Recall that the orange area is the set of states for which it

is optimal to leave the mode with the highest infection rate, in this case mode m = 2. Because the increase

in the infection rate has the largest impact on these states in particular, the net gain from staying in mode

m = 2 is smaller when ĩ0 > 0 and the social planner prefers to switch to mode m = 1. Note that the brown

area, the area where it is optimal to come out m = 1, has not expanded so that it remains optimal to keep

measures in place. Fourthly, we find that there are states where it is optimal, once switched to mode 1, to

never switch to mode 2. These are states where the blue area overlaps with the orange area. In these states,

the social planner switched immediately from mode 0 to mode 1, in order to switch back to mode 0 in the

future. For these states the epidemic has evolved too much for a full lockdown to be beneficial.

Finally, Figure 15 illustrates that a positive value for ĩ1 does not qualitatively change the social planner’s

decision and that an increase has no significant impact on whether or not lockdown is optimal for positive

ĩ0. This is not surprising in light of earlier figures where we showed that “phasing in” lockdowns by entering

mode 1 before moving to mode 2 are not optimal.

(a) Lockdown 1 with ĩ0 = 0.02

and ĩ1 = ĩ0/2.

(b) Lockdowns k = 2, . . . ,K

with ĩ0 = 0.02 and ĩ1 = ĩ0/2.

(c) Lockdown 1 with ĩ0 = 0.04

and ĩ1 = ĩ0/2.

(d) Lockdowns k = 2, . . . ,K

with ĩ0 = 0.04 and ĩ1 = ĩ0/2.

Figure 15: Stopping sets with different border policies.

R0
0 = 3, R1

0 = 2, R2
0 = 1.5, γm = 0.1, φm = 2%, N = 500, ρ = 0.1/365,

K01 = K02 = 2000 and K· = 0 otherwise, δE = 4, δ2L = 1200
63.7

, δ1L = δ2L/2, and δD = 10.88
365

.

4.6 Health-care imposed Capacity Constraints

Next we study the effect of constraints on healthcare capacity, by generalizing δE in the following way:

δE(It, Rt) =

4 if It < 150,

8 if It ≥ 150.

(11)

Here, 150 is the assumed threshold that represents a limitation of the health care system. It represents the

fact that (health-related) costs go up once the health system has reached capacity. We need to keep in mind

that only a fraction of infectious individuals need hospital treatment and therefore the number 150 should be

interpreted as the equivalent number of total infections such that the fraction of infectious individuals that

29



requires hospital treatment is equal to the imposed “critical care capacity”.10 Figure 16 shows the results of

adapting the baseline parameterization. This figure illustrates that the stopping set in mode 0 now includes

states where either the number of infectives is above 150 or where the risk is sufficiently large to reach states

where the number of infectives is above 150. As illustrated in Panel (a), states in the extended region with

It < 150 are those where it is expected that the process will reach states where It ≥ 150 when remaining

in mode 0. This explains the shape of the border of the stopping set where there seems to be an “inaction”

region. Also notice that the orange region has shrunk, especially for all states where It > 150: the social

planner delays the moment to switch back to mode 0, so that the expected amount of time spent in states

for which It > 150 is minimized.

(a) Lockdown k = 1. (b) Lockdowns k = 2, . . . ,K.

Figure 16: There is a limit on hospitals admissions that leads to an equivalent of a limit of 150 on infections

(see (11)).

R0
0 = 3, R1

0 = 2, R2
0 = 1.5, γm = 0.1, ĩ0 = 0.02, ĩ1 = ĩ2 = 0, φm = 2%, N = 500, ρ = 0.1/365,

K01 = K02 = 2000 and K· = 0 otherwise, δ2L = 1200
63.7

, δ1L = δ2L/2, and δD = 10.88
365

.

An alternative way to model hospital constraints is as follows. Governments may wish to avoid to

have a number of infectious individuals that is near to the constraint. Therefore, δE could be modeled

as an increasing function of It when It gets close to the constraint imposed by the critical care capacity.

Appendix B.1 shows that, in that case, the figures look qualitatively the same.

4.7 Extension: Time-dependent Cost Structures

In this section, we relax our assumption that lockdown related costs are constant over time. One could argue

that the length of lockdown has an impact on the associated lockdown related costs and the willingness of

individuals to comply. Especially for business, a lockdown lasting for a longer period of time will have a

long lasting impact and comes with more economic damage per unit of time than a lockdown imposed for a

10In November 2021, in the UK, around 2% of people who tested positive were admitted into hospital. Source: https:

//coronavirus.data.gov.uk/
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shorter period of time. Here, we will look at our SIRD-like model as presented in Section 4.2 with ĩ0 > 0,

but without health-care constraints. We will consider the following cost structures,

cm(i, r) = δE(i, r)i+ δL(1 + 0.07
√
t)(1− χ{m=0}),

cm(i, r) = δE(i, r)i+ δL(1 + 0.01t)(1− χ{m=0}), and

cm(i, r) = δE(i, r)i+ δL(1 + 0.00015t2)(1− χ{m=0}).

In this section we analyse the second case with a linear relationship; the convex and concave cases can be

found in Appendix B.2, where we conclude that the results are qualitatively the same. We start by assuming

that the infection rate ĩ0 is low, to clearly identify the direct impact of the cost structure. We will assume

that ĩ0 = 0.002 and ĩ1 = 0. To see the impact of an increase in costs, consider that when lockdown lasts,

e.g., 80 days, then 0.01(80) = 0.8, so that the daily costs increase by £15,072 for the linear specification.

This is equivalent to, by the end of lockdown, £2b per day for a population of 67.22m in the UK.

Figure 17 illustrates the stopping sets for the linear case. The orange area in Figure 17a illustrates the

stopping set for coming out of lockdown when t = τC0
, i.e., the moment when the social planner decides to

impose restrictions. Figures 17b and 17c illustrate that the orange area grows larger as time goes by, i.e., the

social planner comes out of lockdown earlier when costs are higher. However, despite the daily equivalent

increase of £760m for (b) and £1.5b for (c), the increase does not significantly change the shape of the orange

area. The blue area corresponds, as before, to the decision of going into lockdown, which does not depend

on time and it therefore remains constant. Interestingly, there has appeared an “inaction” for states where

both It and Rt are small but positive. For these states going into lockdown might mean that lockdown lasts

too long meaning that the social planner incurs large costs, instead the social planner waits until It has

sufficiently grown to limit the length of lockdown. However, then It is very close to 0, it is optimal to keep It

low and impose lockdown. Since for these states, as the stream plots in Figure 7 illustrated, lockdown may

be in place for a short period of time, the increase in costs per unit of time does not impact the inclusion of

(a) Stopping sets when, for the orange

area, t = τC0
.

(b) Stopping sets when, for the orange

area, t = τC0
+ 30.

(c) Stopping sets when, for the orange

area, t = τC0
+ 60.

Figure 17: Stopping sets when lockdown related costs are increasing over time with ĩ0 = 0.002.

R0
0 = 3, R1

0 = 2, R2
0 = 1.5, γm = 0.1, ĩ0 = 0.002, ĩ1 = ĩ2 = 0, φm = 2%, N = 500, ρ = 0.1/365,

K01 = K02 = 2000 and K· = 0 otherwise, δE = 4, δ2L = 1200
63.7

, δ1L = δ2L/2, and δD = 10.88
365

.
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these states in the stopping set. Hence, we see that the social planner comes out of lockdown slightly earlier

and may delay lockdown only when it is discovered too late. Figure 18 illustrates what happens when ĩ0 is

increased. Then the inaction region grows but the impact on the orange sets is negligible.

(a) Stopping sets when, for the orange

area, t = τC0 .

(b) Stopping sets when, for the orange

area, t = τC0 + 30.

(c) Stopping sets when, for the orange

area, t = τC0 + 60.

Figure 18: Stopping sets when lockdown related costs are increasing over time with ĩ0 = 0.004.

R0
0 = 3, R1

0 = 2, R2
0 = 1.5, γm = 0.1, ĩ0 = 0.004, ĩ1 = ĩ2 = 0, φm = 2%, N = 500, ρ = 0.1/365,

K01 = K02 = 2000 and K· = 0 otherwise, δE = 4, δ2L = 1200
63.7

, δ1L = δ2L/2, and δD = 10.88
365

.

4.8 Comparative Statics

Appendix C covers an extensive comparative statics analysis for our parameters. Here we briefly summarize

the results.

First we look at an increase in the infection rate, which may result from, e.g., a mutation, and find that the

blue area shrinks. This happens, because when the virus is more infectious, the expected interarrival times

are shorter thereby reducing the length of a potential lockdown but also making lockdown less effective. The

social planner therefore also comes out of lockdown earlier. We find the (intuitively clear) opposite effect

when measures are more effective so that R2
0 < 1.

Next we consider how the recovery rate γm impacts the social planner’s strategy. There are mixed effects

on the stopping sets when increasing γm, where one effect generally dominates: the blue area shrinks when

the recovery rate goes up. In addition, the social planner expands the orange area.

Finally, Appendix C.3 illustrates that increasing δE , δL, or K01 has a similar impact: the blue area

shrinks. The orange area expands for the first two cases.

In all cases we find that the figures look qualitatively the same and we therefore conclude that our results

are robust against (moderate) changes in parameter values.

5 Concluding Remarks and Future Research

Motivated by the recent COVID-19 outbreak, we have developed a continuous-time Markov chain to study

the optimal timing of interventions in an SIRD-inspired epidemiological model of the evolution of a disease.
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A social planner has to decide when to enter “lockdown” and, subsequently, when to lift it. Although, tradi-

tionally, epidemiology models are assuming a deterministic evolution of the disease, there is still uncertainty

about how the disease spreads, especially when the number of infected individuals is low. In such a scenario

the disease could die out before the disease spreads. Nonetheless, surprisingly, we find that it is optimal

to enter lockdown in the very early stages of the disease. Moreover, it is found that it is never optimal to

introduce a lockdown when the prevalence of the disease is too high, i.e. a lockdown is optimally started

only at low prevalence of the disease. In addition, despite high economic cost, it is optimal for the social

planner to wait with exiting the lockdown until either the fraction of susceptible members of the population

or infected members of the population is close to zero. This holds, even when the lockdown-related costs are

increasing over time.

If there is a capacity constraint on the health system, which is modeled by a jump in the per-infective

cost once the number of infectives exceeds a given threshold, then the region where never entering lockdown

is optimal shrinks. In addition, lockdown should be kept in place for longer.

When we allow for a phased introduction and exiting of lockdown (e.g., when using a 3-tier traffic-light

system), it is found that, while a phased exiting strategy is optimal, a phased introduction is not. Our

analysis also shows that lockdowns are only optimal when entry into the country is restricted.

Our model has several limitations that present avenues for future research. First, we assume that the

number of infected individuals is known. In reality this only holds by approximation, even when testing

is done frequently and on a large scale. This provides scope for research on models where decisions and

policies are made based on imperfect information. Since we find that immediate action is optimal when

the first cases of infected individuals have been detected, we expect that such an extension will not lead to

qualitatively different optimal policies. Nevertheless, it stresses the importance of testing, especially since

we find that if the epidemic is detected too late, then intervention is no longer optimal.

Other potential extensions of our work include considering a heterogeneous host population, by extending

the SIRD framework to include more classes of individuals (as discussed to some extent in Section 4.2). An

interesting, but technically substantially more demanding, extension for future research would be to allow

recovered agents to become susceptible again. Although herd immunity might be more cost effective than

an infinite loop of lockdown measures, such a model would include the expectation that over time the virus

becomes less dangerous and as such we expect that the decision to come out of lockdown is not qualitatively

different. In addition, the result that lockdown is not optimal when the virus is discovered too late, might

still hold. Having said that, it seems that many governments, at least in many EU countries, currently seem

to be willing to impose restrictions every winter for the foreseeable future, which is in line with how we have

modeled the problem of the social planner.11

11A model inspired by SIS frameworks where transitions are modeled through a CTMC as well, similar to our work, is studied

by Huberts and Thijssen (2021) who consider the investment problem of a monopolist in a market with network externalities.

The underlying state process becomes mean reverting, which is in line with our intuition for the extension that is discussed
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Appendix A Proofs

Proof of Proposition 1:

For any measurable function f : E → R, x ∈ E and m = 0, 1 it holds that,

Emx [df(Xt)] =
∑
y∈E

(f(y)− f(Xt))P
m
x ({Xt+dt = y}|Xt) =

∑
y 6=Xt

qmXtyf(y)dt+ qmXtXtf(Xt)dt.

Here we have used the fact that qmxx = −
∑
y 6=x q

m
xy. Hence, it follows that the Bellman equation

ρG(x) = lim
dt↓0

1

dt
Em=0
x [dG(x)] + c0(x),

can be written as

ρG(x) =
∑
y 6=x

qm=0
xy G(y) + qm=0

xx G(x) + c0(x).

Rewriting leads to (4). �
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Proof of Proposition 2:

We first assume that ϕ solves (5). Let τC denote the first exit time of the set C. Note that (6) can be

written as

min{G(x) +K10 − ϕ(x),Lm=1
x ϕ(x) + c1(x)} = 0, x ∈ E,

where Lmx denotes the generator of X = (Xt)t≥0 for mode m, m = 0, 1. Since it holds that

Emx ϕ(Xdt) =
∑
y∈E

ϕ(y)Pmx ({Xdt = y}) =
∑
y 6=x

qmxyϕ(y)dt+ ϕ(x)(1 + qmxxdt),

it follows that

Lmx ϕ(x) = lim
dt↓0

Emx ϕ(Xdt)− ϕ(x)

dt
− ρϕ(x) =

∑
y∈E\{x}

qmxyϕ(y) + (qmxx − ρ)ϕ(x),

for all x ∈ E. Then,

Lm=1
x ϕ(x) ≥ −c1(x), x ∈ E, and

Lm=1
x ϕ(x) = −c1(x), x ∈ C1.

Fix T > 0. From Dynkin’s formula it follows that

Em=1
x

[
e−ρ(τC1

∧T )ϕ(XτC1
∧T )
]

= ϕ(x) + Em=1
x

[∫ τC1
∧T

0

e−ρtLm=1
x ϕ(Xt)dt

]

= ϕ(x)− Em=1
x

[∫ τC1
∧T

0

e−ρtc1(Xt)dt

]
.

Since

Em=1
x

[
e−ρ(τC1

∧T )ϕ(XτC1
∧T )
]

= Em=1
x

[
e−ρ(τC1

)
(
G(XτC1

) +K10

)
, τC1

< T
]

+ Em=1
x

[
e−ρ(T )ϕ(XT ), τC1

> T
]

→ Em=1
x

[
e−ρ(τC1

)
(
G(XτC1

) +K10

)]
, as T →∞,

we find that

ϕ(x) = Em=1
x

[∫ τC1

0

e−ρtc1(Xt)dt+ e−ρ(τC1
)
(
G(XτC1

) +K10

)]
.

Now take any stopping time τ ∈M and fix T ≥ 0. Then

Em=1
x

[∫ τ∧T

0

e−ρtc1(Xt)dt+ e−ρ(τ∧T ) (G(Xτ ) +K10)

]

≥ −Em=1
x

[∫ τ∧T

0

e−ρtLm=1
x ϕ(Xt)dt

]
+ Em=1

x

[
e−ρ(τ∧T ) (G(Xτ∧T ) +K10)

]
= ϕ(x)− Em=1

x

[
e−ρ(τ)ϕ(Xτ )

]
+ Em=1

x

[
e−ρ(τ) (G(Xτ ) +K10)

]
≥ ϕ(x).
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Since T was chosen arbitrarily, the inequality also holds as T →∞. Therefore, ϕ = F and τC1 is the optimal

stopping time.

Existence and uniqueness follow from the fact that F is the solution to the fixed point problem

F = Γ(F ),

where

Γ(F ) = min

G(x) +K10,
c1(x)

ρ− qm=1
xx

+
∑
y 6=x

qm=1
xy

ρ− qm=1
xx

F

 .

Note that the function F can be thought of as a vector in Rn, where n = |E|. It is easy to check that Γ

satisfies Blackwell’s conditions, so that Γ is a contraction mapping (Stokey and Lucas, 1989, Theorem 3.3).

Existence and uniqueness of F then follow from the Banach fixed point theorem (Stokey and Lucas, 1989,

Theorem 3.2).

As a final note, since for all x ∈ Λ it holds that qmxy = 0 for all y ∈ E, ϕ(x) is determined unambiguously.

For x ∈ E\Λ, ϕ(x) is recursively determined as a function of the states the chain can transition to when

leaving x. Hence, by induction, we establish that ϕ is unambiguously determined in (6) for all x ∈ E. �

Proof of Proposition 3:

The proof is analogue to the proof of Proposition 2. �
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Appendix B Further Analysis

In this Appendix, we provide some additional figures for Section 4.6 and 4.7.

B.1 Critical Care Capacity Constraints

Here we investigate how the stopping sets are impacted when the epidemic related costs are increasing in It

when It gets close to the threshold of 150, rather than the cliff-edge from Section 4.6, i.e., when

δE(It, Rt) =


4 if It < 100,

4(1 + (It − 100)/50) if 100 ≤ It < 150,

8 if It ≥ 150.

(12)

Figure 19 illustrates the corresponding stopping sets and we find that these look qualitatively the same.

The most noticeable difference is for states such that It ∈ (100, 150) since for these states the costs are higher

compared to (11).

(a) Lockdown k = 1. (b) Lockdowns k = 2, . . . ,K.

Figure 19: Stopping sets when the per-patient costs are given by (12).

R0
0 = 3, R1

0 = 2, R2
0 = 1.5, γm = 0.1, ĩ0 = 0.02, ĩ1 = ĩ2 = 0, φm = 2%, N = 500, ρ = 0.1/365,

K01 = K02 = 2000 and K· = 0 otherwise, δ2L = 1200
63.7

, δ1L = δ2L/2, and δD = 10.88
365

.

B.2 Time-dependent Cost Structures

Figures 20 and 21 illustrate the stopping sets equivalent to those in Figures 17 and 18. These figures illustrate

that when lockdown costs are convex in t or concave in t, the resulting stopping sets are qualitatively the

same.
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(a) Stopping sets when, for the orange

area, t = τC0
and ĩ0 = 0.002.

(b) Stopping sets when, for the orange

area, t = τC0
+ 30 and ĩ0 = 0.002.

(c) Stopping sets when, for the orange

area, t = τC0
+ 60 and ĩ0 = 0.002.

(d) Stopping sets when, for the orange

area, t = τC0
and ĩ0 = 0.004.

(e) Stopping sets when, for the orange

area, t = τC0
+ 30 and ĩ0 = 0.004.

(f) Stopping sets when, for the orange

area, t = τC0
+ 60 and ĩ0 = 0.004.

Figure 20: Stopping sets when the increase in lockdown related costs is δL0.00015t2.

(a) Stopping sets when, for the orange

area, t = τC0 and ĩ0 = 0.002.

(b) Stopping sets when, for the orange

area, t = τC0 + 30 and ĩ0 = 0.002.

(c) Stopping sets when, for the orange

area, t = τC0 + 60 and ĩ0 = 0.002.

(d) Stopping sets when, for the orange

area, t = τC0
and ĩ0 = 0.004.

(e) Stopping sets when, for the orange

area, t = τC0
+ 30 and ĩ0 = 0.004.

(f) Stopping sets when, for the orange

area, t = τC0
+ 60 and ĩ0 = 0.004.

Figure 21: Stopping sets when the increase in lockdown related costs is δL0.07
√
t.

R0
0 = 3, R1

0 = 2, R2
0 = 1.5, γm = 0.1, ĩ0 = 0.002, ĩ1 = ĩ2 = 0, φm = 2%, N = 500, ρ = 0.1/365,

K01 = K02 = 2000 and K· = 0 otherwise, δE = 4, δ2L = 1200
63.7

, δ1L = δ2L/2, and δD = 10.88
365

.
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Appendix C Robustness

C.1 Infection Rate

Here we investigate how the optimal policy is affected by the discovery of a more infectious mutant virus,

as well as the effect of a lower infection rate due to, e.g., effective measures.

A higher infection rate βm, m = 0, 1, 2, has two effects on the social planner’s problem. First, infections

occur more often, relative to a case with a low infection rate. This means that states with a high number

of infectives are reached with a higher probability, leading to a bigger need for lockdown. Second, a higher

infection rate reduces the expected interarrival times, so that the process moves through more states during

the same time interval. Especially for the part of the state space with a high number of infectives, the cost of

staying in lockdown may no longer outweigh the benefits of staying in lockdown. It becomes more interesting

for the social planner to phase out restrictions for a larger set of states, with the potential consequence that

less time is spent in lockdown. It is therefore, a priori, not clear what the net result will be on the (expected)

switching times.

To illustrate these conflicting incentives, we will compare our baseline parameterization to a case where

R2
0 = 5. In line with the literature we will again assume that R0

0 = R2
0/2 and we set R1

0 = 3.5. Although

we appreciate that R1
0 = 5 is high, this choice allows for the net effects on the stopping sets to be more

distinguishable.

Figure 22 illustrates the stopping sets for this parameterization. For the first lockdown, the blue region

has shrunk indicating that only when still very few people have been infected switching to mode m = 2 is

optimal. Discovering the epidemic too late and thereby never imposing lockdown, is more likely when the

social planner is not proactive enough in detecting the virus. At the same time, the orange and brown areas

(a) Stopping sets for lockdown k = 1. (b) Stopping sets for lockdown k = 2, . . . ,K.

Figure 22: Stopping sets for lower infection rates. Here, Rm0 = 5 for m = 0, R1
0 = 3.5, and R2

0 = 2.5.

R0
0 = 5, R1

0 = 3.5, R2
0 = 2.5, γm = 0.1, ĩ0 = 0.002, ĩ1 = ĩ2 = 0, φm = 2%, N = 500, ρ = 0.1/365,

K01 = K02 = 2000 and K· = 0 otherwise, δE = 4, δ2L = 1200
63.7

, δ1L = δ2L/2, and δD = 10.88
365

.
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have expanded. Although not visible, the brown area now entirely intersects with the orange area, which

means that phasing out lockdown is no longer optimal. In short, lockdown is only optimal very early on in

the epidemic and one comes out of lockdown entirely.

For subsequent lockdowns, we also find that phasing out lockdown is not optimal. Note that in the blue

area an “inaction” region appears again as we found before in Section 4.7. The intuition is the same as

before: for states where It is close to zero, a lockdown of a short length can be imposed. However, when It

is sufficiently positive and Rt is small, a small delay is optimal. This, thus, occurs even when costs are not

increasing over time.

These illustrations confirm that, especially when considering situations where a state with a high number

of infectives is reached, there may be a higher probability of lockdown duration being shorter in a scenario

with a higher infection rate. The fact that this probability can increase underlines the importance of

incorporating the stochastic nature of the development of the disease, i.e., effects as these cannot be observed

in deterministic specifications. The most interesting result is the shrinkage of the blue area, so that it becomes

even more important to discover the epidemic early.

Figure 23 illustrates the opposite case. Effective policies during the epidemic, such as social distancing

across all states, may lead to a situation where the R0 is effectively below 1. Therefore, we now look at a

case where Rm=2
0 = 0.9. The blue area has now expanded and the orange area has shrunk, which is in line

with the intuition above. Also, in the blue area for the first lockdown the inaction region appears again.

(a) Stopping sets for lockdown k = 1. (b) Stopping sets for lockdown k = 2, . . . ,K.

Figure 23: Stopping sets for lower infection rates. Here, Rm0 = 0.9 for m = 2, R1
0 = 1.2, and R0

0 = 1.8.

R0
0 = 1.8, R1

0 = 1.2, R2
0 = 0.9, γm = 0.1, ĩ0 = 0.002, ĩ1 = ĩ2 = 0, φm = 2%, N = 500, ρ = 0.1/365,

K01 = K02 = 2000 and K· = 0 otherwise, δE = 4, δ2L = 1200
63.7

, δ1L = δ2L/2, and δD = 10.88
365

.
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C.2 Recovery rate

In this section we provide an illustration of the effect of the recovery rate γm. Since (Emx dIt)
2 = 0 for all

m = 0, 1, we obtain

Var(dIt) = E(dIt)
2 − 0 = [λm(It, Rt) + µm(It, Rt)] dt = γmIt

(
Rm0

S(It, Rt)

N
+ 1

)
dt.

Similarly, Var(dRt) = Emx (dRt)
2− 0 = µm(It, Rt)dt = γmItdt. This means that increasing γm while keeping

Rm0 fixed leads the process to move quicker.

For our illustration we multiply all γm by a factor of 3 and reduce the sunk cost of entering lockdown

to K01 = 1500. The latter change is needed because otherwise the stopping set would (almost) disappear

and it would never be optimal to enter lockdown. To further illustrate the analysis in the main text,

Figure 24 reproduces Figure 6 with the increased transition rates and illustrates that the shapes of the

curves have remained qualitatively the same, but the time scale has changed. Also note that the share of

host population that remains susceptible throughout has not (significantly) changed. This confirms that,

at least in expectation, the process moves faster for higher γm without significantly changing the ex-post

numbers of infectives and susceptibles.

An increase in γm has three consequences. First, an increase in the infection rate increases, in expectation,

the number of infectives per period of time. Second, for any future point in time the standard deviation of

susceptibles, infectives, and recovered goes up. These two reasons make the stopping set expand. On the

other hand, the period over which costs are incurred is shorter, which should make switching to mode 1 less

attractive as the investment required to realize a lockdown and consequently the economic damage might

not be outweighed by the gain from “flattening the curve”. Flattening the curve has two cost advantages. On

the one hand the peak of infectives is reached later, which leads to a lower present value in absolute terms.

(a) Mode 0. (b) Mode 1. (c) Expected number of infections as a

function of time.

Figure 24: Expected number of infected (brown), susceptible (blue), and recovered (red) individuals for

mode 0 (Panel (a)) and mode 1 (Panel (b)). Panel (c) juxtaposes the expected number of infectives in both

modes. Here, (I0, R0) = (10, 0).

R0
0 = 3, R1

0 = 1.5, γ0 = γ1 = 0.3, N = 500, and ρ = 0.1/365.
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At the same time, the number of total infectives is (in expectation) lower as well, which directly reduces

cost.

Figure 25 shows that both effects are present but that they affect different parts of the stopping sets.

First, the stopping set for mode 0 has considerably shrunk. The period over which costs are incurred is

shorter, so that lockdown is optimal for a smaller range of states.

At the same time, the stopping set in mode 1 has expanded. Despite the increase in volatility, the speed

with which the number of infectives goes to zero is sufficient to make it optimal to lift lockdown in a larger

set of states. In addition, the period over which costs are incurred is shorter which makes switching more

attractive.

(a) Stream plot for expected paths in mode 0. (b) Stream plot for expected paths in mode 1.

Figure 25: Stopping sets with vector/stream plots. Here, γm has been multiplied by 3 to increase the

volatility of the process.

R0
0 = 3, R1

0 = 1.5, γ0 = γ1 = 0.3, N = 500, ρ = 0.1/365, K01 = 1500, K10 = 0, δE = 4, and δL = 1200
63.7

.

C.3 Lockdown-Related Costs

We now illustrate the sensitivity of the stopping sets to changes in parameter values associated with incurred

costs, starting with the sunk cost of entering lockdown, K01, which is illustrated by Figure 26(a). Entering

lockdown is optimal when the gain from flattening the curve outweighs the additional costs involved with

entering lockdown. When K01 increases, the benefits might no longer outweigh the costs for certain states

and, therefore, the stopping set in mode 0 shrinks. Since K01 has no effect on the value in mode 1, the

stopping set in mode 1, i.e., the orange area, is not affected.

Figure 26(b) illustrates what happens when δL is increased. Since these costs are only incurred while

being in mode 1, there are fewer cases where switching to mode 1 is optimal and more cases where switching

from mode 1 back to mode 0 is optimal.

Figure 27 illustrates the effect of changes in (epidemic related) per-patient cost δE(i, r), incurred in all

modes. Here, δE is one-third lower than in the baseline parameterization. When the value of δE is lower
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(a) K01 = 4000 and δL = 1200
63.7

. (b) K01 = 2000 and δL = 2400
63.7

.

Figure 26: Stopping sets with stream plots with a different parametrization for K01 (Panel (a)) and δL

(Panel (b)). Stream plot for expected paths in mode 1.

R0
0 = 3, R1

0 = 1.5, γ0 = γ1 = 0.1, N = 500, ρ = 0.1/365, K10 = 0, and δE = 4.

for all states, the gain of lockdown is lower and, therefore, there is less of a necessity for the social planner

to switch to mode 1. This leads to the stopping set in mode 0 shrinking as illustrated in Panel (a). When

δE increases, the opposite applies. Panel (b) illustrates what happens to the stopping set if a lower cost per

infective is combined with a jump at It = 150 similar to (11).

(a) δE = 4 · 2
3
. Stream plots associated with mode 0. (b) δE(It, Rt) = 4 · 2

3
for It < 150 and δE(It, Rt) =

8· 2
3
otherwise. Stream plots associated with mode 1.

Figure 27: Stopping sets with stream plots. Here, δL = 20.

R0
0 = 3, R1

0 = 1.5, γ0 = γ1 = 0.1, N = 500, ρ = 0.1/365, K01 = 2000, K10 = 0, and δL = 1200
63.7

.
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