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Abstract 

In competitive industries, foreseeable policy changes lead to inevitable runs 

which increase the volatility of investment. We show that this phenomenon, 

well-known in the case of caps and quotas, also applies to taxes and subsidies, 

and occurs whether policy changes apply only to new entrants or to all firms 

equally. Looking at the case of raising taxes (or removing a subsidy) we find 

that runs are smaller when the policy change affects all firms. We also find 

that the size of the run, i.e., the size of the resulting increase in market quantity 

is increasing in the magnitude of the tax raise. Finally, we show that during 

the run firms invest faster and more massively than on the socially optimal 

path, and therefore welfare decreases. We show that these results have 

implications for a broad range of policies, such as the removal of renewable 

energy subsidies in some European countries. 
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1. Introduction 

When in the summer of 2020 the French government announced a hundred-billion euro 

stimulus plan, France Relance, to alleviate adverse consequences of the COVID-19 pandemic 

on economic activity, this was with the understanding that measures in the package, such as 

significant tax breaks for firms, would extend over a two-year period,1 a delay presumably 

reflecting the expected time needed for the economy to recover. As much as policy 

interventions can arise unexpectedly therefore (ahead of the lockdowns measures which caused 

economic activity to drop, the pandemic was hardly anticipated by Western governments), there 

also are many circumstances where the timing of policies is to some extent known by economic 

actors. Such knowledge can arise because policy is explicitly constrained or closely tied to 

events with specific dates. It can also arise because policies are tied to events whose exact 

timing, though unknowable in advance, is nevertheless predictable, like economic recovery 

from a shock, or when environmental parameters reach a certain value. For an alternative 

example, consider another important policy objective, decarbonization, whose achievement 

rests in large part upon promoting green investment. While the road ahead is still long for many 

of the world’s countries, in the fall of 2020, Sweden and Norway jointly announced that their 

green power support schemes would be phased out by 2035. Moreover, these schemes would 

be closed to new participants as of the beginning of 2022, because both countries deemed that 

their renewable energy production targets had been largely met.2  

For many reasons, it is often preferable that economic actors anticipate policies. For businesses, 

aside from easing technological or organizational transitions, lower policy risk tends to 

accelerate investment by removing a superfluous option value of waiting. If the implementation 

of a policy is tied to market uncertainty however, it is possible for the anticipation of policy 

changes to have less desirable consequences. This is because the anticipation of a policy 

intervention can drive investment in competitive industries to increase too much and raise its 

variability significantly.  The reason is that anticipated changes can lead to competitive runs, a 

phenomenon which has been studied generally in the context of very specific measures like 

quotas and caps on investments, but which we argue in this paper arises under a much broader 

range of policy measures.  

                                                           
1 See https://www.lesechos.fr/economie-france/budget-fiscalite/plan-de-relance-les-100-milliards-deuros-
seront-etales-sur-deux-ans-1224104.  
2 See https://www.reuters.com/article/us-norway-sweden-electricity-idUSKBN26922B. 

https://www.lesechos.fr/economie-france/budget-fiscalite/plan-de-relance-les-100-milliards-deuros-seront-etales-sur-deux-ans-1224104
https://www.lesechos.fr/economie-france/budget-fiscalite/plan-de-relance-les-100-milliards-deuros-seront-etales-sur-deux-ans-1224104
https://www.reuters.com/article/us-norway-sweden-electricity-idUSKBN26922B
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The concept of a run in Economics has historically been most closely associated with 

movements in financial asset values. In the Diamond and Dybvig (1983) model of bank runs, 

rather than resulting from a gradual, dynamic process, the run arises as one of several equilibria, 

driven by individual beliefs. In Krugman’s (1979) balance of payment crisis model, a run occurs 

in the face of dwindling reserves before these are depleted, as individuals protect their assets, 

but the framework this result is derived in is a Keynesian model without optimization. A 

common feature to both these classic studies is that the run springs from the knowledge that a 

certain stock is going to be fully exhausted, either liquid bank reserves in Diamond and Dybvig, 

or the central bank’s foreign currency reserves in Krugman’s.   

Later studies have focused on runs that emerge in a market where profits are stochastic and 

investment is irreversible. In those studies the runs emerge in equilibrium when there is a cap 

on aggregate investment. As the endpoint of an investment opportunity nears, firms cease to 

wait for an optimal threshold to be reached and a mass of investment occurs. Applications 

involving this dynamic pattern of a run arise naturally in a variety of areas, ranging from foreign 

investment caps (Bartolini 1995), to immigration quotas (Moretto and Vergali 2010), or policies 

restricting land use (Di Corato, Moretto and Vergalli 2013). Some of these also incorporate an 

adverse externality which motivates imposing the cap. 

In the present article, we study a model of competitive investment under uncertainty and 

describe the general conditions that can give rise to a run. These include, for example, 

anticipated changes in tax rates or subsidies and more broadly any measure that generates a 

kink in the revenue or cost functions that firms face, and thereby cause the investment threshold 

function to jump. Like a cap (which can be interpreted as an infinite tax) therefore, a tax on 

entries once a market size or industry capacity threshold is met results in a run. The threshold 

at which the run starts is inversely related to the size of the tax.  

Our analysis shows that such a run occurs because the worsening of conditions after a policy 

intervention (tax or subsidy withdrawal) slows the subsequent entry process and the falls in 

prices that each entry would bring, thereby improving the revenue flow that existing firms 

enjoy. As existing firms would then enjoy above normal profit, a mass of new firms is attracted 

into the market generating the run. This process ultimately eliminates the possibility that the 

improved future revenue process might raise firm value above the normal return. More 

specifically, the run brings about an immediate drop in price which balances the improved 

future revenue process. 
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To verify this intuition we also study an alternative policy, a tax on flow or operating cost rather 

than fixed cost, which affects active and inactive firms equally. In this situation all firms have 

the same revenue flows after the policy intervention yet sill a run emerges, confirming that the 

same reasoning applies: it is not any specific future tax advantage but rather the slowing of 

future entries and resulting rise in revenues which dominates. This dominance springs from the 

endogenous nature of the revenue process – it is based on firms’ entries and those occur when 

their net value is zero, due to free entry. Thus, the run occurs not because it rewards its winners 

with an advantage compared to those who were not lucky enough to enter before the policy 

change. On the contrary – the run is a dynamic equilibrium pattern that keeps value equal for 

all – at the normal return.  

Finally, we turn to the welfare properties of competitive runs. In the present paper, we consider 

an optimal policy where the regulator chooses a tax that exactly reflects the investment 

externality, implying that at any moment firms face the correct economic cost. For such a 

policy, we find that the run reduces welfare by excessively accelerating investment, which 

destroys a valuable option to wait. 

From a policy perspective, our analysis relates to investment in renewable energy generation 

for example. The effect of incentivizing policies in this area has both studied and estimated 

extensively (Linnerud, Andersson and Fleten 2014). In this literature, policy effects generally 

are estimated for small projects where individual investors are price-takers in the electricity 

market and both the level of policy and the electricity price fluctuate stochastically. Different 

policies which have been considered include lump-sum investment subsidies and feed-in tariffs 

which shield firms from lower electricity prices. More recently though, this literature has begun 

to highlight the risk associated with the withdrawal of subsidies (Nagy, Hagspiel and Kort 

2021), as highlighted in our opening paragraph. We contribute to this discussion by 

complementing existing models through the introduction of competitive equilibrium and the 

run behavior this generates, both in the case of lump-sum subsidies and feed-in tariffs.  

Section 2 presents the assumptions underlying our model. Section 3 studies competitive 

equilibrium in the absence of policy intervention. Section 4 considers a tax on investment and 

derives the resulting behavior, characterizing the effect of parameters on the magnitude and 

timing of the competitive run. In Section 5, we extend this analysis to the case of a tax on 

operating costs and compare the two forms of policy. 
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2. The model 

Consider an industry consisting of an initial mass 𝑄0 = 𝑄 of firms. Firms are identical and risk 

neutral. Once active, a firm is a price-taker in the market, and the price at time 𝑡 ∈ 𝑅+ is 

 

(1) 𝑃𝑡 = 𝑋𝑡 ∙ 𝑓(𝑄𝑡), 

 

where 𝑄𝑡 is current industry capacity, 𝑓(𝑄) is a differentiable downward-sloping inverse 

demand function with lim
𝑄→∞

𝑓(𝑄) = 0, and 𝑋𝑡 is an exogenous shock which evolves 

stochastically according to a geometric Brownian motion  

 

(2) 𝑑𝑋𝑡 = 𝜇 ∙ 𝑋𝑡 ∙ 𝑑𝑡 + 𝜎 ∙ 𝑋𝑡 ∙ 𝑑𝑍𝑡 

 

where 𝜇 is the drift of the process, 𝜎 > 0 the volatility, and 𝑑𝑍𝑡 is the increment of a standard 

Wiener process, uncorrelated across time and satisfying 𝐸(𝑑𝑍𝑡) = 0 and 𝐸[(𝑑𝑍𝑡)
2] = 𝑑𝑡 at 

each point in time. 

Two specific examples we will later refer to are:  

-constant elasticity, 

 

(3) 𝑃𝑡 = 𝑋𝑡 ∙ 𝑄𝑡
−𝛾

 

 

where 𝛾 ∈ (0,1) is the inverse of the elasticity of demand; 

- hyperbolic, 

 

(4) 
Pt =

Xt

𝐴 + 𝑄𝑡
 

 

where  𝐴 > 0. 
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There is free entry into the market. Once a firm has entered, it produces up to capacity and 

cannot exit. Initially the cost of a unit of capacity is 𝐾 and the operating cost per unit of capacity 

is 𝑤, with at least one of these costs positive.  

Once the industry reaches a predetermined capacity 𝑄̅ a policy intervention that permanently 

shifts one of the cost components takes place. The first policy we study is a shift in the cost of 

a capacity unit to 𝐾′ > 𝐾. This policy can be interpreted either as a tax on investment at a 

constant rate 𝜏 in which case 𝐾′ = (1 + 𝜏) ∙ 𝐾, or as the withdrawal of a lump-sum subsidy 𝑆 

in which case 𝐾′ = 𝐾 + 𝑆. The second policy we study is a shift in the operating cost to 𝑤′ >

𝑤, once again due to an increased tax rate or to a subsidy removal. Aside from which cost 

component is affected, this policy shock differs from the first in that it affects all firms rather 

than only new entrants.  

Firms have the same constant discount rate 𝑟, and we suppose 𝑟 > 𝜇 to focus on the case where 

firm value is not infinite. 

 

3. Industry equilibrium 

We start by presenting the industry equilibrium in the absence of policy intervention, i.e., if K 

and w remain at their initial levels forever. Under the setup described above and in the absence 

of policy intervention the potential investor in this model is facing the same situation as the 

investors in Leahy (1993). In this section we use Leahy's analysis to present the potential 

investors' optimal investment policy.  

The decision to enter depends on the expected profitability of this investment, and therefore 

takes place only when Xt is sufficiently large. Let  QX *  denote the investment threshold given 

the current market quantity.3 

Let V(Q,X) denote the value of a firm that is active in the market. The standard no-arbitrage 

analysis, presented in Appendix A, shows that 

 

(5) 𝑉(𝑄, 𝑋) = 𝑌(𝑄) ∙ 𝑋𝛽 +
𝑋 ∙ 𝑓(𝑄)

𝑟 − 𝜇
−
𝑤

𝑟
 

                                                           
3 In the following, we will drop the time subscript for notational convenience. 
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where Y(Q) is determined via boundary conditions and  is the positive root of the quadratic 

equation: 

 

(6)   02

2
122

2
1  rxx   

 

Appendix A also shows that  > 1 and that it is decreasing in 
2 . Note that by the standard 

properties of the Wiener Process, the second and third terms of (5) represent the expected 

present value of the firm's profit flow if Q remains forever at its current level, i.e.: 

 

(7)    
 

r

w

r

QfX
dtewQfXEdtewQPE tr

t

tr

t
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
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















  








 00

. 

 

Due to that, the first term in (5), namely   XQY  , accounts for how future market entries 

affect the value of the firm, as they increase the market quantity Q, and thus lower profitability.  

Two boundary conditions are required to find Y(Q) and the threshold function  QX * . The first 

is the following Value Matching condition: 

 

(8)    KQXQV *, . 

 

And the second is the following Smooth Pasting condition: 
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(9)    0, * QXQVX . 

 

The Value Matching condition holds for any threshold, not necessarily the optimal one, and 

states that to prevent arbitrage at the entry time the value of an idle firm (which is zero in the 

current free entry case) must equal that of the active firm it becomes. The Smooth Pasting 

condition is an optimality condition requiring that at the entry time the two value functions have 

the same slope with regard to X. 

Applying (5) in (8) and (9) yields: 

 

(10) 𝑋∗(𝑄) = 𝛽̂ ∙ (𝑟 − 𝜇) ∙
𝐾 +

𝑤
𝑟

𝑓(𝑄)
 

 

where 1
ˆ






 . Note that 1ˆ   since   > 1. 

This threshold is an increasing function of Q as the larger the market quantity, the stronger the 

competition and, ceteris paribus, the higher the expected profitability required to trigger entry. 

Note that according to the standard net present value rule a firm should enter as long as 𝑋 >

(𝑟 − 𝜇) ∙
𝐾+

𝑤

𝑟

𝑓(𝑄)
.  Multiplying by the uncertainty wedge 𝛽̂ > 1 accounts for the presence of 

uncertainty and irreversibility (see Dixit and Pindyck, 1994, Ch. 5, Section 2). Also observe 

from (10) that   0/* dQdX  and this, taken together with 0/  dd , which follows from (6), 

implies that   0/* dQdX which means that the higher the demand volatility, the higher the 

threshold triggering firm’s entry. 
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Figure 1: The entry process when there is no policy change. 

 
Figure 1 shows the resulting gradual process of market entry. Starting at a point like A, the continuous 

movement of X does not change market quantity which remains QA until X hits X*(QA) and then a firm 

invests and enters the market. The rising Q makes X*(Q) rise too, so that X is once again below the 

threshold and further investment is postponed until the first time X hits the threshold function 

It also follows from applying (5) in (8) and (9) that   

 

(11) 𝑌(𝑄) = −
(𝛽 − 1)𝛽−1 ∙ [𝑓(𝑄)]𝛽

𝛽𝛽 ∙ (𝑟 − 𝜇)𝛽 ∙ (𝐾 +
𝑤
𝑟 )

𝛽−1
< 0, 

 

which implies that the value of an active firm is negatively affected by the possible future entries 

of additional firms into the market. The higher is Q, the smaller this effect (in absolute terms) 

because with higher market output, profitability falls and future entries are expected to arrive 

QA+Q 

Q 

X 

 X*(Q) 

A 

QA 
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at a slower pace as they require reaching higher thresholds. Note that K and w have a positive 

effect on the value of the already active firm for similar reasons. 

    

4. Industry equilibrium with policy intervention affecting fixed cost 

In this section we study the effect of a policy intervention on competitive investment. The 

intervention happens once the industry reaches a predetermined capacity 𝑄̅, and its timing is 

known to firms. The effect of the policy intervention in this section is to shift the cost of a 

capacity unit to 𝐾′ > 𝐾. 

We analyze the industry equilibrium in two steps, starting with the case where QQ  , which 

means that the policy change has already taken place. Then we go to the case where QQ   and 

the policy change has not occurred yet. 

 

Proposition 1. When  QQ   the value of an active firm is  

 

(12) 𝑉(𝑄, 𝑋) = 𝑌𝑃𝐼(𝑄) ∙ 𝑋𝛽 +
𝑋 ∙ 𝑓(𝑄)

𝑟 − 𝜇
−
𝑤

𝑟
, 

 

and the entry threshold is 

 

(13) 𝑋∗(𝑄) = 𝛽̂ ∙ (𝑟 − 𝜇) ∙
𝐾′ +

𝑤
𝑟

𝑓(𝑄)
 

 

where 
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(14) 𝑌𝑃𝐼(𝑄) = −
(𝛽 − 1)𝛽−1 ∙ (𝑓(𝑄))

𝛽

𝛽𝛽 ∙ (𝑟 − 𝜇)𝛽 ∙ (𝐾′ +
𝑤
𝑟 )

𝛽−1
 

 

Proof: When QQ  , no future policy changes are expected so the analysis is similar to the 

case analyzed in the previous section, with K’ instead of K.    

 We now turn to the case where QQ   and the policy change has not yet occurred. Bartolini 

(1993) and Di Corato and Maoz (2019) show that the analysis of the industry equilibrium in 

this case starts by repeating the analysis without policy intervention presented in the previous 

section, and parts ways only when the condition for the firm’s optimal investment is introduced. 

Specifically, they show that the general form of the optimality condition, which combines 

smooth pasting with Complementary Slackness, is: 

 

(15) 𝑉𝑋[𝑄, 𝑋
∗(𝑄)] ∙

𝑑𝑋∗(𝑄)

𝑑𝑄
= 0. 

 

For (15) to hold, either    0, * QXQVX  or   0/* dQQdX  needs to hold. In the first case, 

the Smooth Pasting condition captured by (9) holds and the investment threshold function is 

the same one captured by (10) for the case of no cap. 

However, within the relevant range, QQ  , there is an interval where the Smooth Pasting 

condition does not hold. To see that, recall that within the value function V(Q,X) as captured by 

(8), the term   XQY   represents how future entries affect the value of the firm. Therefore, 

when QQ   this value is based on firms entering under the new policy and therefore should 

be based on (14). Applying this to the value matching condition (8) yields that when ,QQ   

the investment threshold, which we denote by 𝑋̅𝐾, is the root of the following equation: 
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(16) 𝑌𝑃𝐼(𝑄̅) ∙ 𝑋𝛽 +
𝑋 ∙ 𝑓(𝑄̅)

𝑟 − 𝜇
−
𝑤

𝑟
− 𝐾 = 0 

 

In Appendix B we prove that this equation has a unique positive root.   

From (16) it follows that the Smooth Pasting condition does not hold at Q . The argument is 

by contradiction. If the Smooth Pasting condition held, then the solution of (9) and (16) would 

lead to  QY  as given by (11), which is different from  QY PI . By continuity the Smooth 

Pasting condition cannot hold to the left of Q either, so there exists a certain Q
~

 such that the 

Smooth Pasting condition does not hold within the interval  QQ,
~

In this interval 

  0/* dQQdX replaces the Smooth Pasting condition as the optimality condition. This 

alternative form of the optimality condition implies that within that range of market sizes the 

threshold does not change with Q and therefore Q
~

 is the solution of the following equation: 

 

(17) 𝑋∗(𝑄̃) = 𝑋̅𝐾. 

 

 

Taking the value matching condition (16), evaluated at 𝑋̅𝐾, and applying (14) and (17) yields 

the following implicit definition of Q
~

: 

 

(18) −(𝛽̂ − 1) ∙ (
𝐾 +

𝑤
𝑟

𝐾′ +
𝑤
𝑟

)

𝛽−1

∙ [
𝑓(𝑄̅)

𝑓(𝑄̃)
]

𝛽

+ 𝛽̂ ∙
𝑓(𝑄̅)

𝑓(𝑄̃)
− 1 = 0 

 

To sum up, the entry threshold is 
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(19) 𝑋∗(𝑄) =

{
  
 

  
 
𝛽̂ ∙ (𝑟 − 𝜇) ∙

𝐾 +
𝑤
𝑟

𝑓(𝑄)
, 𝑄 ≤ 𝑄̃

𝑋̅𝐾, 𝑄̃ < 𝑄 ≤ 𝑄̅

𝛽̂ ∙ (𝑟 − 𝜇) ∙
𝐾′ +

𝑤
𝑟

𝑓(𝑄)
, 𝑄̅ < 𝑄.

 

 

   

Figure 2: The entry threshold and the entry process with a policy change 

Figure 2 shows the resulting entry threshold. As the figure shows, as long as QQ
~

  entry is 

the gradual process based on incremental increases in market quantity at points in time when 

the threshold X*(Q) is hit. Then, when QQ
~

 , a run is ignited when X hits  QX
~*  and quantity 

immediately rises to 𝑄̅ . After this run, the entry process returns to be a gradual and incremental 

process, but now it is based on a higher threshold function, due to the new parameter value. 
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This second wave of investment is a key difference with the case of a cap on industry capacity, 

where investment ceases after 𝑄̅. Because of it, firms entering before the policy shock must 

anticipate a nonzero effect of further entries on their value.  

 

Proposition 2. The size of the run is increasing in both the magnitude of the policy shock 𝐾′ −

𝐾 and the market volatility 𝜎. 

Proof: see Appendix B. 

 

5. Industry equilibrium with policy intervention affecting operating cost 

In this section we study an alternative policy intervention to the one presented in the previous 

section. The intervention still happens once the industry reaches a predetermined capacity 𝑄̅, 

and its timing is still known to firms. Instead of altering the fixed cost of new entrants however, 

the effect of this policy intervention is to shift the operating cost per capacity unit to 𝑤′ > 𝑤. 

We distinguish between two cases: 

  

 the new policy applies to all firms, including those who were in the market before the 

change. 

 the new policy applies only for the firms entering after the change  

 

In the first case, the analysis is similar to the one conducted in previous sections, leading to the 

following equation for the value of the threshold at which the run occurs, which in this case we 

denote by 𝑋̅0: 

 

(20) 𝑌𝑃𝐼𝐼(𝑄̅) ∙ 𝑋𝛽 +
𝑋 ∙ 𝑓(𝑄̅)

𝑟 − 𝜇
−
𝑤′

𝑟
− 𝐾 = 0 
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where 

 

(21) 𝑌𝑃𝐼𝐼(𝑄) = −
(𝛽 − 1)𝛽−1 ∙ (𝑓(𝑄))

𝛽

𝛽𝛽 ∙ (𝑟 − 𝜇)𝛽 ∙ (𝐾 +
𝑤′

𝑟 )
𝛽−1

. 

 

In the second case, when the new policy applies only for the firms entering after the change, 

the analysis is somewhat different. We start this analysis with looking at a firm that were not 

active in the market prior to the policy change. An analysis similar to the one in previous 

sections yields that the value of such a firm, when active, is:  

 

(22) 𝑉(𝑄, 𝑋) = 𝑌𝑃𝐼𝐼(𝑄) ∙ 𝑋𝛽 +
𝑋 ∙ 𝑓(𝑄)

𝑟 − 𝜇
−
𝑤′

𝑟
, 

 

where 𝑌𝑃𝐼𝐼(𝑄) is given by (21).  

We now look at a firm that has entered the market before the policy change. When 𝑄 > 𝑄̅, i.e., 

after the policy change has taken place, the value of such a firm is given by: 

 

(23) 𝑉(𝑄, 𝑋) = 𝑌𝑃𝐼𝐼(𝑄) ∙ 𝑋𝛽 +
𝑋 ∙ 𝑓(𝑄)

𝑟 − 𝜇
−
𝑤

𝑟
, 

 

where 𝑌𝑃𝐼𝐼(𝑄) is given by (21), as in the case of a firm that has entered after the policy change. 

The reason for that is that this term captures the change in value due to future firm’s entry which 
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is a process that affects the price dynamics, and therefore the revenue flow, but does not affect 

the costs flow. Thus, this term is common to both types of firms.     

Turning next to the case where QQ   and the policy change has not yet occurred, the Smooth 

Pasting condition (9) is replaced by the more general Complementary Slackness condition (15).  

In this case also there is an interval where the Smooth Pasting condition does not hold. Applying 

(21) and (23) in the value matching condition (8) yields that for ,QQ   the investment 

threshold, which we denote by 𝑋̅𝑤 is the root of the following equation: 

 

(24) 𝑌𝑃𝐼𝐼(𝑄̅) ∙ 𝑋𝛽 +
𝑋 ∙ 𝑓(𝑄̅)

𝑟 − 𝜇
−
𝑤

𝑟
= 𝐾. 

 

Proposition 4. A policy affecting both new and existing firms results in a smaller run than a 

policy shock affecting new firms only. 

Proof: Consider the expression: 

 

(25) 
𝑌𝑃𝐼𝐼(𝑄̅) ∙ 𝑋𝛽 +

𝑋 ∙ 𝑓(𝑄̅)

𝑟 − 𝜇
−
𝑍

𝑟
− 𝐾 = 0. 

 

When Z = w’ equation (25) becomes (20) and yields 𝑋̅0. When Z = w equation (25) becomes 

(24) and its root is 𝑋̅𝑤. By implicit differentiation: 

 

(26) 
𝑑𝑋

𝑑𝑍
= −

−
1
𝑟

𝑌𝑃𝐼𝐼(𝑄̅) ∙ 𝛽 ∙ 𝑋𝛽−1 +
𝑓(𝑄̅)
𝑟 − 𝜇

> 0, 
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which implies that 𝑋̅𝑤 < 𝑋̅0 since w’ > w. Thus, 𝑄̃ is higher in the case where all firms are 

subject to the new policy, since, by (10), the threshold function is increasing in Q. The higher 

𝑄̃ in that case implies also a smaller size of the run.  

   

6. Welfare effect of a run 

To study the welfare effect of runs, we assume that the policy is a Pigovian tax, chosen to 

exactly reflect current economic fundamentals at all times. In the case of a subsidy withdrawal 

for example, this means that the subsidy level 𝑆 just offsets a positive externality associated 

with investment as long as this externality is present, and the subsidy ceases once the industry 

reaches a capacity Q̅ at which the externality is suddenly exhausted.4 With such a policy, firms 

always face the true cost of investment (which is either 𝐾 or 𝐾′).  

To assess the effect of the run, we can compare this situation to the outcome that would arise 

in the case of an unanticipated policy shock where the subsidy is unexpectedly removed at Q̅. 

In this alternative situation, industry investment is gradual with firms investing along the 

threshold function 𝑋∗(𝑄) both before and after Q̅. The gap in industry investment due to the 

policy shock is reduced, from 𝑋∗(Q̅) − 𝑋∗(𝑄̃) to 𝑋∗(Q̅) − lim
𝑄→Q̅−

𝑋∗(𝑄) (see Figure 2). Because 

the path of investment in the two scenarios is the same both before 𝑄̃ and after Q̅, the welfare 

effect of a run is entirely due to the interval [𝑄̃,Q̅). Moreover, over this interval the run drives 

firms to accelerate investment suboptimally. To see this, note that the socially optimal 

investment policy coincides with the competitive equilibrium here (see Dixit and Pindyck 1994, 

p. 286) The effect is intuitively clear: the competitive run leads to accelerated investment as 

compared with the path under smooth pasting, which is the socially optimal investment timing 

because firms are price-takers. The competitive run therefore lowers social welfare, because it 

eradicates option value over this range of industry capacities. This welfare loss increases with 

uncertainty, although in that case the loss due to the run is offset by increased option value at 

higher capacities.  

                                                           
4 Such a jump in the social cost is a simplification. If the subsidy was motivated by external economies of scale, 
we would expect the social cost of investment to decrease gradually and the socially optimal timing of the 
subsidy withdrawal would be more complex.  
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Appendix A - The value of an active firm 

In this Appendix we show that (5) represents the general form of the function V(Q,X). For that, 

we use the standard no-arbitrage analysis of the literature on investment under uncertainty (see 

e.g. Dixit 1989). We start this analysis with the no-arbitrage condition: 

 

(A.1)   
 

  XQdVEdtw
Qf

X
dtXQVr ,, 








 ,  

 

which states that the instantaneous profit,     wwQp
Qf

X  , along with the expected 

instantaneous capital gain,   XQdVE , , which springs from a change in X, must equal the 

instantaneous normal return,   dtXQVr  , .  

By Itô's lemma:  

 

(A.2)  
  

   XQVXXQVX
dt

XQdVE
XXX ,,

, 22

2
1   . 

 

Substituting (A.2) in (A.1) yields:  

 

(A.3)                    
 

0,,,22

2
1  w

Qf

X
XQVrXQVXXQVX XXX  . 

 

Trying a solution of the type bX  for the homogenous part of (A.3) and a linear form as a 

particular solution to the entire equation, yields:  
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(A.4)       
    r

w

rQf

X
XQYXQZXQV 






, , 

 

where 0  and 1  solve the quadratic: 

 

(A.5)  0)1(2

2
1  rxxx  . 

 

Note that the term     r
M

rQf
X 

 
 represents the expected value of the flow of profits if Q 

remains forever at its current level. The two other elements of the RHS of (A.4) represent 

therefore how expected future changes in Q are affect the value of the firm.  

By the properties of the Geometric Brownian Motion, when X goes to 0 the probability that it 

will ever hit  QX *
, and thus lead to an increase in Q, tends to 0. This implies: 

 

(A.6)       0lim
0




 XQYXQZ
X

. 

 

Since  < 0, (A.6) implies that   0QZ . Substituting   0QZ  into (A.4) gives (6). 

 

Appendix B 

To show that (16) has a positive solution and that this solution is unique we define the following 

function: 

 

(B.1) 𝑔(𝑄, 𝑋, 𝐾) = 𝑌(𝑄) ∙ 𝑋𝛽 +
𝑋 ∙ 𝑓(𝑄)

𝑟 − 𝜇
−
𝑤

𝑟
− 𝐾 

 



21 
 

 

Where Y(Q) is captured by (11). Figure B.1 shows 𝑔(𝑄, 𝑋, 𝐾) as a function of X. From (B.1) it 

follows that lim
𝑋→0

𝑔(𝑄, 𝑋, 𝐾) = −
𝑤

𝑟
− 𝐾 < 0, and that lim

𝑋→0
𝑔(𝑄, 𝑋, 𝐾) = −∞. Straight forward 

differentiation yields that it is an inverse u-shape function of X. By the value matching 

condition, (8), at X = X*(Q) it equals zero, and by the smooth pasting condition, (9) it also peaks 

at that point.    

Similarly, we also define the following function: 

 

(B.2) 𝑔𝑃𝐼(𝑄, 𝑋, 𝐾) = 𝑌𝑃𝐼(𝑄) ∙ 𝑋𝛽 +
𝑋 ∙ 𝑓(𝑄)

𝑟 − 𝜇
−
𝑤

𝑟
− 𝐾′ 

 

where YPI(Q) is captured by (14) based on the cost parameters after the policy intervention. 

Figure B.1 also shows 𝑔𝑃𝐼(𝑄, 𝑋, 𝐾) as a function of X. A similar analysis shows that 

𝑔𝑃𝐼(𝑄, 𝑋, 𝐾) too is an inverse function of X, maximized at the value of 0 by the threshold X*PI 

which is based on the on the cost parameters after the policy change and captured by (13).  

We now turn to the regime shift at 𝑄̅. For analyzing it we define: 

 

(B.3) 𝑔𝐶ℎ𝑎𝑛𝑔𝑒(𝑄, 𝑋, 𝐾) = 𝑌𝑃𝐼(𝑄) ∙ 𝑋 +
𝑋 ∙ 𝑓(𝑄)

𝑟 − 𝜇
−
𝑤

𝑟
− 𝐾 

 

It is a mixture of the two previous equations: it has YPI(Q) and thus captures the welfare value 

of future entries which are based on the parameters after the policy change, but it also has K 

(and not K’) and thus captures the entry cost required before the change.  
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Like the previous two functions, 𝑔𝐶ℎ𝑎𝑛𝑔𝑒(𝑄, 𝑋, 𝐾) is an inverse u-shape too, with a negative 

value at X =0 and approaching - as X goes to infinity. Yet, it is higher from both of them for 

any X > 0 because of K’ > K and YPI(Q) > Y(Q). Figure B.1 shows this function too. 

 

 

Figure B.1: The functions g(Q, X, K), gPI(Q, X, K) and gchange(Q, X, K). 

 

When the value of Q these three function refer to is 𝑄̅, point A in Figure B.1 is the point where 

equation (16) from which the value of the threshold at which the run occurs can be found. The 

other value where gchange(Q, X, K) = 0 is irrelevant as the analysis in section 4 has shown that 

the threshold at which the run occurs is smaller then the value that (10) provides for 𝑋∗(𝑄̅).    

Thus, this value exists, is positive and unique. 

 

Appendix C 

In this appendix we show that equation (18) that implicitly defines 𝑄̃ indeed has a solution and 

that this solution is unique. We start by using the definition of 𝛽̂ to rearrange (18) and present 

it as:  

X 
0 

𝑋∗(𝑄) 

−
𝑤

𝑟
− 𝐾 

g(Q, X, K) 

𝑋∗∗(𝑄) 

gPI(Q, X, K) 

 

gchange(Q, X, K) 

 

𝑋̅ 
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(C.1) −(
𝐾 +

𝑤
𝑟

𝐾′ +
𝑤
𝑟

)

𝛽−1

∙ [ℎ(𝑄̃)]
𝛽
+ 𝛽 ∙ ℎ(𝑄̃) − 𝛽 + 1 = 0 

 

Where ℎ(𝑄̃) ≡
𝑓(𝑄̅)

𝑓(𝑄̃)
. By the properties of the demand function (1), the function f(Q) is 

downward sloping, and therefore ℎ′(𝑄̃) > 0 , implying that ℎ(𝑄̃) is positively related to 𝑄̃. 

Also note that ℎ(𝑄̃) is a positive fraction, as 𝑄̃ < 𝑄̅.  

Viewed as a function of ℎ(𝑄̃), the LHS of (C.1) is a concave function of ℎ(𝑄̃). At the left-end 

side of the definition range of this function, i.e., when 𝑄̃ = 𝑄̅ and ℎ(𝑄̃) = 1, the LHS of (C.1) 

equals 1 − (
𝐾+

𝑤

𝑟

𝐾′+
𝑤

𝑟

)
𝛽−1

> 0. 

We now add the reasonable assumption that as the market quantity, Q, goes to zero, f(Q) is 

sufficiently high to make the LHS of (C.1), evaluated at 𝑄̃ → 0, negative. Thus, the LHS of 

(C.1), concavely goes from a negative to a positive value as ℎ(𝑄̃) goes from the left-end side 

of its definition range to the right-end side. This asserts the existence and uniqueness of a value 

of ℎ(𝑄̃), and therefore of 𝑄̃, that solves (C.1). 

To establish the effect that K’ has on the size of the run we define the LHS of (C.1) as the 

function 𝐹(𝑄̃, 𝐾′). From (C.1) it follows immediately that: 

 

(C.2) 𝐹𝑄̃(𝑄̃, 𝐾′) = −(
𝐾 +

𝑤
𝑟

𝐾′ +
𝑤
𝑟

)

𝛽−1

∙ 𝛽 ∙ [ℎ(𝑄̃)]
𝛽−1

∙ ℎ′(𝑄̃) + 𝛽 ∙ ℎ′(𝑄̃) 

 

> −1 ∙ 𝛽 ∙ 1 ∙ ℎ′(𝑄̃) + 𝛽 ∙ ℎ′(𝑄̃) = 0 

where the inequality follows from ℎ(𝑄̃) < 1 and from K’ > K. 


