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Abstract

Typically product demand follows a product life cycle (PLC). This means that after
a product is introduced, demand for this product first starts to grow, which after
some time is followed by a decline in demand. Moreover, in most cases demand is
stochastic. This paper combines these two characteristics by employing a geometric
Brownian motion process with a first increasing and afterwards decreasing trend.
Our aim of the paper is to investigate the optimal investment decision of a firm in
production capacity. The investment decision involves deciding about the timing
and the size of the investment. We make a distinction between firms being a product-
life-cycle leader and a product-life-cycle follower. For a PLC-leader the growth stage
starts at the moment this firm invests. In case of a PLC-follower, the firm enters an
existing product life cycle, implying that the decline can already start before this firm
even has invested.

One of the interesting results is that a PLC-leader waits for a higher demand level
before it invests with the same amount when the expected length of the growth
interval is shorter. For the PLC-follower it holds that it may be optimal to invest
earlier because of this probability that the decline could already start before the
firm invests. In such a case the expected future demand is lower, which makes it
optimal that the firm attracts less capacity. This makes the investment cheaper and
then the firm does not need to wait for a high demand level to make the investment
profitable.

*Email: a.g.balter@tilburguniversity.edu
†Department of Econometrics and Operations Research, Warandelaan 2, 5037AB, Tilburg, The Netherlands
‡Email: k.j.m.huisman@tilburguniversity.edu
§Email: kort@tilburguniversity.edu

1



Pre
lim

in
ary

and
in

com
plete

. Please
do not cite

or circ
ulate

!

– VERY PRELIMINAIRY – ONLY FOR CONSIDERATION OF REAL OPTIONS CONFERENCE –

1 Introduction

Product Lifecycle (PLC) differentiates four main stages, i.e., (1) market introduction stage, (2)

growth stage, (3) maturity stage, and (4) saturation and decline stage. Each stage can be identified

by different levels of sales, cost, competition and profit. Product Lifecycle Management (PLM)1

manages each stage. We introduce and add stage (0) to the lifecycle which deals with the market

entry and plant size decisions. PLM deals with the engineering aspects and management during

the lifecycle of a product aimed at increasing the efficiency and effectiveness of business strate-

gies in the process. We however take the product life-cycle as given and investigate when to start

the production process and we derive how large the plant should be in a market with stochastic

demand. We do not investigate macro-economic business cycles which are re-occurring cycles

contrary to product life-cycles.

We use real options methods to determine the most efficient and effective moment to enter

the market and decide on the capacity of the plant. We consider an irreversible investment

choice on the size of the plant. We focus on the decision that has to be made before the product

lifecycle starts, i.e., stage zero. To the best of our knowledge, on the one hand, the product

lifecycle literature focusses on the different and dynamic stages within the lifecycle without

optimizing the best time to enter the market and optimizing the best size of the plant. On the

other hand, the real options literature has only optimized the timing and size given a demand

process with a positive trend, i.e., without allowing for a product lifecycle.

We find that the PLC-leader always invests later than the PLC-follower. Thus the fact that a

decline cannot happen during the waiting period of the PLC-leader makes him to invest later as

meanwhile he postpones the decline and actually causes the demand to grow, in other words,

the follower needs to speed up entering the market in the fear of missing out. Moreover, The

PLC-leader capacity decision is independent of λ. The optimal capacity of the PLC-leader and

PLC-follower has the same functional form (thus difference only explained by difference in

optimal X ), see (20). For the PLC-leader, the λ cancels out. Several illustrations show that the

PLC-follower’s threshold can be both increasing and decreasing in λ.

Literature: TBA.
1PLM is one of the four cornerstones of a manufacturing corporation’s information technology structure, among

customer relationship management (CRM), supply chain management (SCM), and enterprise resource planning
(ERP).
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2 Model

We consider a monopoly, thus a setting in which there is one firm who has to decide when to

enter the market and how much to produce. The price at time t in this market is given by the

inverse demand function

P (t ) = X (t )
(
1−ηQ(t )

)
, (1)

where Q(t ) is the total market output/production/capacity, η> 0 is a constant and X (t ) follows a

geometric Brownian motion

d X (t ) =
µ1X (t )d t +σX (t )dW (t ), before event that occurs with prob λ

µ2X (t )d t +σX (t )dW (t ), after event that occurs with prob λ
(2)

where µ1 > 0 and µ2 < 0 are the drifts implying a positive expected trend in demand or negative,

σ> 0 is the volatility and W (t ) is the Wiener process. With probability λd t a shock takes place,

which starts a decline in demand representing a usual product’s life cycle pattern.

The firm produces from the moment of investment onwards, so that

Q(t ) =
0 if t < tI

K ift ≥ tI

.

The investment costs are proportional to the capacity K and we assume that the firm produces

up to capacity. Denoting I as investment, we thus have I = δK .

The investment problem that the firm is facing is to maximize the expected profit from the

moment tI that the investment is made. The control variables are thus the time at which the

investment is undertaken, and the capacity level that the firm acquires at tI .

max
tI≥0,Q(tI )=K≥0

V (X ,Q) = max
tI≥0,Q(tI )=K≥0

E

[∫ ∞

t=tI

e−r tQ(tI ) ·P (t )d t −e−r tIδQ(tI )|X (0) = X

]
,(3)

where r is the discount rate with r > µ1 > µ2. We now transform the optimal t∗I by the trigger

point X ∗. Let X ∗ be the value at which the firm is indifferent between investing and not. Thus

for X > X ∗, it is optimal to invest immediately, whereas for X < X ∗ demand is still too low to

undertake the investment and thus the firm waits. The optimal investment time t∗I equals the

first time that the stochastic process X reaches this level X ∗.

We can solve the double maximization in two steps, first for a given X we maximize V w.r.t.

Q. Both the dynamic programming and contingent claims approach value the real option that is
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present in the discussed optimization problem. The option of waiting is added to the net present

valuation technique.

By V (X ) we denote the pure NPV value and let F (X ) be the option value. The boundary

conditions are

F (X ∗) = V (X ∗,Q)−δQ (4)
∂F (X )

∂X
|X=X ∗ = ∂V (X ,Q)

∂X
|X=X ∗ , (5)

where (4) is the value-matching condition that states that when the firm invests at optimality the

net payoff equals the option value. For X < X ∗ the option value F (X ) >V (X )−δQ and thus it is

better to wait until F (X ) =V (X )−δQ after which it is optimal to invest and receive the net value

function. And (5) is the smooth pasting condition.

The event that causes a drop in demand occurs randomly and follows a Poisson process.

At any time t the project’s demand switches regime with probability λd t . The cumulative

probability that this happens before t from the initial time zero onwards, equals 1−e−λt . And

the density of the Poisson distribution is λe−λt .

3 PLC-leader

In this section we consider the case in which the threat of a decline can happen only after the

investor has entered the market and in the next section we consider the case in which the decline

can also happen before he has entered the market. Hence these two scenarios differ in their

continuation region. We call this the PLC-leader and PLC-follower setting respectively. In the

first case the product lifecycle starts as soon as the investor is in the market while in the second

case the product lifecycle is already running. [Add examples]

First we derive the optimal threshold for the PLC-leader when, with probability λd t , the

demand’s stochastic component switches from a geometric Brownian motion with an upward

drift to a downward drift for a fixed capacity choice K . Next we consider both the optimal

threshold and capacity choice for the PLC-leader.

3.1 Fixed capacity: PLC-leader

With probability λd t the demand’s stochastic component switches from a geometric Brownian

motion with an upward drift to a downward drift. Consider a project in which the drift parameter

can change from µ1 > 0 to µ2 < 0 with probability λd t . Here we assume that the capacity K is

fixed, implying that the investor only has to decide about when he enters the market, i.e. the
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optimal threshold X .

We assume that the PLC starts when the investor enters the market. Thus the threat of a

shock that causes a decline in demand is introduced as soon as the market leader invests and

not earlier: PLC-leader.

First we derive the stopping value V (1)(X ,K ), and the value of the option, F (1)(X ,K ). The

superscript (1) represents the value when X starts in the µ1 regime and switching to µ2 with

probability λd t while threshold (2) represents the value in the µ2 regime only.

We solve this by decomposing the value of the project into two. First we consider the stage

in which demand has a negative trend, i.e. the recession. The value of the project at time t in

stage 2 can be expressed as the sum of the operating profit over the interval (t , t +d t) and the

continuation value beyond t +d t .

r V (2)(X ,K ) = Profit(X ,K )+ lim
d t↓0

1

d t
E[dV (2)] (6)

where

E[dV (2)] = ∂V (2)

∂X
µ2X d t + 1

2

∂2V (2)

∂X 2
σ2X 2d t . (7)

Hence we get

r V (2) = K X (1−ηK )+ ∂V (2)

∂X
µ2X + 1

2

∂2V (2)

∂X 2
σ2X 2 (8)

Proposition 1. The value function

V (2)(X ,K ) = X K (1−ηK )

r −µ2
(9)

solves differential equation (8).

Proof. See Appendix A.2

Now we consider the stage in which demand has a positive trend but with probability λd t

switches to V (2). The value of the project at time t in stage 1 can be expressed as the sum of the

operating profit over the interval (t , t +d t ) and the continuation value beyond t +d t

r V (1)(X ,K ) = Profit(X ,K )+ (1−λ) lim
d t↓0

1

d t
E[dV (1)]+λ lim

d t↓0

1

d t
E[dV (2)] (10)

5
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Rewriting gives

r V (1) = K X (1−ηK )+V (1)
X µ1X + 1

2
σ2X 2V (1)

X X +λ(−V (1) +V (2)) (11)

Proposition 2. The value function

V (1)(X ,K ) = K (1−ηK )X (r −µ2 +λ)

(r −µ1 +λ)(r −µ2)
(12)

solves differential equation (11).

Proof. See Appendix A.4

If the event of a switch in the demand process can only happen after investment, then the

continuation region is defined by

r F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 (13)

Theorem 3.1. The value matching and smooth pasting conditions imply that the optimal thresh-

old for a fixed capacity for the PLC-leader is given by

X ∗
K L = β(1)

β(1) −1

δ(r −µ1 +λ)(r −µ2)

(1−ηK )(r −µ2 +λ)
(14)

where β(1) is the positive root of the quadratic equation

1

2
σ2β(1)(β(1) −1)+µ1β(1) − r = 0 (15)

Proof. See Appendix A.1

Sensitivities with respect to the probability of a decline and the upward and downward trend

are provided in the following proposition.

Proposition 3.

∂X ∗
K L

∂λ
= δ(r −µ2)(µ1 −µ2)

(1−ηK )(r −µ2 +λ)2(β−1)
> 0 (16)

∂X ∗
K L

∂µ1
= δ(r −µ2)β

(
(β−1)σ2 +2(λ+βµ1 − r )

)
(r −µ2 +λ)(β−1)2(1−ηK )(2µ1 + (2β−1)σ2)

=
> 0 (β−1)2σ2 < 2λ

< 0 (β−1)2σ2 > 2λ
(17)

∂X ∗
K L

∂µ2
=− δβλ(r +λ−µ1)

(1−ηK )(r −µ2 +λ)2(β−1)
< 0 (18)

6
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Some other comparative statics yield

lim
λ−>∞

X ∗
K L = β(1)

β(1) −1

δ(r −µ2)

(1−ηK )
6= XK 2, (19)

where XK 2 is the optimal threshold as in Huisman and Kort (2015) under a µ2-regime for fixed

K . Due to the fact that in the continuation region demand grows with µ1, the optimal threshold

depends on β(1) and will not converge to the threshold of an always µ2-regime. Moreover,

X ∗
K L > XK 1,

implies that for fixed capacity the PLC-leader invests at a higher threshold compared to a

situation where the decline stage never happens.

3.2 Capacity choice: PLC-leader

While considering the possibility of the change in demand to happen only once the investment

has taken place, we now let the investor decide on both the timing and the capacity. We optimize

both the market entrance moment and the capacity for the PLC-leader. When the investor enters

the market he has to determine the size of the plant and thus set the capacity of production

goods. We abstract from subsequent decisions on decreasing the production level temporarily or

keeping inventory which take place within the lifecycle. The stage 0 that we add to the PLC stages

takes the PLC as given and focusses on the question when the investor should start producing.

Proposition 4. The optimal capacity is given by

K ∗(X ) = 1

2η

(
1− δ(r −µ1 +λ)(r −µ2)

X (r −µ2 +λ)

)
(20)

Proof. See Appendix A.11

If the event of a switch in the demand process can only happen after investment, then the

waiting region is defined by

r F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 (21)

Theorem 3.2. The value matching and smooth pasting conditions imply that the optimal thresh-

7



Pre
lim

in
ary

and
in

com
plete

. Please
do not cite

or circ
ulate

!

old and capacity of benchmark 2 are given by

X ∗
C L = β(1) +1

β(1) −1
δ

(r −µ1 +λ)(r −µ2)

r −µ2 +λ
(22)

K ∗
C L = 1

η(β(1) +1)
(23)

where β(1) is the positive root of the quadratic equation

1

2
σ2β(1)(β(1) −1)+µ1β(1) − r = 0 (24)

Proof. See Appendix A.12

Some associated sensitivities are

Proposition 5.

∂X ∗
C L

∂λ
= δ(r −µ2)(µ1 −µ2)(β+1)

(r −µ2 +λ)2(β−1)
> 0 (25)

∂X ∗
C L

∂µ1
=

δ(r −µ2)
(
2µ1 −σ2 + 4βλ

(β−1)2

)
(r −µ2 +λ)

√
8rσ2 + (−2µ1 +σ2)2

=
> 0 2µ1 −σ2 + 4βλ

(β−1)2 > 0

< 0 2µ1 −σ2 + 4βλ
(β−1)2 < 0

(26)

∂X ∗
C L

∂µ2
=−δλ(r −µ1 +λ)(β+1)

(r −µ2 +λ)2(β−1)
< 0 (27)

In Figure 2 we plot X and K against λ,µ1,µ2 and r . The solid blue line is X ∗
C L , the dotted blue

line is XK L(K0), the dotted red line is X ∗
C 1 and the dotted orange line is X ∗

C 2, where the optimal

decisions without PLC are – as in Huisman and Kort (2015):

X ∗
K i = β(i )

β(i ) −1

δ(r −µi )

(1−ηK )
(28)

X ∗
Ci = β(i ) +1

β(i ) −1
δ(r −µi ) (29)

K ∗
Ci = 1

η(β(i ) +1)
(30)

where i implies µi . When λ increases the project becomes less attractive and one would thus

8
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invest later. We observe that the capacity is unaffected by the potential decline.

Figure 1: Optimal X .
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(a) r = 0.1,δ= 0.1,η= 0.05,σ= 0.1

We observe that when µ1 increases the project becomes more attractive but waiting implies

an even higher µ1 as this concerns the PLC-leader, therefore the threshold increases. This holds

both for fixed capacity and also when the capacity can be freely chosen. In the latter case,

the capacity increases in µ1 causing a steeper increase in the threshold offsetting the higher

investment costs. However, this does not necessarily mean that the investor enters later as a

higher µ1 also implies that the threshold is achieved earlier.

When µ2 increases, i.e., becomes less negative, the decline regime is a less worse state and

thus the project becomes more attractive causing the investor to enter at a lower threshold and

here we can conclude earlier.

Several effects have an impact on the dependence of the threshold on the discount rate. If r

increases then the NPV of the project decreases because of more heavily discounting and thus

the project becomes less attractive causing an increase in the threshold to ensure a profitable

project (NPV effect). When the discount rate is very low, the investor assigns higher weight to the

future when the decline plays a role which he could postpone by delaying (Delay effect).Since

the leader can achieve a higher X by waiting, he will do so when r is low as in those cases the

potential decline is weighted heavily. When r increases the added value of the delay is discounted

more heavily and thus diminishes. But at the same time a higher r leads to a lower NPV and thus

makes the investor want to invest later. These two effects cause the non-monotone shape as

depicted.

Similar as for fixed K , limλ−>∞ X ∗
C L 6= XC 2. Thus, due to the fact that in the continuation

region demand grows with µ1, the optimal threshold depends on β(1) and will not converge to

the threshold of an always µ2-regime. Because X ∗
C L is increasing in λ and decreasing in µ2, it also

follows that X ∗
C L > XC 1.
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Figure 2: PLC-leader. K0 = K ∗
C L ,r = 0.1,µ1 = 0.06,µ2 =−0.06,δ= 0.1,η= 0.05,σ= 0.1,λ= 0.2
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4 PLC-follower

Contrary to the previous section, the decline in demand can now occur either before or after

the investor entered the market, i.e., the investor is a PLC-follower. First we solve this for a fixed

capacity, X ∗
K F , and then for the optimal K ∗

C F generating X ∗
C F .

4.1 Fixed capacity: PLC-follower

The value in the continuation region under the µ2 regime, similar as in the Huisman and Kort

(2015) setting, is given by

Proposition 6. The option value is

F (2)(X ,K ) =
 A2(K )X β(2) if X < XK 2

V (2)(X ,K )−δK if X ≥ XK 2

(31)

when X follows a geometric Brownian motion with drift µ2, where

XK 2 =
β(2)δ(r −µ2)

(β(2) −1)(1−ηK )
(32)

is the optimal threshold for a given capacity of K and β(2) is given by

1

2
σ2β(2)(β(2) −1)+µ2β(2) − r = 0 (33)

Proof. See Appendix A.3

If X is below the threshold, the investor should wait with investing, while if X is above the

threshold he invests. The waiting period in case we start in the µ1 regime is characterized by

r F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 +λ(

F (2) −F (1)) (34)

We can now distinguish two cases, X < XK 2 and X ≥ XK 2.

Proposition 7. If X ≥ XK 2 then (34) becomes

(r +λ)F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 +λ(

V (2)(X ,K )−δK
)

(35)

which solves for

F (c1)(X ,K ) =C1X β+
(λ1) +C2X β−

(λ1) +λ K (1−ηK )

(r −µ2)(r +λ−µ1)
X − λ

r +λδK (36)

11
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where β+
(λ1) and β−

(λ1) are the positive and negative root of

1

2
σ2β(λ1)(β(λ1) −1)+µ1β(λ1) − (r +λ) = 0 (37)

Proof. See Appendix A.5

Proposition 8. If X < XK 2 then (34) becomes

(r +λ)F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 +λF (2)(X ) (38)

which solves for

F (d1)(X ,K ) = D1X β+
(λ1) + λ

r −β(2)
(
µ1 −µ2

) A2(K )X β(2) (39)

Proof. See Appendix A.6

The optimal threshold XK F , C1, C2 and D1 are unknown. For continuity, we need, at XK 2

F (c1)(XK 2,K ) = F (d1)(XK 2,K ) (40)

∂F (c1)(X ,K )

∂X

∣∣∣
X=XK 2

= ∂F (d1)(X ,K )

∂X

∣∣∣
X=XK 2

(41)

And the value matching and smooth pasting conditions imply

V (1)(XK F ,K )−δK = F (1)(XK F ,K ) (42)

∂V (1)(X ,K )

∂X

∣∣∣
X=XK F

= ∂F (1)(X ,K )

∂X

∣∣∣
X=XK F

(43)

where either F (c1) or F (d1) can be used as F (1). For fixed K we thus have two system of equations

that imply the optimal threshold. In both cases, there are four unknowns and four equations, i.e.

C1,C2,D1, XK F .

Proposition 9. For X ≥ XK 2, the implicit function of XK F is given by

f (XK F ) =(
(β+

(λ1) −1)λ
K (1−ηK )

(r −µ2)(r +λ−µ1)
X2(K )−β+

(λ1)

λ

r +λδK +
(
β(2) −β+

(λ1)

)
a

(
X2(K )K (1−ηK )

r −µ2
−δK

))(
XK F

X2(K )

)β−
(λ1)

−
(
1−β+

(λ1)

) K (1−ηK )

(r +λ−µ1)
XK F −β+

(λ1)δK
r

r +λ = 0 (44)

where a = λ
r−β(2)(µ1−µ2) .

12
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Proof. See Appendix A.7

Proposition 10. For X < XK 2, the implicit function of XK F is given by

g (XK F ) =
(
β(2) −β+

(λ1)

)
a

(
X2(K )K (1−ηK )

r −µ2
−δK

)(
XK F

X2(K )

)β(2)

− K (1−ηK )(r −µ2 +λ)

(r −µ1 +λ)(r −µ2)
XK F

(
1−β+

(λ1)

)
−β+

(λ1)δK = 0

(45)

Proof. See Appendix A.8

Proposition 11. The implicit function when X ≥ XK 2 has no solution.

Proof. See Appendix A.9

Theorem 4.1. The optimal threshold XK F ≤ XK 2 is given by Proposition 10.

Proof. See Appendix A.10

Under the assumption that µ2 <µ1, it follows that XK F ≤ XK 2. Hence, the firm invest earlier

compared to a µ2-regime and we conjecture later investment than in a µ1-regime.

4.2 Capacity choice: PLC-follower

We now consider the setting in which both the decline in demand can also occur in the waiting

period and the capacity has to be chosen by the investor. As we saw before, if the decline in

demand can also occur in the waiting period, then F (X ) has to be composed into two. Let F (2)(X )

be the option value when the drift of X is µ2, then

r F (2) = ∂F (2)

∂X
µ2X + 1

2

∂2F (2)

∂X 2
σ2X 2 (46)

which solves for a form of F (2)(X ) = A2X β(2) where β(2) is the positive root of

1

2
σ2β(2)(β(2) −1)+µ2β(2) − r = 0 (47)

After this waiting period, only V (2)(X ) can happen, as the decline has already been set in

motion. The value matching and smooth pasting conditions applied to V (2)(X ) and F (2)(X )

simply give the results as in Huisman and Kort (2015) with µ2 as drift parameter.

XC 2 = β(2) +1

β(2) −1
δ(r −µ2) (48)

KC 2 = 1

η(β(2) +1)
(49)
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Thus if X is smaller than this optimal threshold, it is better to wait,and otherwise to invest.

F (2)(X ) =
 A2X β(2) if X < XC 2

V (2)(X )−δK ∗
(2)(X ) if X ≥ XC 2

(50)

In case the switch from growth to decline has not happened yet, the waiting period is charac-

terized by

r F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 +λ(

F (2) −F (1)) (51)

We can now distinguish two cases, X < XC 2 and X ≥ XC 2.

Proposition 12. If X ≥ XC 2 then (51) becomes

(r +λ)F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 +λ(

V (2)(X ,K ∗
2 (X ))−δK ∗

2 (X )
)

(52)

which solves for

F (c1)(X ) =C1X β+
(λ1) +C2X β−

(λ1) + λ

4η(r −µ2)(r −µ1 +λ)
X − λδ

2η(r +λ)
+ λδ2(r −µ2)

4η(r +µ1 +λ−σ2)
X −1(53)

Proof. See Appendix A.13

Proposition 13. If X < XC 2 then (51) becomes

(r +λ)F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 +λF (2)(X ) (54)

which solves for

F (d1)(X ) = D1X β+
(λ1) + λ

λ−β(2)
(
µ1 −µ2

) A2X β(2) (55)

Proof. See Appendix A.14

The optimal threshold XC F , C1, C2 and D1 are unknown. For continuity, we need, at XC 2

F (c1)(XC 2) = F (d1)(XC 2) (56)

∂F (c1)(X )

∂X

∣∣∣
X=XC 2

= ∂F (d1)(X )

∂X

∣∣∣
X=XC 2

(57)

14
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Moreover, by the value matching and smooth pasting conditions

V (1) −δK = F (1) (58)
∂V (1)(X )

∂X
= ∂F (1)(X )

∂X
(59)

where either F (c1) or F (d1) can be used as F (1).

Theorem 4.2. If X ≥ XC 2 then X is implied by

0 = (β−
(λ1) −β+

(λ1))C2X
β−

(λ1)
1 +aX1(1−β+

(λ1))+β+
(λ1)b − c X −1

1 (1+β+
(λ1))−e(K )X1(1−β+

(λ1))−β+
(λ1)δK

(60)

where a,b,c,d ,e,C2 can be found in the appendix.

Proof. See Appendix A.15

Theorem 4.3. If X < XC 2, then XC F is given by the implicit function

0 = (β(2) −β+
(λ1))

λ

λ−β(2)
(
µ1 −µ2

) δ

η(β2
(2) −1)

(
XC F

X2

)β(2)

(61)

− 1

2η

(
1− δ(r −µ1 +λ)(r −µ2)

XC F (r −µ2 +λ)

) XC F (1−β+
(λ1))

1
2

(
1+ δ(r−µ1+λ)(r−µ2)

XC F (r−µ2+λ)

)
(r −µ2 +λ)

(r −µ1 +λ)(r −µ2)
+β+

(λ1)δ


Proof. See Appendix A.16

In Figure 3 we plot X and K against λ,µ1,µ2 and r . The solid green line is X ∗
C F , the dotted

green line is XK F (K0), the dotted red line is X ∗
C 1 and the dotted orange line is X ∗

C 2 the latter two

similar as in Figure 2.

For fixed capacity the optimal threshold now decreases in µ1 reflecting that the project is

more profitable and driven the fact that delaying no longer postpones the likelihood of a decline.

However, for the optimal size, the threshold is increasing in µ1. This can be explained by the fact

that the capacity is increasing too.

The optimal threshold is in between XC 1 and the XC 2. In the limit λ → ∞ the decision

converges to the capacity and threshold of the µ2-regime. Since XCi in symmetric around

the point µi = 1
2σ

2, this implies that XC 1 > XC 2 when dist(µ1) > dist(µ2) where dist(x) = |x| −
sign(x) 1

2σ
2 as can be seen in Figure 1. Thus

lim
λ−>∞

XC F

> XC 1 if dist(µ1) < dist(µ2)

< XC 1 if dist(µ1) > dist(µ2).
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The quantity effect can cause a non-monotone effect of λ on the threshold as shown in

Figure 4. The sharp decline in the optimal capacity causes the investor to invest earlier. Thereafter

the capacity converges to the capacity of the µ2-regime causing the threshold to increase in

λ as the project becomes less attractive. Note that we considered three specific choice of µ2

generating three different orderings due to the convex shape as shown in Figure 1.
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Figure 3: PLC-follower. K0 = K ∗
C F ,r = 0.1,µ1 = 0.06,µ2 =−0.06,δ= 0.1,η= 0.05,σ= 0.1,λ= 0.2
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Figure 4: PLC-follower. r = 0.1,µ1 = 0.06,µ2 = {−0.06,−0.05,−0.04},δ= 0.1,η= 0.05,σ= 0.1
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4.2.1 Probability

By Sarkar (2000) the probability of reaching the critical level X1 (the probability of investing)

within some time period t is given by (this can be derived from Harrison (1985), (pp.11-14))

P1(X1, t ) =Φ
(

ln(X0/X1)+ (µ1 − 1
2σ

2)t

σ
p

t

)
+

(
X1

X0

)2
µ1
σ2 −1

Φ

(
ln(X0/X1)− (µ1 − 1

2σ
2)t

σ
p

t

)
(62)

when X , conditional on before the event thus with a drift of µ1, follows

d X (t ) =µ1X (t )d t +σX (t )dW (t ), X (0) = X0. (63)

We call “the λ-event” the event that demand switches from a growth to a decline process. The

event that causes a drop in demand occurs randomly and follows a Poisson process. At any time

t the project’s demand switches regime with probability λd t . The probability that this happens

at time t is λe−λt .

The probability that the firm has already invested while the event of a switch has not taken

place yet, i.e. he invests before the decline phase starts, is given by

p =
∫ ∞

0
P1(X1, t )λe−λt d t . (64)

The threshold is obtained from the implicit function that is solved numerically in the previous

section. For fixed parameter values and X1 we observe in Figure 5 that if λ increase then p

decreases and if X0 increases then p increases. The probability depends on X0.

Figure 5: Probability.
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(b) Blue X0 = 0.010 and black X0 = 0.015, r =
0.1,µ1 = 0.06,δ = 0.1,η = 0.05,σ = 0.1,µ2 =
−0.06
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5 Comparison PLC-leader and PLC-follower

First, wee compare the decisions of the PLC-leader and PLC-follower for a fixed capacity in

Figure 6. We observe that the leader always invests later than the follower as the leader can let

the market grow without any effort but simply by waiting. The two interesting differences are

with respect to the µ1 and r dependence. For a fixed capacity the threshold decreases when µ1

increases because the project gets more attractive. As the leader can postpone the decline phase

by waiting, he sets a higher threshold to get an even more attractive project. Since the follower

has no such power, he invests earlier.

Figure 6: Fixed capacity PLC-leader and PLC-follower. K0 = 5,r = 0.1,µ1 = 0.06,µ2 =−0.06,δ=
0.1,η= 0.05,σ= 0.1,λ= 0.2

0 2 4 6 8 10

0.02

0.03

0.04

0.05

λ

X

XKL
*

XKF
*

0.00 0.02 0.04 0.06 0.08 0.10

0.02

0.03

0.04

0.05

0.06

0.07

0.08

μ1

X

XKL
*

XKF
*

-0.10 -0.08 -0.06 -0.04 -0.02 0.00

0.015

0.020

0.025

0.030

0.035

0.040

μ2

X

XKL
*

XKF
*

0.10 0.15 0.20 0.25 0.30

0.02

0.03

0.04

0.05

0.06

0.07

r

X

XKL
*

XKF
*

In Figure 7 we compare the PLC-leader and PLC-follower for their optimal capacity. If µ1

increases then the project becomes more attractive and one can either invest earlier and/or

more now that the investors also set the capacity. The fact that capacity increases in µ1 could

also imply that the threshold does not decrease. This is what we observe for the PLC-follower.

We already explained that the possibility to benefit from an even higher regime makes the leader

to set an even higher threshold.

Since the leader can achieve a higher X by waiting, he will do so when r is low as in those

cases the potential decline is weighted heavily. When r increases the added value of the delay
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is discounted more heavily and thus diminishes. But at the same time a higher r leads to a

lower NPV and thus makes the investor want to invest later. These two effects cause the non-

monotone shape as depicted. The delay effect is only advantageous for the leader while delaying

is disadvantageous for the follower. Thus only the NPV effect is present for the follower.
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Figure 7: Fixed capacity PLC-leader and PLC-follower. r = 0.1,µ1 = 0.06,µ2 =−0.06,δ= 0.1,η=
0.05,σ= 0.1,λ= 0.2
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A Appendix

This appendix contains the proofs of the propositions.

A.1 Proof of Theorem 3.1

The differential equation solves for a form of F (1)(X ) = A1X β(1) . The value matching condition is

V (1) −δK = F (1) (65)

and the smooth pasting

∂V (1)(X )

∂X
= ∂F (1)(X )

∂X
(66)

together these imply

∂V (1)(X )

∂X
= (V (1)(X )−δK )β(1)X −1 (67)

and determine

X ∗(K ) = β(1)

β(1) −1

δ(r −µ1 +λ)(r −µ2)

(1−ηK )(r −µ2 +λ)
(68)

A.2 Proof of Proposition 1

The homogeneous equation (terms involving value function) is

0 = ∂V (2)

∂X
µ2X + 1

2

∂2V (2)

∂X 2
σ2X 2 − r V (2) (69)

with solution

V (2)(X ) = B1X β+ +B2X β− (70)

where β+ > 1,β− < 0. For a particular solution of the total equation we propose

V (2)(X ) = aX +b (71)

r (aX +b) = K X (1−ηK )+aµ2X (72)

a = K (1−ηK )

r −µ2
(73)

b = 0. (74)
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The total solution is the sum of the homogeneous solution and particular solution

V (2)(X ) = X K (1−ηK )

r −µ2
+B1X β+ +B2X β− (75)

The boundary conditions

V (2)(0) = 0 (76)

lim
X→∞

V (2)(X ) = w X (77)

Since β− < 0, X β− will go to infinity when X goes to zero. Thus (76) leads to B2 = 0. And (77)

refers to the exclusion of speculative bubbles, i.e. in the limit the value function is linear in X

where w is a constant implying B1 = 0.

A.3 Proof of Proposition 6

The optimal threshold is obtained by maximizing the value function of Proposition 1, A(2) is

obtained by equality of the two cases at this threshold,

A2(K ) = (
V (2)(XK 2,K )−δK

)
(XK 2)−β(2) (78)

A.4 Proof of Proposition 2

Plug V (2) of Proposition 1 and use the Ansatz V (1)(X ) = aX +b.

A.5 Proof of Proposition 7

Plugging F (2) from Proposition 6 under the assumption that X ≥ XK 2 leads to

(r +λ)F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 +λ

(
X K (1−ηK )

r −µ2
−δK

)
(79)

The homogeneous solution has form

F (1) =C1X β+
(λ1) +C2X β−

(λ1) (80)

solving

(r +λ)F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 (81)
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For the particular solution we conjecture the functional form

F (1)(X ) = aX +b (82)

Applied to the full equation gives

(r +λ)(aX +b) = aµ1X +λ
(

X K (1−ηK )

r −µ2
−δK

)
(83)

(r +λ)aX = aµ1X +λX K (1−ηK )

r −µ2
(84)

(r +λ)b = −λδK (85)

a = λ
K (1−ηK )

(r −µ2)(r +λ−µ1)
(86)

b = − λ

r +λδK (87)

A.6 Proof of Proposition 8

Plugging F (2) from Proposition 6 under the assumption that X < XK 2 leads to

(r +λ)F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 +λA2(K )X β(2) (88)

The homogeneous equation (terms involving value function) is

(r +λ)F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 (89)

where the homogeneous solution has form

F (1)(X ) = D1X β+
(λ1) +D2X β−

(λ1) (90)

Since F (1)(0) = 0, D2 = 0.

For the particular solution we conjecture

F (1)(X ) = a A2(K )X β(2) +b (91)
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Plugging this into the ODE gives

(r +λ)
(
a A2(K )X β(2) +b

)
= aβ(2) A2(K )X β(2)µ1 + 1

2
aβ(2)(β(2) −1)A2(K )X β(2)σ2 +λA2(K )X β(2)

b = 0 (92)

(r +λ)a = aβ(2)µ1 + 1

2
aβ(2)(β(2) −1)σ2 +λ (93)

(r +λ−β(2)µ1 − 1

2
β(2)(β(2) −1)σ2)a = λ (94)

a = λ

r +λ−β(2)µ1 − 1
2β(2)(β(2) −1)σ2

(95)

a = λ

λ−β(2)
(
µ1 −µ2

) (96)

A.7 Proof of Proposition 9

At XK 2 = β(2)δ(r−µ2)
(β(2)−1)(1−ηK ) , (40) and (41) yield

C1X β+
(λ1) +C2X β−

(λ1) +λ K (1−ηK )

(r −µ2)(r +λ−µ1)
X − λ

r +λδK = D1X β+
(λ1) +a A2(K )X β(2)

(97)

β+
(λ1)C1X β+

(λ1)−1 +β−
(λ1)C2X β−

(λ1)−1 +λ K (1−ηK )

(r −µ2)(r +λ−µ1)
=β+

(λ1)D1X β+
(λ1)−1 +β(2)a A2(K )X β(2)−1

(98)

Multiplying (98) by X and subtracting β+
(λ1) times (97) leads to

C2(K ) =
(β+

(λ1) −1)λ K (1−ηK )
(r−µ2)(r+λ−µ1) X2(K )−β+

(λ1)
λ

r+λδK +
(
β(2) −β+

(λ1)

)
a A2(K )X

β(2)
2(

β−
(λ1) −β+

(λ1)

)
(X2(K ))β

−
(λ1)

(99)

At X = XK F

C1X β+
(λ1) +C2X β−

(λ1) +λ K (1−ηK )

(r −µ2)(r +λ−µ1)
X − λ

r +λδK = K (1−ηK )X (r −µ2 +λ)

(r −µ1 +λ)(r −µ2)
−δK (100)

β+
(λ1)C1X β+

(λ1)−1 +β−
(λ1)C2X β−

(λ1)−1 +λ K (1−ηK )

(r −µ2)(r +λ−µ1)
= K (1−ηK )(r −µ2 +λ)

(r −µ1 +λ)(r −µ2)
(101)
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Rewriting these gives

C1X β+
(λ1) +C2X β−

(λ1) − K (1−ηK )

(r +λ−µ1)
X + r

r +λδK = 0 (102)

β+
(λ1)C1X β+

(λ1) +β−
(λ1)C2X β−

(λ1) − K (1−ηK )

(r +λ−µ1)
X = 0 (103)

Multiplying the SP condition by X and subtracting β+
(λ1) times VM condition leads to

0 =
(
β−

(λ1) −β+
(λ1)

)
C2(K )X

β−
(λ1)

1 −
(
1−β+

(λ1)

) K (1−ηK )

(r +λ−µ1)
X1 −β+

(λ1)δK
r

r +λ (104)

Plugging in C2 leads to the implicit function.

A.8 Proof of Proposition 10

Consider, at X = XK F ,

D1X β+
(λ1) +a A2(K )X β(2) = K (1−ηK )X (r −µ2 +λ)

(r −µ1 +λ)(r −µ2)
−δK (105)

β+
(λ1)D1X β+

(λ1)−1 +β(2)a A2(K )X β(2)−1 = K (1−ηK )(r −µ2 +λ)

(r −µ1 +λ)(r −µ2)
(106)

Multiplying the SP condition by X and subtracting β+
(λ1) times VM condition leads to

(
β(2) −β+

(λ1)

)
a A2(K )X

β(2)
1 − K (1−ηK )(r −µ2 +λ)

(r −µ1 +λ)(r −µ2)
X1

(
1−β+

(λ1)

)
−β+

(λ1)δK = 0 (107)

A.9 Proof of Proposition 11

If X1 = 0 then

f (0) =−β+
(λ1)δK

r

r +λ < 0 (108)

If X1 = X2(K ) = β(2)δ(r−µ2)
(β(2)−1)(1−ηK ) then

f (X2) =
(
(β+

(λ1) −1)β(2)
(r +λ−µ2)

(λ+ r −µ1)
−β+

(λ1)(β(2) −1)+ (β(2) −β+
(λ1))a

)
δK

β(2) −1
<? > 0 (109)

Recall that a is given by (96)

a = λ

λ−β(2)
(
µ1 −µ2

) (110)
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We simplify the implicit function to

f (X2) =− δK (µ1 −µ2)β(2)

(β(2) −1)(r +λ−µ1)(λ−β(2)(µ1 −µ2))

(
β+

(λ1)

{
β(2)(µ1 −µ2)+ (r −µ1)

}+{
λ−β(2)(r +λ−µ2)

})
(111)

Let

f (X2) = c
T (λ)

N (λ)
(112)

where

T (λ) =−(µ1 −µ2)
(
β+

(λ1)

{
β(2)(µ1 −µ2)+ (r −µ1)

}+{
λ−β(2)(r +λ−µ2)

})
(113)

N (λ) = (r +λ−µ1)(λ−β(2)(µ1 −µ2)) (114)

c = δKβ(2)

(β(2) −1)
(115)

The same applies here as in Appendix A.10, the proof of Theorem 4.1 so f (X2) > 0. Thus f (X1) = 0

for X1 ∈ (0, X2(K )) which contradicts that X1 ≥ X2(K ).

A.10 Proof of Theorem 4.1

If X1 = 0 then

g (0) =−β+
(λ1)δK < 0 (116)

If X1 = XK 2 = β(2)δ(r−µ2)
(β(2)−1)(1−ηK ) then

g (XK 2) = XK 2K (1−ηK )

r −µ2

((
β(2) −β+

(λ1)

)
a − (r −µ2 +λ)

(r −µ1 +λ)

(
1−β+

(λ1)

))
− (a(β(2) −β+

(λ1))+β+
(λ1))δK

(117)

=
(
β+

(λ1)

(
− 1

β(2)
a + (r −µ2 +λ)

(r −µ1 +λ)
−1+ 1

β(2)

)
− (r −µ2 +λ)

(r −µ1 +λ)
+a

)
β(2)δK

β(2) −1
(118)

=
(
β+

(λ1)

β(2)
(1−a)+ (β+

(λ1) −1)
(r −µ2 +λ)

(r −µ1 +λ)
− (β+

(λ1) −a)

)
(119)

=−
(µ1 −µ2)

(
β(2)β

+
(λ1)(µ1 −µ2)+β+

(λ1)(r −µ1)+ (λ−β(2)(r −µ2 +λ))
)

(λ−β(2)(µ1 −µ2))(r −µ1 +λ)

β(2)δK

β(2) −1
(120)
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Let

g (XK 2) = c
T (λ)

N (λ)
(121)

where

T (λ) =−(µ1 −µ2)
(
β(2)β

+
(λ1)(µ1 −µ2)+β+

(λ1)(r −µ1)+ (λ−β(2)(r −µ2 +λ))
)

(122)

N (λ) = (λ−β(2)(µ1 −µ2))(r −µ1 +λ) (123)

c = β(2)δK

β(2) −1
(124)

The numerator and denominator are equal to zero at the same point x, i.e.,

x = β(2)(µ1 −µ2) (125)

T (x) = 0 (126)

N (x) = 0 (127)

The equations are not monotone. Both are convex. If λ > x then N (λ) > 0 and if λ < x then

N (λ) < 0. The numerator T (λ) is equal to zero when λ = β(2)(µ1 −µ2) since then β(2) = β+
(λ1).

Furthermore

T ′ (λ) = (
µ1 −µ2

) −r −µ1
(
β2 −1

)+µ2β2√
2(r +λ)σ2 + (

µ1 − 1
2σ

2
)2

+β2 −1

 (128)

so that T ′′ (λ) > 0. Hence, since we know that T (0) < 0, it follows that T (λ) = 0 only for λ =
β(2)

(
µ1 −µ2

)
.

Both the numerator and denominator are convex in λ and are equal to zero when λ =
β(2)

(
µ1 −µ2

)
. Hence for λ < β(2)

(
µ1 −µ2

)
both are negative and for λ > β(2)

(
µ1 −µ2

)
both are

positive implying that g (XK 2) > 0 since c > 0.

Let

f (λ) =
(
β(2) −β+

(λ1)

)
a =

λ
(
β(2) −β+

(λ1)

)
λ−β(2)

(
µ1 −µ2

) . (129)

If λ= x =β(2)
(
µ1 −µ2

)
then β(2) =β+

(λ1), and by l’Hopital

f (x) = lim
λ−>x

λ
(
β(2) −β+

(λ1)

)
λ−β(2)

(
µ1 −µ2

) = lim
λ−>x

β(2) −β+
(λ1)

1
= 0. (130)

29



Pre
lim

in
ary

and
in

com
plete

. Please
do not cite

or circ
ulate

!

If λ> x then β(2) <β+
(λ1) because

∂β+
(λ1)
∂λ

> 0 and vice versa, if λ< x then β(2) >β+
(λ1). This implies

that f (λ) < 0 and thus g (X ) is concave in X . Since g (X ) is concave in X and g (0) < 0 and

g (XK 2) > 0, there is a unique intersection of g (X ) = 0 for X ∈ (0, XK 2).

A.11 Proof of Proposition 4

Derivative of V (1) −δK w.r.t. K yields

∂V (1) −δK

∂K
= 0 (131)

(132)

A.12 Proof of Theorem 3.2

The differential equation solves for a form of F (1)(X ) = A1X β(1) . The value matching condition is

V (1) −δK = F (1) (133)

and the smooth pasting

∂V (1)(X )

∂X
= ∂F (1)(X )

∂X
(134)

together these imply

∂V (1)(X )

∂X
= (V (1)(X )−δK )β(1)X −1 (135)

and determine

X ∗(K ) = β(1)

β(1) −1

δ(r −µ1 +λ)(r −µ2)

(1−ηK )(r −µ2 +λ)
(136)

Together with Proposition 4 this leads to the decisions for benchmark 2.

A.13 Proof of Proposition 12

First, consider X ≥ XC 2 then (51) becomes

(r +λ)F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 +λ(

V (2)(X ,K ∗
(2)(X ))−δK ∗

(2)(X )
)

(137)
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where

K ∗
(2)(X ) = 1

2η

(
1− δ(r −µ2)

X

)
(138)

and thus

(r +λ)F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 +λ

(
(X −δ(r −µ2))2

4Xη(r −µ2)

)
(139)

The homogeneous solution has form

F (1) =C1X β+
(λ1) +C2X β−

(λ1) (140)

solving

(r +λ)F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 (141)

i.e.

1

2
σ2β(λ1)(β(λ1) −1)+µ1β(λ1) − (r +λ) = 0 (142)

Since X ≥ XC 2, the boundary condition F (1)(0) = 0 does not hold and thus C2 6= 0. In the limit the

waiting region can go infinity because there is a point in which investment becomes optimal (is

that the reasoning?), therefore also C1 6= 0.

For the particular solution we conjecture the functional form

F (1)(X ) = aX +b + c X −1 (143)
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Applied to the full equation gives

(r +λ)(aX +b + c X −1) = (a − c X −2)µ1X +2c X −3 1

2
σ2X 2 +λ

(
(X −δ(r −µ2))2

4Xη(r −µ2)

)
(144)

= (aX − c X −1)µ1 + c X −1σ2 +λ
(

X

4η(r −µ2)
− 2δ(r −µ2)

4η(r −µ2)
+ δ2(r −µ2)2

4Xη(r −µ2)

)
= aµ1X − cµ1X −1 + cσ2X −1 + λ

4η(r −µ2)
X − λδ

2η
+ λδ2(r −µ2)

4η
X −1

(r +λ)aX = aµ1X + λ

4η(r −µ2)
X

a = λ

4η(r −µ2)(r −µ1 +λ)
(145)

(r +λ)b = −λδ
2η

(146)

b = − λδ

2η(r +λ)
(147)

(r +λ)c X −1 = −cµ1X −1 + cσ2X −1 + λδ2(r −µ2)

4η
X −1 (148)

c = λδ2(r −µ2)

4η(r +µ1 +λ−σ2)
(149)

A.14 Proof of Proposition 13

Secondly, consider X < XC 2 then (51) becomes

(r +λ)F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 +λF (2)(X ) (150)

= ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 +λA2X β(2) (151)

The homogeneous equation (terms involving value function) is

(r +λ)F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 (152)

where the homogeneous solution has form

F (1)(X ) = D1X β+
(λ1) +D2X β−

(λ1) (153)

Since F (1)(0) = 0, D2 = 0. And β+
(λ1) is given by plugging

F (1)(X ) = D1X β+
(λ1) (154)
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into the homogeneous equation, giving

0 = β+
(λ1)µ1 + 1

2
β+

(λ1)(β
+
(λ1) −1)σ2 − (r +λ). (155)

For the particular solution we conjecture

F (1)(X ) = ad A2X β(2) +b (156)

where A2 and β(2) are given by (50) and (47). Plugging this into the ODE

(r +λ)F (1) = ∂F (1)

∂X
µ1X + 1

2

∂2F (1)

∂X 2
σ2X 2 +λA2X β(2) (157)

which gives

(r +λ)
(
ad A2X β(2) +b

)
= adβ(2) A2X β(2)µ1 + 1

2
adβ(2)(β(2) −1)A2X β(2)σ2 +λA2X β(2)

b = 0 (158)

(r +λ)ad = adβ(2)µ1 + 1

2
adβ(2)(β(2) −1)σ2 +λ (159)

(r +λ−β(2)µ1 − 1

2
β(2)(β(2) −1)σ2)ad = λ (160)

ad = λ

r +λ−β(2)µ1 − 1
2β(2)(β(2) −1)σ2

(161)

= λ

λ−β(2)
(
µ1 −µ2

) (162)

A.15 Proof of Theorem 4.2

At XC 2 = β(2)+1
β(2)−1δ(r −µ2)

C1X β+
(λ1) +C2X β−

(λ1) + λ

4η(r −µ2)(r −µ1 +λ)
X − λδ

2η(r +λ)
+ λδ2(r −µ2)

4η(r +µ1 +λ−σ2)
X −1

= D1X β+
(λ1) +ad A2X β(2) (163)

β+
(λ1)C1X β+

(λ1)−1 +β−
(λ1)C2X β−

(λ1)−1 + λ

4η(r −µ2)(r −µ1 +λ)
− λδ2(r −µ2)

4η(r +µ1 +λ−σ2)
X −2

=β+
(λ1)D1X β+

(λ1)−1 +β(2)ad A2X β(2)−1 (164)
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and if X ≥ XC 2, then at X

C1X β+
(λ1) +C2X β−

(λ1) + λ

4η(r −µ2)(r −µ1 +λ)
X − λδ

2η(r +λ)
+ λδ2(r −µ2)

4η(r +µ1 +λ−σ2)
X −1

= K (1−ηK )X (r −µ2 +λ)

(r −µ1 +λ)(r −µ2)
−δK (165)

β+
(λ1)C1X β+

(λ1)−1 +β−
(λ1)C2X β−

(λ1)−1 + λ

4η(r −µ2)(r −µ1 +λ)
− λδ2(r −µ2)

4η(r +µ1 +λ−σ2)
X −2

= K (1−ηK )(r −µ2 +λ)

(r −µ1 +λ)(r −µ2)
(166)

Let

a = λ

4η(r −µ2)(r −µ1 +λ)
(167)

b = λδ

2η(r +λ)
(168)

c = λδ2(r −µ2)

4η(r +µ1 +λ−σ2)
(169)

e = K (1−ηK )(r −µ2 +λ)

(r −µ1 +λ)(r −µ2)
(170)

then we have two system of equations that imply the optimal threshold and capacity. In both

cases, there are five unknowns and five equations, i.e. C1,C2,D1, X1,K and (20), (163), (164),

(165), (166) and (20), (163), (164), (173), (174).

If X ≥ XC 2 (c1), then the system of equations is obtained by(164)×X −β+
(λ1) × (163) leading

to C∗
2 and X × (166)−β+

(λ1) × (165) leading to the implicit function for XC F .

Thus solving

C∗
2 = 1(

β−
(λ1) −β+

(λ1)

)
X
β−

(λ1)
2

(
−aX2(1−β+

(λ1))−bβ+
(λ1) + c X −1

2 (1+β+
(λ1))+ (β(2) −β+

(λ1))ad A2X
β(2)
2

)
(171)

0 = (β−
(λ1) −β+

(λ1))C2X
β−

(λ1)
1 +aX1(1−β+

(λ1))+β+
(λ1)b − c X −1

1 (1+β+
(λ1))−e(K )X1(1−β+

(λ1))−β+
(λ1)δK

(172)

34



Pre
lim

in
ary

and
in

com
plete

. Please
do not cite

or circ
ulate

!

A.16 Proof of Theorem 4.3

If X < XC 2, then at X ,

D1X β+
(λ1) +ad A2X β(2) = K (1−ηK )X (r −µ2 +λ)

(r −µ1 +λ)(r −µ2)
−δK (173)

β+
(λ1)D1X β+

(λ1)−1 +β(2)ad A2X β(2)−1 = K (1−ηK )(r −µ2 +λ)

(r −µ1 +λ)(r −µ2)
(174)

The system of equations with unknowns C1,C2,D1, X1,K is obtained by (174) X −β+
(λ1) (173) for

XC F .

Thus solving

0 = (β(2) −β+
(λ1))ad A2X

β(2)
1 −e(K )X1(1−β+

(λ1))−β+
(λ1)δK (175)
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