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1 Introduction

Real option analysis (ROA) is recognized as a superior method to quantify the value of real-world

investment opportunities where managerial flexibility can influence their worth, as compared to

standard discounted cash-flow methods typically used in industry. ROA stems from the work of

Black and Scholes (1973) on financial option valuation. Myers (1977) recognized that both financial

options and project decisions are exercised after uncertainties are resolved. The ability for managers

to react to uncertainties at a future time adds value to projects, and since this value is not captured

by standard DCF methods, erroneous decision making may result (Trigeorgis (1996)).

An excellent empirical review of ex-post investment decisions made in copper mining showed that

fewer than half of investment timing decisions were made at the right time and 36 of the 51 projects

analyzed should have chosen an extraction capacity of 40% larger or smaller (Auger and Guzman

(2010)). The authors were unaware of any mining firm basing all or part of their decision making on

the systematic use of ROA and emphasize that the “failure to use ROA to assess investments runs

against a basic assumption of neoclassical theory: under uncertainty, firms ought to maximize their

expected profits”. They make the case that irrational decision making exists within the industry

due to a lack of real option tools available for better analysis. A number of surveys across industries

have found that the use of ROA is in the range of 10-15% of companies, and the main reason for lack

of adoption is model complexity (Hartmann and Hassan (2006), Block (2007), Truong, Partington,

and Peat (2008), Bennouna, Meredith, and Marchant (2010), Dimitrakopoulos and Abdel Sabour

(2007)).

Previously, we introduced a methodology based on exercise boundary fitting (EBF) in an effort

to develop a practical Monte Carlo simulation-based real options approach (Bashiri, Davison, and

Lawryshyn (2018)). We showed that our methodology converges in the case of simple Bermudan and

American put options. More recently, we expanded on the model to solve a staged manufacturing

problem (Fleten, Kozlova, and Lawryshyn (2021)). As we presented, utilizing boundary fitting

allowed us to solve a computationally difficult problem. In another study we explored the use of the

boundary fitting methodology for a number of cases, one being a build and abandon mining example

(Davison and Lawryshyn (2021)). We showed that while the methodology provided good convergence

on option value, under certain scenarios, where the optimal exercise boundaries occurred in regions
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where there were few Monte Carlo paths, the optimization algorithm struggled to converge. In

other cases, convex optimization algorithms would get stuck in non-changing regions. The purpose

of this paper is to explore accuracy and convergence issues related to the exercise boundary fitting

methodology.

1.1 Motivation

As mentioned in Bashiri, Davison, and Lawryshyn (2018), our work is focused on developing a

practical Monte Carlo simulation-based real options methodology as Monte Carlo simulation can be

easily understood by managers and allows for the modelling of multiple stochastic factors (Longstaff

and Schwartz (2001)). Realistic models that try to account for a number of risk factors can be

mathematically complex, and in situations where many future outcomes are possible, many layers

of analysis may be required. As a motivating example1, consider the case of a greenfield mining site,

where the life of the mine lease is 2 years, construction will take half a year, the ore price, St, follows

geometric Brownian motion (GBM) and the per unit costs are K to construct and Cab to abandon,

and Cop is the operating cost rate. For a given set of parameters, the scenarios are depicted in

Figure 1 in a binomial tree. The St process of the first panel is used to determine the operating

cash-flow, calculated as CFt = St − Cop. For this case, we assume that abandonment can occur at

year 2 only, with cost Cab. The real option can be valued in a recursive manner and the different

scenarios are presented in Figure 2. Since it takes half a year for construction, the latest we would

construct the mine is at year 1. In this case, only the cash-flows associated with the last period are

of value and these are discounted twice to year 1 (relevant probabilities and discounting factor were

used) to determine the expected value. At year 1, there are 3 possible values for St and thus three

possible valuations for the cash-flows. Clearly, we would only invest if the total expected value of the

cash-flows minus the investment cost, K, is greater than 0. As shown, only one of the three scenarios

has a positive value, the others are set to 0. We continue to discount these expected values to reach

a valuation of $1.0 at year 0. Similar valuations are done for the case of building at years 0.5 and

0. Based on the analysis, we see that it is best to wait one period (half year) before constructing

and then choosing to construct only if the price St=0.5 = $10.7 is realized. The overall project value

at t = 0 is determined to be $2.9. Note that even for this very simple problem, a separate binomial

tree was required at each decision making time point. If we allowed for early abandonment, many

more trees would be required. If we added a second stochastic factor, we would have another spatial

dimension. Clearly, to value a complex real option the model’s complexity increases substantially.

This complexity leads us to the overall objective of developing a practical simulation based real

options methodology that can model realistic decision-making scenarios encountered in industry.

The focus of this research is the development of a real options valuation methodology geared

towards practical use with mining valuation as a context. A key innovation of the methodology

that we presented previously was the idea of fitting optimal decision making boundaries to optimize

the expected value, based on Monte Carlo simulated stochastic processes that represent important

uncertain factors. Our specific emphasis in this work will be to explore accuracy and convergence

issues related to the following cases:

• Bermudan put option

1Note that this example was presented in Bashiri, Davison, and Lawryshyn (2018).
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Figure 1: Price process and resulting cash-flow.

Figure 2: Real option valuation based on different build times.
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• Option to purchase a Bermudan put option

• Build / abandon real option

• Optimal investment rule in infinite time.

The Bermudan put option is the most basic of options and thus provides context regarding

accuracy and convergence issues2. We then consider the option to purchase a Bermudan put option.

This second case adds further complexity in that two exercise points need to be determined. The

build / abandon real option case provides context in a more realistic practical valuation scenario.

Convex optimization algorithms struggle to converge to the right solution and often get stuck in flat

regions. Using constrained genetic algorithms (GA), we overcome this problem. Finally, we present

the very simple case of the optimal investment rule in infinite time, first introduced by McDonald

and Siegel (1986). The real options literature is rich in the development of analytical and pseudo-

analytical models based on the optimal investment rule in infinite time and the results of these models

provide important insights that can have policy implications. Because these models are analytical

or pseudo-analytical, they provide the advantage that they can be solved almost instantaneously,

allowing the practitioner to explore many scenarios. Arguably, a main disadvantage of these models

is that they are based on simplifying assumptions – assumptions that may not be realistic. Utilizing

the EBF method to test the simplifying assumptions and further explore more realistic scenarios

is of value. We show that the EBF method provides similar results to the basic analytical model,

providing confidence that the EBF method can be utilized to complement these models to allow for

the valuation of more realistic scenarios.

2 Relevant Literature

We make the argument that a majority of real-world real options are either American or Bermudan

type options – i.e. managers typically make strategic decisions either when there is a noticeable shift

in important state variables (American), or decisions are made at predefined intervals (Bermudan).

With this in mind, below we provide a brief review of relevant frameworks to estimate American /

Bermudan options. Then, we provide a review of valuation methods utilized in mining as we see

mining valuation in the real option context the leading use case example for our methodology.

A review of the valuation of American options was provided by Barone-Adesi (2005) where the

LSMC of Longstaff and Schwartz (2001) was highlighted as “the most innovative”, but other similar

Monte Carlo based approaches have been proposed (Barraquand and Martineau (2007)) and the

literature is abundant on the utilization of simulation and dynamic programming to value American

options. There are many articles providing numerical or analytical approximations to an Ameri-

can exercise boundary (e.g. Barone-Adesi and Whaley (1987), Ju (1998), Tung (2016), Del Moral,

Remillard, and Rubenthaler (2012)), however very few articles utilize a “forward” Monte Carlo

approach, where the valuation method does not rely on the end result, but rather, the problem

is worked forwards in time. Miao and Lee (2013) propose the use of forward Monte Carlo valu-

ation, however the exercise boundary was estimated using the analytical method of Barone-Adesi

and Whaley (1987), which negates the ability to develop a general model. Nasakkala and Keppo

(2008) do utilize forward Monte Carlo simulation with a parametric boundary fitting approach in

2Note that this work was initially presented in Bashiri, Davison, and Lawryshyn (2018)
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a hydropower planning problem utilizing two stochastic factors, namely the electricity price for-

ward curve and random water inflow. However, in their approach the parameters are optimized

for each path, an approach that is similar to that provided by (Broadie and Glasserman 1997) for

calculating the upper bound for an American put option called the perfect foresight solution. In a

more recent review of American options methods, Aydogan, Aksoy, and Ugur (2018) cited closed

form analytical approximations as well as numerical methods based on the binomial model, partial

differential equations and LSMC. We emphasize that in our approach we are proposing a general

simulation approach to solve American / Bermudan models by optimizing a parameterized exercise

boundary. We note that the accuracy of our approach will be based on the assumed parametric

boundary equation. One reason why our proposed approach may not have been presented in the

financial derivatives literature is that most works are focused on improving efficiency and accuracy

of the pricing models. In the real options context, where many assumptions are required to esti-

mate the cash-flows, accuracy is not as important – what is important is ease of implementation,

comprehension by decision makers and a tool for better decision making.

Mining Context

The academic literature is very rich in the field of mining valuation. Mining projects are laced

with uncertainty and many discounted cash-flow (DCF) methods have been proposed in the lit-

erature to try to account for the uncertainty (Bastante, Taboada, Alejano, and Alonso (2008),

Dimitrakopoulos (2011), Everett (2013), Ugwuegbu (2013)). Several guidelines/codes have been

developed to standardize mining valuation (CIMVAL (2003), VALMIN (2015)). The main mining

valuation approaches are income (i.e. cash-flows), market or cost based and the focus of this paper is

on income-based real option valuation, which resemble American (or Bermudan) type financial op-

tions. Earlier real option works focused on modelling price uncertainty only (Brennan and Schwartz

(1985), Dixit and Pindyck (1994), Schwartz (1997)), however the complexity in mining is significant

and there are numerous risk factors. Simpler models based on lattice and finite difference methods

(FDM) are difficult to implement in a multi-factor setting (Longstaff and Schwartz (2001)) and, also,

it is extremely difficult to account for time dependent costs with multiple decision making points

(Dimitrakopoulos and Abdel Sabour (2007)). Nevertheless, the simpler models continue to merit at-

tention (Haque, Topal, and Lilford (2014), Haque, Topal, and Lilford (2016)). Dimitrakopoulos and

Abdel Sabour (2007) utilize a multi-factor least squares Monte Carlo (LSMC) approach to account

for price, foreign exchange and ore body uncertainty under multiple pre-defined operating scenarios

(states). However, the model only allows for operation and irreversible abandonment — aspects

such as optimal build time, expansion and mothballing are not considered. Similarly, Mogi and

Chen (2007) use ROA and the method developed by Barraquand and Martineau (2007) to account

for multiple stochastic factors in a four-stage gas field project. Abdel Saboura and Poulin (2010)

develop a multi-factor LSMC model for a single mine expansion.

A review of 92 academic works found that most real options research is focused on dealing with

very specific situations where usually no more than two real options are considered (Savolainen

(2016)). While the LSMC allows for a more realistic analysis, methods presented to date are

applicable only for the case where changes from one state to another does not change the fundamental

stochastic factors with time. For example, modular expansion would be difficult to implement in

such a model if the cost to expand was a function of time and impacts extracted ore quality due to

the changing rate of extraction – these issues were considered in Davison, Lawryshyn, and Zhang
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(2015) and Kobari, Jaimungal, and Lawryshyn (2014). Also, modeling of multiple layers is still

complex and will not lead to a methodology that managers can readily utilize.

3 Methodology

In Bashiri, Davison, and Lawryshyn (2018) we presented details of the theory and methodology of

applying EBF for the following cases: 1) a Bermudan put option, 2) a Bermudan put option with a

variable strike, 3) an American put option and 4) a build / abandon real option. In this section we

present the general simulation framework, then provide details for each of the four cases discussed

mentioned in the Introduction.

The EBF framework assumes that the (real) option valuation is based on a single or multiple

stochastic processes, say X⃗t, which are simulated using Monte Carlo simulation. Depending on the

valuation model, these processes may be risk-neutral or actual and are general in that standard

and non-standard processes can be used. We let f⃗B(x⃗, t; θ⃗) be a general function that represents

NB exercise boundaries parametrised by θ⃗, where x⃗ represents possible realizations of the process

X⃗t. We note that f⃗B(x⃗, t; θ⃗) can be a single point, multiple points, a curve or multiple curves of

fixed dimensional surfaces. Based on the path dependent journey of X⃗t we define appropriate first

passage of time for the i-th path crossing the j-th boundary as

τ
(i)
Bj

≡ min{t > 0, X⃗
(i)
t ≥ ±fBj (x⃗, t; θ⃗) | λ(i)(X⃗

(i)
t )}, (1)

where we use ± to signify that the process could be hitting the exercise boundary from below or

above, depending on the problem at hand, and state λ(i)(X⃗
(i)
t ) ≡ λ

(i)
t with j ∈ {1, 2, ..., NB}, where

there could be NS possible states, also dependent on the problem at hand.

For each simulated path X⃗
(i)
t , we define a cash-flow or payoff at time t as CF (i)(X⃗

(i)
t , λ

(i)
t ) ≡ CF

(i)
t

and thus the value generated by the i-th path can be determined by

V
(i)
0 (X⃗

(i)
t , λ

(i)
t ) ≡ V

(i)
0 =

Nt∑
j=0

CF
(i)
tj

e(−rtj), (2)

where Nt is the number of time steps in the simulation such that t ∈ {t0, t1, ..., tNt}. We emphasize

that V
(i)
0 is a function of λ

(i)
t and is therefore a function of the exercise boundary parameters, θ⃗.

The overall option value becomes

V0 =
1

N

N∑
i=1

V
(i)
0 (θ⃗), (3)

where N is the number of paths used in the simulation for X⃗t. Our task reduces to maximizing V
(i)
0

by finding optimal exercise boundary parameters,

θ⃗∗ = argmax
θ⃗

1

N

N∑
i=1

V
(i)
0 (θ⃗) (4)

and thus, the option value becomes

V ∗
0 =

1

N

N∑
i=1

V
(i)
0 (θ⃗∗). (5)

In the following subsections we reduce the general formulation presented above for our four specific

cases.
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3.1 Bermudan Put Option

As mentioned previously, we presented our formulation for the Bermudan put option in Bashiri,

Davison, and Lawryshyn (2018). Here we summarize the methodology. For the Bermudan put

option, we consider a GBM stock price process, St, as

dSt = rStdt+ σStdŴt, (6)

where r is the risk-free rate, σ is the volatility and Ŵt is a Wiener process in the risk-neutral measure.

We assume the payoff of the option to be max(K−St, 0) and can be exercised at times t = τ and

t = T where τ < T . We utilize Monte Carlo simulation to generate N GBM paths and we replace

X
(i)
t from the general formulation above, with S

(i)
t . The value of our option (cf. equation (2)) for

the i-th path is

V
(i)
0 (θ) = 1

S
(i)
τ ≤θ

(
K − S(i)

τ

)
e−rτ + 1

S
(i)
τ >θ

max
(
K − S

(i)
T , 0

)
e−rT . (7)

and the optimal exercise price (cf. equation (4)) is

θ∗ = argmax
θ

1

N

N∑
i=1

V
(i)
0 (θ), (8)

leading to the optimal option value (cf. equation (5)) as

V ∗
0 =

1

N

N∑
i=1

V
(i)
0 (θ∗). (9)

In Bashiri, Davison, and Lawryshyn (2018) we showed that the exact value for θ∗ can be deter-

mined by solving the equation

K − θ∗ = PBSput(θ
∗, τ, T, r, σ,K), (10)

where PBSput(x, τ, T, r, σ,K) is the Black-Scholes formula for the value of a European put option

with current stock price x, maturity T − τ , risk-free rate r, volatility σ and strike K, and fSτ (x|S0)

is the density for Sτ given S0. Equation (10) can be solved using numerical methods and thus the

option value simplifies to

V act
0 = e−rτ

(∫ θ∗

0
(K − x)fSτ (x|S0)dx+

∫ ∞

θ∗
PBSput(x, τ, T, r, σ,K)fSτ (x|S0)dx

)
, (11)

which, too, can be solved using standard numerical methods. By observing equations (7), (9) and

(11), it is easy to see that

lim
N→∞

V ∗
0 = V act

0 . (12)

3.2 Option to Purchase a Bermudan Put Option

We now consider the option to purchase a Bermudan put option at a predetermined price K1 at

time τ1 with strike price K2 based on a GBM price process as presented in equation (6). We define

τ2 as the time where we have the option to exercise the put option early and T as the time the
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option expires, such that 0 < τ1 < τ2 < T . The cash-flow for the i-th path for the option at t = τ1
is

CF (i)
τ1 = −1

S
(i)
τ1

≤θ1
K1, (13)

where the option is purchased at the price K1 if S
(i)
τ1 is below the exercise value θ1. At t = τ2, the

option is exercised with a payoff of K2 − S
(i)
τ1 if the option had been purchased at t = τ1 and S

(i)
τ2 is

below θ2, i.e.,

CF (i)
τ2 = 1

S
(i)
τ1

≤θ1
1
S
(i)
τ2

≤θ2

(
K2 − S(i)

τ2

)
. (14)

At t = T , if the option had been purchased at t = τ1 and not exercised at t = τ2 then the payoff

becomes max
(
K2 − S

(i)
T , 0

)
, or

CF
(i)
T = 1

S
(i)
τ1

≤θ1
1
S
(i)
τ2

>θ2
max

(
K2 − S

(i)
T , 0

)
. (15)

The value associated with the i-th path is given as (cf. equation (2))

V
(i)
0 (θ⃗) = CF (i)

τ1 e−rτ1 + CF (i)
τ2 e−rτ2 + CF

(i)
T e−rT , (16)

and the optimal exercise price is (cf. equation (4))

θ⃗∗ = argmax
θ⃗

1

N

N∑
i=1

V
(i)
0 (θ⃗), (17)

leading to the optimal option value as (cf. equation (5))

V ∗
0 =

1

N

N∑
i=1

V
(i)
0 (θ⃗∗), (18)

where θ⃗∗ = [θ1, θ2]
′.

We utilize numerical methods to determine the actual θ⃗∗ and option value. To do so, we utilize

equations (10) and (11) with K = K2 to determine θ∗2 the value of the simple Bermudan put at

t = τ1 as a function of St and then determine where this value equates to K1 to find θ∗1.

3.3 Build / Abandon Real Option

The build / abandon real option valuation methodology was presented in (Bashiri, Davison, and

Lawryshyn 2018) and here we provide a summary. As above, we simulate N risk-neutral paths for St.

We assume parametric functions fB(s, t; θ⃗B) for the construction (build) boundary and fA(s, t; θ⃗A)

for the abandon boundary. Defining λ
(i)
t = {0, 1, 2, 3} as the state variable of the i-th simulation

such that λ
(i)
0 = 0, where 0 denotes the state where no construction has taken place, 1 denotes state

where the plant is under construction, 2 denotes the state where the plant is in operation and 3

denotes the state where the plant has been abandoned. We define the first passage of time when

S
(i)
t hits the build boundary,

τ
(i)
B ≡ min{t > 0 : S

(i)
t ≥ fB(S

(i)
t , t; θ⃗B)}. (19)
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Similarly, the first passage of time when S
(i)
t hits the abandon boundary after construction has

begun can be defined as

τ
(i)
A ≡ min

{
t > 0 : S

(i)
t ≤ fA(S

(i)
t , t; θ⃗A), λ

(i)
t ∈ {1, 2}, T : λ

(i)
t ∈ {1, 2}

}
. (20)

Thus, the state variable is set as follows,

λ
(i)
t =


0, for t < τ

(i)
B or τ

(i)
B ∈ Ø,

1 for τ
(i)
B ≤ t < τ

(i)
B + τc,

2 for
{
τ
(i)
B + τc ≤ t < τ

(i)
A

}
or
{
τ
(i)
B + τc ≤ t and τ

(i)
A ∈ Ø

}
,

3 for t ≥ τ
(i)
A ,

(21)

where τc is a constant representing the time required for construction.

The cash-flow for the i-th path for construction is

CF (i)
τB

= −1
λ
(i)
t =1

K, (22)

where K is the construction cost. Similarly, the abandonment cash-flow is given as

CF (i)
τA

= −1
λ
(i)
t =3

Cab, (23)

where Cab is the cost to abandon. Finally, the operating cash-flows are

CF
(i)
t = 1

λ
(i)
t =2

γ
(
S
(i)
t − Cop

)
∆t, (24)

where Cop is the per unit time operating cost, γ is the rate of extraction of the mineral and ∆t is

the time step in the simulation of St.

The value of the i-th path is (cf. equation (2))

V
(i)
0 (θ⃗) =

Nt∑
j=0

CF
(i)
tj

e(−rtj), (25)

where θ⃗ = [θ⃗B, θ⃗A]
′ and Nt is the number of time steps used per simulation. Proceeding similarly as

above, the optimal parameters defining the build and abandon exercise boundaries can be determined

as (cf. equation (4))

θ⃗∗ = argmax
θ⃗

1

N

N∑
i=1

V
(i)
0 (θ⃗), (26)

leading to the optimal option value as (cf. equation (5))

V ∗
0 =

1

N

N∑
i=1

V
(i)
0 (θ⃗∗). (27)

While it can be inferred that the negative of the right hand side of equation (26) is a convex

function, it is not strictly convex, which leads to challenges in optimization. In the results section we

show how robust multivariate convex optimization methods can stall. One solution to the problem

is to utilize heuristic algorithms. We utilize a constrained genetic algorithm to improve accuracy

and convergence.
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3.4 Optimal Investment Rule in Infinite Time

Here we present the very simple case of the optimal investment rule in infinite time, first introduced

by McDonald and Siegel (1986). We assume that the project value, X, follows a GBM,

dXt = αXtdt+ σXtdWt (28)

where α is the drift, σ is the volatility and Wt is a Wiener process. At some point in time, investors

can invest in the project for a one time cost of I, and thus the optimal value of the investment is

V (X) = max
t
E
[
(Xt − I)e−rt

]
(29)

where r > α is the discount rate.

If there is no termination time for the investment opportunity, then the optimal investment rule

is

X∗ =
β

β − 1
I (30)

where

β =
1

2
− α

σ2
+

√(
α

σ2
− 1

2

)2

+
2r

σ2
. (31)

We proceed similarly as in the above cases where we simulate N paths for V of equation (28).

Knowing this is an infinite time problem, we set the boundary function to simply be

fB(x, t; θ) = θ (32)

with the first passage of time for the i-th path as

τ
(i)
B = min{t > 0, X

(i)
t ≥ θ} (33)

and the cash-flow of the i-th path as

CF (i)
τB

= X(i)
τB

− I. (34)

We proceed as above, applying equations (2) - (5) to find the optimal investment rule, X∗.

4 Results

In the following subsections we present some results of the simulation experiments that were per-

formed for 1) the Bermudan put option, 2) the option to purchase a Burmudan put option, 3) the

build / abandon real option and 4) the optimal investment rule in infinite time.

4.1 Bermudan Put Option

We presented the results of applying the EBF method to the Bermudan put option in detail in

Bashiri, Davison, and Lawryshyn (2018). Here we provide a summary table of the results. For the

Bermudan put option, we assume the following parameters:
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• S0 = 5

• K = 5

• τ = 1

• T = 2

• r = 3%

• σ = 10%.

For these parameters the pseudo-analytical results, using equations (11) and (10), respectively, are:

• V0 = 0.1688

• θ∗ = 4.7571.

In Table 1 we present the mean and standard deviation of 1000 simulation runs for increasing

N for V0 and θ∗. As expected, as N is increased, the values for V0 and θ∗ approach those of the

pseudo-analytical solution. Based on both these numerical (simulated) results and equation (12),

we have confidence in the applicability of the EBF method.

Table 1: Bermudan put option convergence for 1000 simulation runs; mean value and (standard

deviation).

100 Paths 1000 Paths 10,000 Paths 100,000 Paths 1,000,000 Paths

V0 0.1744 (0.0257) 0.1705 (0.0080) 0.1692 (0.0025) 0.1689 (0.0008) 0.1689 (0.0003)

θ∗ 4.7052 (0.2324) 4.7353 (0.0819) 4.7538 (0.0334) 4.7564 (0.0157) 4.7572 (0.0070)

4.2 Option to Purchase a Bermudan Put Option

The EBF method proved to work well with the simple Bermudan put option, and, in Bashiri,

Davison, and Lawryshyn (2018) we showed how the American put option value converged to the

numerical value as the number of simulated paths increased. However, in Davison and Lawryshyn

(2021) we showed how the build / abandon mining example struggled to converge to the optimal

scenario where different initial conditions led to different results. To explore these issues further,

we turned to the simpler case of the option to buy a Bermudan put option. This case is similar to

the build / abandon case where a simulated path must first hit one boundary before the second can

be considered, but is significantly less complex in that only two single point parameters need to be

optimized.

Here we consider the scenario where at τ1 = 1y we have the option to buy a Bermudan put

option for K1 = 0.1 with a strike price K2 = 5 expiring at T = 3y with the option to exercise early

at τ2 = 2y. For the price process we have the following parameters:

• S0 = 5

• r = 3%

• σ = 10%.

For these parameters, the numerical solution gives

• V0 = 0.1033

• θ1 = 5.2323
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Figure 3: Histograms of V ∗
0 for the option to purchase a Bermudan put option (note that each case

was simulated 500 times).

• θ2 = 4.7571.

In Figure 3 we plot histograms of V ∗
0 for varying N values. In each case, 500 simulations were

run. The corresponding histograms for optimal exercise values, θ∗1 and θ∗2 are presented in Figure

4. The results are summarized in Table 2. As can be seen, as the number of paths is increased,

the simulated results converge to those determined numerically and the standard deviation of the

simulated results reduces. These results provide further confidence in the EBF methodology.

Table 2: Option to buy a Bermudan put option convergence for 500 simulation runs; mean value

and (standard deviation).

No. of Paths (N)

1,000 10,000 100,000 1,000,000

V ∗
0 0.1057 (0.00850) 0.1039 (0.00258) 0.1036 (0.00085) 0.1034 (0.00026)

θ∗1 5.2240 (0.08127) 5.2314 (0.03548) 5.2321 (0.01768) 5.2324 (0.00769)

θ∗2 4.7444 (0.09002) 4.7510 (0.03915) 4.7565 (0.01757) 4.7565 (0.00833)

4.3 Build / Abandon Real Option

The first two cases presented above explore simpler cases where the exercise boundaries were single

points at predefined times. In Bashiri, Davison, and Lawryshyn (2018) we showed the convergence

results for an American put option where we modelled the exercise boundary curve, fB, as cubic

splines and polynomials of varying order. Since, generally, the option values tend to be insensitive

to small variations in the exercise boundaries, and, in an effort to provide significant degrees of

freedom in the boundary, allowing for convexity and concavity in a given boundary while at the

same time not making the boundary overly complex so that optimization routines have a relatively
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Figure 4: Histograms of θ∗1 and θ∗2 for the option to purchase a Bermudan put option (note that

each case was simulated 500 times).

even chance of converging, in the results presented here we utilize piecewise linear functions for the

exercise boundaries. We define the general boundary as

fw(s, t; θ⃗, η⃗) =


θ1 for 0 ≤ t < η1,

θi + (t− ηi)
(θi+1−θi)
(ηi+1−ηi)

for ηi ≤ t < ηi+1,

θn for ηn ≤ t ≤ T,

(35)

where w ∈ {B,A} represents the build and abandon scenarios, and i ∈ {1, 2, ..., n} where n is the

number of control points at times ηi determined by the analyst. For example, if we were to set the

control points η⃗ = [2, 5, 9]′ then for 0 ≤ t < 2 the exercise boundary would be fw = θ1, for 2 ≤ t < 5

and for 5 ≤ t < 9 linear interpolation would be used for the appropriate θi and θi+1 values and for

9 ≤ t ≤ T , fw = θn.

For the build / abaondon real option example, we assume the following parameters:

• S0 = 5

• T = 10 years

• K = 5

• Cop = 5

• Cab = 5

• τc = 0

• γ = 5

• r = 3%

• σ = 10%.
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Figure 5: Build / abandon boundaries for the base case with N = 106 and Nt = 100.

Note that here we have used a zero time to construction (τc) however this parameter had no

impact on convergence results. For the base case we assume build / abandon decisions can be

made at half year increments. We set ηB = [1, 3, 6, 7, 9.5]′ and ηA = [0.5, 5.2, 9.9]′. From multiple

numerical experiments using varying number of paths, N , and time steps, Nt, it was determined

that results were stable using the constrained GA optimization with N = 106 and Nt = 100. Thus,

with these given parameters, the value of the real option was determined to be V ∗
0 = 28.1145 The

build / abandon boundaries, along with 20 random sample paths are plotted in Figure 5.

In Figure 6 we plot the histograms of V ∗
0 for varyingN values and provide a tabulated summary in

Table 3, where, in each case, 200 simulations were run. Again, as N is increased we see the expected

convergence behaviour. In Figure 7 we plot a select number of build and abandon boundaries for

varying N . Interestingly, even at higher levels of N there are some irregularities in the exercise

boundary shapes. This result highlights the relative insensitivity of the option value to boundaries,

especially in regions where the number of affected paths is low.

Table 3: Build / abandon real option convergence for 200 simulation runs; mean value and (standard

deviation).

No. of Paths (N)

1,000 10,000 100,000

V ∗
0 28.4265 (3.49904) 28.2280 (1.18566) 28.1441 (0.38221)

In Figure 8 we plot the histograms of V ∗
0 for varying N values determined using convex opti-
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Figure 6: Histograms of V ∗
0 for the build / abandon real option (note that each case was simulated

200 times).

Figure 7: Build and abandon boundaries for varying number of paths, N .
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Figure 8: Histograms of V ∗
0 for the build / abandon real option using convex optimization (note

that each case was simulated 200 times).

mization. We see that the optimization routine regularly converges to sub-optimal values. Table 4

presents the corresponding summary values for V ∗
0 and the standard deviation based on 200 simu-

lations for varying number of paths N . In Figure 9 we plot a select number of build and abandon

boundaries. As shown, the build boundaries are scattered and the optimization has clearly not

converged to the global optimum. These results highlight the issues originally encountered when

applying the EBF method for more complex problems. Using a genetic algorithm whose starting

points span the domain of possible paths alleviates the problem.

Table 4: Build / abandon real option convergence using convex optimization for 200 simulation

runs; mean value and (standard deviation).

No. of Paths (N)

1,000 10,000 100,000

V ∗
0 23.9549 (4.75881) 24.5359 (1.79237) 24.6053 (1.37566)

4.4 Optimal Investment Rule in Infinite Time

For the optimal investment rule in infinite time we assume the following parameters:

• I = 5

• r = 7%

• α = 3%
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Figure 9: Build and abandon boundaries for varying number of paths, N .

• σ = 10%.

With these parameters, the optimal investment rule gives X∗ = 10. We simulate Xt with X0 = 5.

Note that increasing r improved convergence as a shorter time frame was required for simulation

since future values approach discounted values to zero at earlier times. In the simulations presented

here, we chose a terminal time T = 200 years. We found Nt = 10, 000 to be more than sufficient

in the analysis3. In this case θ consists of a single value, i.e., the optimal investment rule V ∗, thus,

convex optimization converged quickly and did not suffer the issues related to the build / abandon

case.

In Figure 10 we plot the histograms of V ∗ for varying N values and the results are summarized in

Table 5, where, in each case, 100 simulations were run. As N is increased we see the expected conver-

gence behaviour, providing confidence that the EBF method can be applied to optimal investment

rule problems in infinite time.

Table 5: Optimal investment rule in infinite time convergence for 100 simulation runs; mean value

and (standard deviation).

No. of Paths (N)

1,000 10,000 100,000

V ∗ 9.6010 (1.22406) 9.9872 (0.51366) 9.9928 (0.26037)

3Note that when we set r = 3% we needed to use a terminal time of T = 500 years and needed to increase Nt

proportionally to achieve converged results.



Davison & Lawryshyn 18

Figure 10: Histograms of V ∗ for the optimal investment rule in infinite time (note that each case

was simulated 100 times).

5 Conclusions

The focus of this research was to present a real options valuation methodology geared towards

practical use with an emphasis of exploring numerical accuracy and convergence issues. A key

innovation of the EBF methodology is the idea of fitting optimal decision making boundaries to

optimize the expected value, based on Monte Carlo simulated stochastic processes that represent

important uncertain factors. We repeated our previous findings where we showed good accuracy and

convergence results for the simple, single exercise parameter for the case of a Bermudan put option.

We then explored the problem where one has the option to purchase a Bermudan put option. In

this case we have two exercise parameters to determine. In both of these cases, standard convex

optimization schemes provided good results. However, in our third case, the build / abandon option,

which we had previously shown issues with convergence using standard convex optimization, good

accuracy and convergence was achieved using a constrained genetic algorithm where we initiated

the algorithm to search the entire stochastic process domain. Finally, we applied the EBF method

to the very simple case of the optimal investment rule in infinite time, first introduced by McDonald

and Siegel (1986). Again, the EBF method proved accurate and convergence was easily achieved

using a standard convex optimization algorithm.

To value a realistic real option with multiple stochastic factors using current standard methods

can lead to significant model complexity that may make the analysis intractable. Our theoretical

and numerical presentation of EBF method shows how the complexity can be overcome through the

use of Monte Carlo simulation. We emphasize that in a real options context, often many parameters

can only be estimated. Errors associated with an approximate boundary fit may be significantly

less than not modelling important complexities in the quest of a mathematically accurate solution.

We feel that the EBF methodology is very tractable in an industry setting for it is simple enough

for managers to understand, yet can account for important real world factors that make the real
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options model suitable for valuation.
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