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Abstract

A binomial lattice based framework for the analysfsfinite investment options with
finite operational phase is developed. SolutionrsBoropean and American type finite
horizon investment options with optimal capitalusture and a multi-stage investment
setting with multiple debt issues are discussede dnalysis shows that optimal leverage
ratios are not affected by option moneyness airthestment trigger, confirming earlier
literature results in perpetual horizon. Senskiviesults show that leverage ratios are
lower when the operational phase is longer. Lomgtdebt maturity is optimal when
principal payments exist, while the reverse is truéhe absence of principal payments.
Leverage ratios are higher for longer debt horizonghe case with principal payments,
while this result is reversed when no principal rpapts exist. Sensitivity results with
respect to model parameters enhance our intuibontahe impact of several parameters
on the firm investment and default policy and fivalue.



1. Introduction

The purpose of this paper is to develop a binoratiice based framework for the

analysis of finite investment options with finitgperational phase. Several modeling
issues arise with finite horizon, since the modetdmes path dependent and, in
particular, the numerical solution requires a faidvaackward algorithm to have a proper
treatment of the optimal capital structure choi€@st lattice framework extends Broadie
and Kaya (2007), who presented a binomial framevimrkhe finite version of Leland’s

(1994) model. Firstly, our framework is explicitlypecified with revenues as the
stochastic variable. Secondly, we allow for diéietr frequencies of the investment and
default decisions, ranging from yearly to an insaeous interval. Thirdly, Broadie and
Kaya (2007) do not propose an approach for selpemoptimal capital structure using
the binomial tree and do not model investmentoopsitages. Both are introduced in our
paper, where the solution is proposed for both pema and American type investment
options. Finally, our framework extends to multidéages and allows us to study
different classes of debt, seniority rules and dmhtenant rules, in a way that has not

been tackled within this methodology so far.

We first employ a simple lattice model based orkineed induction that includes a first-

stage investment and optimal default decision. Tirea more general model we study a
forward-backward lattice-based algorithm with omlnecapital structure choice starting
from one-stage European and American options andngado a multi-stage framework.

Using the one-stage investment setting severaksssue explored: the optimal capital
structure and credit spreads at investment majuttity shape of the investment and
default trigger as a function of investment majutitvel of revenues, and the debt
maturity choice. Finally, in the more general msttaige framework, interactions between
investment and financing decisions (e.g. stagingestments versus accelerated

investments and financing choices) and debt sepican be studied.



Our work relates to Sundaresan and Wang (2007),eMand Sarkar (2005), Leland
(1994) and (1998), Leland and Toft (1996). Lelah894) explores the determination of
capital structure in a contingent claims model vatkrade-off between tax benefits and
bankruptcy costs but without an investment optibtauer and Sarkar (2005) extend
Leland’s model by adding a single investment opstage and investigate agency issues
caused by asset substitution between equity anthi#tlers. Leland and Toft (1996)
extend Leland’s model to the case where the firm d@ose both the amount and the
maturity of its debt. They show that firms will as® to finance investments using long
term debt unless there are agency costs causedsky substitution. They study finite
maturity debt but do not model the investment apstage. Leland (1998) analyses the
average maturity choice by allowing for choice loé debt amortization rate and shows
that average debt maturity decreases in the pres#in@gency costs. He also shows that
hedging benefits (i.e., the option to switch t@a Fisk mode of assets) is more important
for short term debt. Sundaresan and Wang (200&)paper very closely related to our
work. Our paper provides a finite version implenagioin of their framework, including
several investment option stages, the maturityegemal debt issues, and a finite project
(firm) life. Sundaresan and Wang (2007) provide mesights on the interaction between
investment and financing decisions. Firstly, thagws that when the firm issues debt in
the first stage then, because of the absolute ityriaule (APR), there exists a debt
overhang problem that induces equity holders taydehe exercise of the second
investment option. Secondly, they show that fiansicipating future growth prospects
will initially choose low leverage ratios. The iag¢ model allows us to examine revisit
these issues and expand their insights by exploaltgynative investment strategies
(expand or contract operations and abandonmerdrg)tand their interactions with debt

financing choices.

Within our finite maturity framework, we investigatvhether leverage and debt maturity
are affected by the option moneyness, the horizun firm intends to operate, the
volatility of revenues, competitive erosion, exgecbankruptcy costs and the tax rate.
The default trigger boundary shape in the operatiphase, and the investment trigger

and leverage choices along the trigger for Amerigptions, are also investigated. This



part of the analysis is considered as an extensiomthe Leland and Toft (1996)
framework to allow for the investment option (wéhd without optimal timing) since our
framework allows us to calculate optimal leveragedit spreads, equity and debt values
at the investment trigger. Some of the main resate outlined below. The analysis
shows that optimal leverage ratios are not affetgaption moneyness at investment
maturity. Interestingly, this is also demonstratedAmerican options, where it is shown
that leverage ratios remain constant along thestnvent trigger. Sensitivity results show
that leverage ratios are slightly higher for shodperational phase horizons and tend to
converge as the horizon becomes larger. Sensitnbults with respect to model
parameters enhance our intuition about the ecorsomicsuch complex settings. In
particular, it is shown that a lower investmengder exists for the cases of lower
volatility, higher opportunity cost, lower bankragtcost and lower tax rate. Leverage
ratios are higher when the volatility, opporturityst and the bankruptcy costs are lower
and are reduced at lower tax rates. It is shown ltheerage ratios are affected by the
opportunity cost and volatility that exists in thperational phase and not the investment
stage. We have investigated the default triggepeshaebt maturity choice and the
connection between leverage ratios and debt matahibice both under debt principal
payments and in their absence. For the case wemincipal exists at the end of the
horizon, the default trigger boundary was showrhawe an upward sloping shape for
long horizons and downward sloping for short hamzoThe results show a choice of
short horizon is preferable assuming the firm camrdw heavily with coupon levels
exceeding the revenue levels. In the case wherpotolevels constraints exist so that
coupon cannot exceed revenue levels, it shownniealium term horizons are optimal.
Finally, leverage ratios are shown to be highestatrter debt horizons. Some results are
significantly different in the presence of prindigaayments. First, we observe that
default triggers will always be upward sloping bdtin short and long debt horizons.
Secondly, the optimal debt maturity choice will tmeselect the longest term horizon.
Finally, leverage ratios are now shown to be peslyi associated with debt horizon

choice. These results are consistent with the Idetardl Toft (1996) framewotk

! Empirical evidence on the subject of maturity ckastiows mixed results. Stohs and Mauer (1996) show

that larger and less risky firms with longer terssets use long-term debt. Additionally, they shbwet t



In the last part of the applications the paper $esuon multi-stage applications.
Trigeorgis (1993) shows that interactions amonglwoed real options make their values
non-additive (see also Agliardi, 2007). The framdwdeveloped in the paper is used to
obtain firm, equity and debt values in a multi-gdigamework with such interactions. We
focus on the impact of options to expand or comtaaal their impact on firm leverage
choices over time and investigate the impact ofestment option exercise and
abandonment options on leverage choices. The pafeads to provide some predictions
for firms facing alternative investment opportuestiregarding investment and default

policy and leverage choices over time.

2. The modd

2.1. Extending the Broadie and Kaya (2007) lattice framework

In this section we extend Broadie and Kaya (200vhpo propose a finite lattice
implementation of the Leland (1994) model. Ouridatbased backward solution
algorithm has the following extended features imparison with Broadie and Kaya
(2007):

1. A finite investment option stage and finite opevadl phase. The framework thus
provides a finite maturity solution (for both thevestment option stage and debt-
operational phase) of the Mauer and Sarkar (20@&)einand nests Broadie and

Kaya as a special case.

larger earnings surprises and the level of effectax rate vary negatively with debt maturity, ehthey
where not able to show clear evidence between growportunities and debt maturity. A non-monotonic
relationship between bond ratings and debt matweiterges: highly rated firms and low rated firms
borrow short term. Guedes and Opler (1996) on therchand show empirical evidence that large firms
with investment grade rating borrow either shortrer long-term while risky firms are in the middié

the maturity spectrum. A large number of papersehstudied whether actual debt ratios deviate from a
target level (see, for example, the survey in Rerssxd Titman, 2008). Hennessy and Whited (200%¢ ha
shown that there is no target leverage ratio wétletage being path dependent and decreasing irdagg

liquidity



2. In contrast to Broadie and Kaya (2007), who modiel present value of cash
flows as the underlying stochastic variable andhdlsvs as proportional using a
dividend-like parameter, we explicitly model prig@ revenues) as a stochastic
variable and allow for fixed costs.

3. A method of increasing the accuracy for in-betwstages involving no cash
inflows and the payment of debt interest. It aldoves for arbitrary frequency in
the time interval between cash inflows and outflows

4. The difficulties involved in optimizing the capitatructure on the tree for finite
horizon problems are discussed. Section 2.2 pesgpas alternative forward-
backward solution methodology that intends to nestthese difficulties as well as
extend the model in other dimensions (multiple staeent stages, multiple debt

issues etc)

This section provides a backward algorithm basedhenbinomial lattice tree showing
how the value of unlevered assets, the tax ben#igsbankruptcy costs, equity, and debt
can be calculated on the tree. We test the accuhdiie model against the known
analytic solutions of Leland (1994) and Mauer aadck8r (2005).

Let us assume that yearly price (or revenue) fa@dlewgeometric Brownian motion of the
form:

d—;’ - adt + oz (1)

wherea , o >0 are constant parameters aftlis the increment of a standard Wiener
process. The firm pays an operational cGstper period so that total earnings before
interest and taxes (EBIT) iB—C. In this simple setting EBIT coincides with theriis

unlevered cash flows since there are no additioonats that need to be incurred, no

changes in working capital or other changes iffith&s cash flows.



The firm holds an investment option to obtain tinespnt value of the above cash flows
by paying an irreversible cost The maturity of this option i;. At the investment
maturity the equity holders invest when the sunthef present value of unlevered cash

flows (V") and the tax benefits of debtH) net of bankruptcy costBC) and the

irreversible investment cobktare positive.

After investment, the firm will have a useful liferm maturity) of T years and can use

debt that demands a tax-deductible coupon payrReper period and a final principal

debt (face value}F at maturity. Coupon levels will be a choice valgatp determine

. R . . .
capital structure. Let denote the coupon rate, $6=—. With a single issue, debt
Cc

maturity is specified by, withT, <Tg. The firm pays annual taxes based on an annual

tax rater. In the event of bankruptcy - which will be endogaesly chosen by equity
holders - proportional bankruptcy costsneed to be incurred by debt holders in order to
liquidate the firm’s unlevered asset value. Cadlows (revenues) and outflows (costs

and interest payments) occur evehy. At can be controlled by a variabld . that

specifies the number of decision-cash points wigigch year. Thusit :i. For

dec

example, yearly cash inflows-outflows will occurNf,,. =1 whereas if cash flows occur
every six months thenNy. = ,2etc . For accuracy eact interval will be

approximated by a sub-treg, .

Starting from the operational stage, the latti@pstare determined by the frequency of

decision-cash points and the approximation stepswds® decisions, so that

. : T, : :
N- =N, [N, 0. To maintain consistencyl\; = (—1j [(N¢ . In the following section

F
this approach will necessarily need to be alteseue to account for path dependency
different sub-lattices will be emerging from thenténal states of each earlier stage lattice

approximation.



In the time periods where there are no cash inflomsutflows involved, all variables are

. . . T L
calculated and discounted from next stage valuegube intervaldt =N—F (which is
F

. : T . , .
the same as in the investment stage W-Ré{’)é For example, consider a firm with an
1

investment horizon of T, =5 years, an operational phase Gt =10 vyears,
with Ny, =1 that impliesAt = 1, i.e., yearly cash inflows-outflows. Each yeaay
approximated withN, =12 steps, i.e., one step per month. This means tmat t

10 _1

operational phase tree Mz =12[1[10=120 steps withdt = 12012

(one month). The

investment stage will be approximated Wimlz(%)j [120=60 steps because it

represents a period that is half of that of therafpen phase.

Decisions in both the investment and the operatiphase are undertaken eveky. All

decision points are then the ones included in ¢tie s

toee ={tn,, =Tity 1 =T —Atty _, =T —24t,..t, =0}
with T =T if in operational phase oF =T, if in the investment phase.

Note that the intervalit will multiply the variables of price, cost and qgmun inputs of
the problem since it is standard to specify thesgables on an annual basis. In the
earlier example; T =10 and Ny, = 10vould imply that the inputs for price, cost and
coupon payments will remain as annual variabledt{phied by a At =1). In theory, the
decisions can be made as dense as possible apptmgnthe continuous decision limit
when Ng,. — . Perpetual analytic models like that of Leland®94) can be
approximated in our framework by lettifig to be very high (e.g., 200 or 400 years) and

allowing for decisions almost continuously by sejtiN,,. to be very high (e.g., 4000



decisions implyingAt = 05%). In this case the input variables which are d=fion a
yearly basis would then be multiplied iy at each decision point. The model of Mauer

and Sarkar (2005) can be approximated by settitiy Hoand T, to be very large.

There are two ways we use to model the operatiphase time horizon: first, one may
assume that the time elapsed in the first stagieeis deducted from the useful life in the
operational phase, or, an alternative assumptido isse a “relative time” assumption
which retain a fixed horizoff¢ relative to the time that investment is initiatéul.this

section we model the operational phase using tts¢ issumption. The relative time
assumption is implemented in the next subsectioth ianused throughout our main

numerical results. Since we allow for an investnmption the investment timing <T,
this means that the number of operation yearsrasige from a maximum of. periods
(when t, =0) to a minimum of T =T, (when investment is delayed until maturity
t, =T,). Furthermore, a constraint thd} <T. needs to be placed here. The firm’'s

opportunity cost of waiting is thus on foregoneipercash flows, smaller number of
operation years and delayed received present vafueash flows. Furthermore,
competitive erosion is also taking place throughphrameted . On the positive side, by
waiting the firm lets more uncertainty to be reeebbefore committing to an irreversible
investment. In Section 2.2. where a relative tamsumption is used, the opportunity cost
of waiting is only because of the delayed receiwash-flows and competitive erosion.

The usual formulation of the lattice parameterstiier up and down jumps and the up and

down probabilities requires that:

d=e ™ == 2)

P =1- Py



In contrast to Broadie and Kaya (2004)in our model is used to capture competitive

erosion (and not to model the firm’s cash flows ethare explicitly modeled in our case).

We keep track of the following information at eawdde of the binomial tree:

o The value of unlevered assetg"(: this is the present value of cash flows
generated from the assets assuming no debt. If deds not exist (or has
expired), the value of unlevered assets will caleavith equity. In this case one

may assume, similarly to Mauer and Sarkar (2008t équity holders hold an

abandonment option thus not allowing" (and thus equity) to become

negative.

o The value of tax benefits of deblR): this is the present value of the tax shields
of debt. The per period tax benefits afe and are realized only if the equity

holders decide to continue operations.

o The value of bankruptcy cost8C): this is the present value of the costs of

bankruptcy calculated as the product of the vafuentevered assets at the time

of bankruptcy ¥®) times the proportion bankruptcy cost factor This is

realized only in the event of bankruptcy, otherwsseet to zero.

o0 The value of shareholders equiti ): this is the present value of operational
cash flows net of coupon payments and taxes. ®sb flows are realized if the
equity holders decide to stay in operational moaé @incides with the value
the value of unlevered assets until default plesthlue of tax benefits until

default minus the present value of the coupon paysnentil default.

o The value of debt[§): this value includes the present value of thepoou
payments until default plus the value of the firmislevered assets net of

bankruptcy costs at the bankruptcy point.



0 The value of the levered firmv{): this value is the sum of equity and debt

value. Equivalently, it is the sum of value of wdeed assets plus the tax
benefits of debt minus the bankruptcy costs.

Similarly to Leland (1994), bankruptcy is endogesiguchosen by equity holders to

maximize equity holders value. Starting backwardthe last operation poift , which

is assumed here to coincide with the payment ofdet& principal, equity and the other
variables can be calculated as follows:

E;, =maq{(P-C-R)(1-7)At—F, 0] (3a)

If Er, >0, then

Vi = (P-C)(L-1)At

TB,, = 7RA (3b)
BC;, =0
D;, =RAt+F

Vi, = Eg, + Dy,
otherwise ifE;, = 0(i.e., bankruptcy occurs) and\vf’ >0

Vy, =(P-C)(1-1)At

TB;, =0 (3¢)
— B =

BC;, =bV" =bVy

D, =@~ b)VTl;

Vy =Ep +Dy.

10



In the case wer@, <T. the above boundary conditions should be adjusietiat there
is no subtraction of coupon payments and the dehtipal (since debt has expired).

Furthermore, the condition that” cannot turn negative should also be investigated
before calculating bankruptcy costs and debt valdes perpetual horizons, this
condition does affect results significantly. Intfagot incorporating this condition allows
for better accuracy of the analytic solutions tkatst in this case (see Table 1 and

discussion that follows). In the earlier steps &fl,t # ty., i.e., for t not belonging

to the set where cash flows accrue and decisionsuidertaken, the values of each of
these variables is simply the discounted presehtevaf their expected value of the

following step, i.e.,:

VY = (PoVitarn + @ Pu)Viiar g yerdt
BC, = (PyBCriqry + L~ Pu)BCrga)e ™

TB, = (P, TBrqru + @— Py )TBHdt’d)e—rdt @
E; = (PyEratu + €= Pu)Errara)e ™

D; = (PyDrsgry + @~ Pu)Dpsarg)e ™
Vt" =E + Dy

where x,;,, X.14 denotes the high and low state of variabie the nextdt step.

11



In the steps before the maturity where a decissonbe undertakert (belongs to the ..

set), the values of each of these variables acelleadd as follows:
E, =ma}{(P-C-R)(1-1)At + E,, 0| (52)
If E >0, then

VY = (P-C)A-7)At +V,"
BC, =0+BC: (5b)
TB, = 7RAt +TB

D, = RAt + Dy

Vit =E +Dy,
whereas, if £, =0 andV,* =(P-C)(1-7)+V," >0, then

V! = (P-C)(A-1)+V,"

BC, =bV;’ (5¢)
TB, =0

D, = @-b)V"

Vit =E +D,

where % denotes the expected discounted value of variableand equals
% = (PuXsaen + 0= Pu)Xsar )e™ . If V" is negative then the value of all variables are

set to zero.

12



The solution proceeds by backward induction untitree variables values are calculated
att = 0. It is important to note that operational mhaariables are calculated back to time

zero and not only until tim&, i.e. the investment horizon. This is to allow &or early

exercise of the investment option where the firra thee opportunity to obtain cash flows

for more periods.

Backward induction is possible because of an intpissumption that exists in these
model$ that at each decision step, equity holders degitiincontinue operations when
cash shortages exist need to inject new cash-eguaityribution. Similarly, any cash
surpluses at each point in time are distributedlisglends. Retaining cash within the
firm would make the problem path-dependent becahsecash flow stock variable

should be retained at all time.

At the maturity of the investment optiofy, equity value is updated to include the

investment paid and the amount of debt received:

ETIl =max[E; —(I - Dy,),0]
=maxly +TB; - BC; —1,0] (6)

—\/L
=Vy

If ET'1 >0 then all variables will take their values fronettiee modeling the operation

phase afl, , otherwise will be set to zerdEél = 8nd no investment is undertaken).

With optimal investment timing, investment can bhedertaken at each decision-cash

point tin the investment investment stage as:

E =max[E, - (I -D,),E] (7)

2 See also Broadie and Kaya, 2007 for a discusditiiissue.

13



If early exercise is optimal then all variablegts# investment stage are updated with the
corresponding variables at tinmte existing in the lattice tree calculations usedthe
operation phase. If it is not optimal to make arlyeil@vestment decision then the values
of each variable are the discounted expected vadfigke variables of the following

period of the investment stage. Note that at titnes,,. were no decision takes place the

values are simply the expected discounted valuesheffollowing step within the
investment stage (similarly with equation 4 but nesing the variables in the investment

stage).

In Table 1a we provide numerical results of theomial tree model with decisions

approximating the continuous limitAf — )Oby increasing theN,. variable. The

solutions are contrasted to the closed form sotluwibMauer and Sarkar (2005) in order
to test the numerical accuracy of the model.

[Insert Table 1 here]

We analyze two cases: one with operational codtdoseero (panel A) and one with
positive operational costs (panel B). In all cases have used long horizons for the

operational and investment phase =400T, = 200°. In each panel, coupon levels are

the optimal coupon levels according to the analytadel of Mauer and Sarkar (2005).
In numerical models M1-M3 of panel A, unleveredues arepositive in all states of the
tree since the operational costs are zero. Howaveanel B, since operational costs are
now positive, the value of unlevered assets maynegative for low enough states of the
revenue P) level. For this reason models M4-M6 test for #oeuracy of a numerical
model were the value of unlevered assets is alldwdrsbcome negative, whereas models
M7-M9 test for the accuracy of the models when thkie of unlevered assets is not
allowed to become negative.

% We have tested even longer horizons and the sestétnot materially different.

14



In panel A the numerical accuracy of all variabdes less than 1% (except the case of
bankruptcy costs in which there is a deviation 6P2). As pointed by Broadie and Kaya
(2007) the accuracy is affected by the ability lo¢ fattice model to approximate the
default boundary. For the case of equity the appration error is not important since
the boundary is zero. For debt, however, the appraton error may be more significant
because the boundary is the value of unleveredsagserevenue level) at default. The
tax benefits and bankruptcy costs exhibit similacilbatory behavior at smaller steps
because they are also affected more significanglythe approximation errors of the
default boundary. In our case, the numerical acyusgill be further affected by the
accurate approximation of the investment boundhrynumerical models M4-M6 the
deviations are slightly higher because of the erist of the operational cost. The levered
firm deviations from analytic ranges with maximuamge around +/- 2.9% and minimum
+/- 0.4%.

Table 1b provides solutions for the same probleingushe numerical lattice model,
however, assuming that decisions for investmenntinand default are taken once a year
(compared to almost instantaneous decisions ofeTab). Table 1b produces a set of
results varying the number of in-between lattiGgpstapproximating each year between
5, 7 and 8. The results are not as accurately appading the analytic solution in this
case and solutions (in particular for debt valwed)ibit larger oscillatory behavior. This

was somehow expected given that perpetual modesaalsume instantaneous decisions.

Broadie and Kaya (2007) do not explicitly discussté horizon with optimal capital
structure. The reason is that they focus on theuracy of lattice method in
approximating the perpetual limit of the Leland 949 In that case, it is adequate to
apply a single coupon level throughout the treectvhis obtained from the analytic
solution of Leland (1994). Similarly if one wants approximate the Mauer and Sarkar
(2005) solution, a single coupon applied uniforratyall lattice nodes is adequate. Thus
the optimal coupon search is simplified (essemntialloided). To illustrate this we have
performed a coupon grid search for the problem ifpdcin panel A. The solutions

reported in Figure 1 illustrate that the optimaligon level is close to 11 (the actual

15



perpetual limit is about 10.84). This approach carrowever be applied for truly finite
horizon investment options since in this case tha fmay optimally choose different

coupon levels depending at ending nodes revenedslev the investment horizon.

[Insert Figure 1 here]

Section 2.2. below discusses the optimization adinogd capital structure on the tree for

finite maturity options. In section C this framewas generalized for multi-stage options.

2.2. A forward-backward algorithm and American type options with finite

horizon and optimal debt maturity choice

The model of the previous section has the limitattbat coupon levels cannot be
different at different lattice nodes. In this sentiwe present an extended model that
accommodates the choice of possibly alternativepanulevels at each state of the

revenue variable at the investment stage.

In order to achieve this, a forward-backward aldponi is now applied. The flexible
formulation of controlling the frequency of decisg and the approximation of each
decision interval is the same as in the previogtia® Now, the approach starts by first

creating the investment stage tree WiNh = N [N, [T; steps. At the price level at the

end nodes of the investment stage, several laticesreated that capture the operational
phase and default decisions for each choice ofcthupon levels. Then, the values of
equity and debt are taken so that the highest yegaitie (which coincides with levered
firm value) is selected (as can be seen in equ&)onThen optimization is performed,
which selects the optimal coupon among the possdilge of coupon levels. Figure 2
illustrates the procedure:

[Insert Figure 2 here]

16



In the case of optimal investment timing, new traegach decision point (Jt,,.) and
node are created and the optimal coupon at thde investigated. Optimal timing is
investigated using equation 7. The investment énggpint is the minimum value at each
state where exercise is triggered. It is of intetesnvestigate the shape of the investment
trigger and whether leverage ratios and creditegfgechange or remain constant at the
trigger. Leland (1994) has demonstrated that lgyeetavels and credit spreads are not
affected by the initial value of unlevered asselswever, his results were based on an
assumption of perpetual horizon in the operatighase; the present model presents an

opportunity to test it also for finite operationdlase horizons.

Two approaches regarding coupon search are implechein the first approach the level

of revenuesP at each end node is discretized through the chaica. points and a
maximum ofc,,, points. This implies a coupon grid of:

coupon = {O,ni EP,ni DS'M P}

n

C C C

For example, a choice ofi. =10,c,,, = 1Would mean that coupon levels will be

within the rangecoupon:{o,i EP,E [P,...P}. The coupon search process was a

1¢ 1
fraction of the level of revenues at each stater most of our numerical results

Nc = Cmax 1S @dequate, i.e., the maximum coupon does n@&eekthe level of revenues at

that state (this constraint is not binding).

The second approach for selecting coupon spedfasnser grid for high revenue levels
and a minimum specified grid,,;, for low revenue levels. One way to achieve thi®is

allow coupons grid to be a function of the stater@fenues. A linear discretization
scheme would specify that at state(wherei = Ois the highest revenue level) of lattice

step N, coupons will be:
ne () =ng" +ng" [Ny —i)

Cmax(i) = Cmax mC i ( )

17



Based on this discretization scheme the couponwgtidbe a function of the state af;

and would take the following values:

coupon(i) = {0, 1_ P, 2_ P,...Cmax.(i)

nc@) nc(i) e (i)

It should be emphasized that both approaches peodimilar results. Based on our
numerical simulations we note that the coupon aeé always selected as a proportion
of the revenue level at the debt issuing time. Tai® is very close to the leverage ratio
of the firm at that stage. This observation mayowall significant reduction in

computational time.

In order to model maturity choices a horizon diszegion parameten, can be selected

which specifies a sef :{T—F,zT—F
n

,..1g} for possible debt maturity choices. For
D D

optimizing both maturity and coupon levels, a deuldbop search process is

implemented. This process optimizes the couponefch maturity choice and then

selects the maximum firm value from the alternatpémal maturity choices.

2.3. Multi-stage extensions with multiple classes of debt

In this section we extend the model to multipleesiyent stages and multiple debt
issues. The model builds around the assumptiorSuatiaresan and Wang (2007) and
generalizes their framework to multiple stagescdmparison with Sundaresan and Wang
(2007) our framework allows for greater flexibilityvith debt maturity potentially

overlapping with investment stages before the drileooperational phase. Furthermore,
both the absolute priority and the pari passu apsions can be incorporated, extending
their simplified assumptions that were needed foalgical tractability. The first

investment has a time horizoR. Following, other investments may take place with
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horizonsT,,T; Ty, . Debt issues maturities are denoted'ltgy,TDz,...TDND . Figure 3

illustrates (using a two-stage example) how theviptes section algorithm can be
extended for multiple investment stages and meltgebt issues. The operational phase
is initiated at the time of the first investmenttordty. It is assumed to have a duration of

T periods. The operational period may however bmiteated if operational costs cause

the firm to abandon or default if coupon paymentsste Operation may also be
terminated at the subsequent investment stagde ifitm decides not to proceed with
new investmerit At the end of the first investment horizon atfilebt issue can be made.
At this stage a coupon selection process can gtang forward with new lattice trees
being created. Depending on the maturity of thst fikebt issue, the coupon payments
may continue to run after the second investmenjestine third and so on. They may of
course expire before the start of the second invest stage; their only restriction is that
the maximum debt horizon is bounded by the firnpsrational phase. At the time of the
second investment stage, the firm may decide a et issue. At this stage a new
coupon search process will stadnditional on the earlier coupon selection. Similarly,
the debt maturity of the second option may or may everlap with other stages and

should have a horizon of less than the operatiphase of the firm.

* The framework is flexible enough to accommodaterahtive assumptions. For example, setting the
investment costs of some stages to zero allowthigtdebt choices are made at that stage. Furtirerm
the coupon search process may be terminated atrcetages so that no new debt issue take place.
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[Insert Figure 3 here]

Investment stages are approximated by lattices sitths that are defined relative to the

tree used for the first investment stage whichdasze N; = N, [N, [T; . The size of

o : T . :
the i investment stage will thus b, Z(T_Ij [N;. The last period (aftefly ) is

1

Te —(T,+T,+..T
approximated byN :( F (T N')JENl.

T

Moving from one investment stage to another, tha finay achieve expanded revenue

levels, which can be modeled ase,..e; expansion factors multiplying the revenue

variable. The same variables can be used to modélaction options€ < 1n this case

and the firm recovers part of the initial investrit)eRriority rules for debt holders in case
of default need also to be specified. One reasenatdumption is that debt seniority is
specified by the order of debt issuance with eadiebt issues having priority over
following issues. In some cases, subsequent issagshave equal priority, i.e., the pari

passu assumption.

As discussed earlier, default is triggered whentgoyalue drops below zero. Under such
a scenario equity holders declare bankruptcy. Wakitive operational costs one has to
check that the value of unlevered assets is pes#tivhat state of revenues. If not, then
obviously all debt values will be zero since thex@o value to be recovered. Under the

absolute priority rule debt holders will receives tfollowing, in case of default at any

default timet whenV" >0:

Dyg = min|@-b)\V", D, |
D, = min|@-b)V" - Dyg, Dy |

Dap = minl_(l_ b)V" —Dyg — Dy, D3t]
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DNDB = mlnl(l_ b)VU - DlB - D2B _"'DND—lB’ DNDt]

The following observations can be made. First, s >0 then all debt issues are
bounded by zero (cannot take negative values).riéiyg,cthe rule specified in the paper
is much more general than the one specified in &@san and Wang (2007) who specify
debt holders recovery value on the face value bt dad not based on the value of debt

(D,,) at the default date. Thirdlyy" in this case captures the continuation unlevered
value of all subsequent stages irrespective of teduolders continuation decision.
Finally, note that it is possible that whéh-b)V" is high relative to the debt issues a

residual value is left even after full repaymentatlf debt issues. The question which
naturally arises is where this value should becalied. It is possible that this residual
value is allocated to equity holders, however, urslandard bankruptcy rules the debt
holders will have full control and may distributég value on a value weight base to all
debt holders.

In the case of pari passu, similarly to Sundaresah Wang (2007) any debt valpén
case of bankruptcy will be determined:as

D.
Djg =| ——— |{L-Db)V"

3. Applications

3.1. Finiteinvestment horizon and optimal debt maturity choice

In this section a European type investment optsonsed which is computationally less
intensive. The goal of this section is produce nurakresults for: 1) Finite investment

® Sundaresan and Wang (2007) specify the rule mg@f coupon value weight which will have similar
results.
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horizon with finite operational phase 2) Leveraggos and credit spreads at investment
maturity as a function of state variali®evalues at investment maturity 3) The shape of
the default trigger at different values of stateiatale P investment maturity 4) The
choice of debt maturity as a function of state ataléP values at investment matufty

Table 2 first shows various valuestat 0 with sensitivity with respect to the operatibn
phase horizon. In particular, the levered firm ealthe unlevered firm value, the tax
benefits (TB), bankruptcy costs, equity and delltes and the expected investment cost
(Inv) are reported. The results show that for prigjewith short horizons analytic
solutions using perpetual horizon will largely ostate true values. As the horizon
becomes larger, the solution gradually converges#solution which would reflect the

perpetual case.

[Insert Table 2 here]

Calculated leverage ratios at investment matuhtysthat leverage remains constant at

each end node for each particular casdofhorizon. Interestingly, leverage ratios for
shorter operational phases are slightly highertistarat 72% atT- =10 and then
gradually reduced for longer horizons with =15 about 68% and then about 66% for
horizons larger or equal tdx =20. One possible interpretation of this result ist thia

shorter operational phase horizon project valuesiat high enough to induce investment
in some states; equity holders will thus prefelbdorow more heavily to allow the firm to
proceed to the operational phase. A similar patexists between leverage ratios and
debt maturity (results follow), i.e., leverage oatiare decreasing in debt maturity, at least
for the parameters considered. This result cordtadhe results of Leland and Toft
(1996) who show that there is a positive relatignéfetween leverage and debt maturity.
As is discussed later, this result is driven by rilba-existence of principal payments in
the case considered here. When principal paymeatseuded the results of Leland and
Toft (1996) are replicated.

® The results of this section are based on the gssomthat default is triggered when equity valetsy
equal to zero. The value of unlevered assets mapbitive or negative at that point.
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Table 3 shows numerical results for a finite hamiztase both in the investment and

operational phase. The operational phase is fixél}: & 20 years while the investment
horizon is varied betwee; =1 T, =3, T, =7 and T, =10 years. Panel A assumes

yearly decisions &t = )1 The first sub-panel provides solutions usinghdarm coupon

at the end nodes of the investment stage that selexted based on the closed form
solution with infinite investment horizon and infim operational phase Optimal
solutions for this type of options with optimal d@ap structure are hard to obtain using
closed form solutions. The second sub-panel prestrd value of the firm using a
forward-backward algorithm discussed in the presieseaction and coupon search of 100
increments at each price level. The table provilesresults for different approximation

accuracy per yeaN,, =1, N, =6,N, =12 N, = 1&nd N, = 24.

The results show that the solutions based on acrolgvel obtained from the optimal
perpetual horizon model uniformly applied at eaod @ode of the tree understate the
true optimal. However, the solutions do not devswbstantially from the optimal. Of
course, such a behavior is based on averagingroatseat the end of the investment
horizon; at a particular node at the investmentzioor such a naive approach will result
in gross errors. A further remark is that the ta&ttbased solution seems to converge
rather fast to a solution with only minor osciltats as the number of steps approximating
each year increases.

" The closed form solution assumes an American itypestment option so the differences between this
solution and the optimal are understated.
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[Insert Table 3 here]

In panel B, we provide the solutions for leverednfivalues when decisions about
continuation or default in the operation phasetaken at different frequencies than a
year. The results show that the solutions areoumify lower for all cases compared to
panel A corresponding solutions. At higher frequelevels the results seem to converge

and the convergence is similarly to the first panel, very fast and not very oscillatory.

Figure 4a focuses on a selected case of investimesto maturity of 5 years with yearly
decisions (panel A) and optimal coupon selectiorshiows optimal coupon levels at
maturity for different states of price where invaeent takes place (the value of levered
firm exceeds investment cost). It is observed thatfirm optimally adjusts its coupon
downwards in connection with the realization of {wce state variable. The results
confirm that optimal coupon levels are always actfom of the price level at the
particular state. Figure 4b shows the values oftgqgdebt and the levered firm together
with its components, unlevered asset value, taxefiten and bankruptcy costs.
Interestingly, leverage ratios, calculated as t@orof debt value over gross (before
subtracting investment cost) levered firm valudixed at about 65%. This creates a
uniform credit spreads across all states of 4.2B%ht yields where calculated using a
simple division of the coupon level over debt valliis is not exact for finite horizon
and when default is in place. The credit spreattsutzied represent upper bounds. True

yields can be calculated by solving the implicitation at each state:

D =R+RE™ Corob(Py, > I:)Bm )+ R YA prob(P,, > Pém )+
(R+F) & Corob(P. > Pg"))

D, R values and the default trigger points at each staci point are known so the
equation can be solved for the yield to maturitydebt. The probability to avoid hitting

the boundary may be estimated using the cumulaiixegiate standard normal.
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The result that leverage ratios remain constantaaadnvariant to the underlying asset is
particularly important since it shows that the tesdi Leland (1994) is preserved in a
finite horizon environment. It should also be noteat the leverage ratio obtained in this
example is very close to the optimal leverage ratidhe investment trigger obtained
using the closed form solution under the perpétoaizon assumption which was around
63%. Such observation is useful in further expagdihe numerical coupon search

process to reduce computational time.

[Insert Figure 4 here]

The following figures show the default trigger alested levels of terminal revenue
value at the maturity starting from a deep in-theasy case and moving progressively to
lower level of moneyness. As mentioned earlierhallenge in working with binomial
trees is reducing the approximation errors of thggéer boundaries. The in-between
lattice steps for eact interval (here 12 steps are used) help reduce thesrs since a
denser set of scenarios can be created for eachlYsiag an even number of in-between
steps ensures that the previous years steps ahededc in the following years’
approximation tree.

The results show that the default trigger followsupward sloping shape with upward
jumps following as the time to expiry of the opeyaal phase progresses for long debt
maturities. The result confirms the intuition prepd by Dixit (2001) (see p.50) that at
the early stages the firm has an incentive to delafault because there are still
opportunities for a negative situation to be regdrsAs the time to maturity progresses,
default is triggered at a higher level since tleiBility that the situation is reversed gets
reduced; at maturity default is triggered when firen cannot cover its interest
obligations (so terminal default triggers are eqoatoupon levels initiated at the start of
the horizon). The result also expands the insighiseland and Toft (1996) who argue
that for long term debt issues the default triggér be set at low levels. In their case a
unique trigger is defined based on simplifying aggtions on debt rebalancing that
allows a stationary debt structure, whereas hershwev that the default trigger will be

low at the beginning and subsequently increasingnas progresses. Leland and Toft
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(1996) analyze the case with debt principal atethe of the horizon. We have performed
the same analysis here and have found an upwapihglaefault trigger for all debt

maturities. In the case were a principal exists deéult is upward sloping until the
maturity of debt and exhibits a large jump at th& date of the balloon payment.

[Insert Figure 5 here]

The shape of the default trigger, however, may deavd sloping for short debt horizon
maturities (results not shown for brevity). Thisllwee the case only if no principal
payment exists at the end. Our numerical resultsvsthat for short horizon debt
maturities the firm prefers to borrow heavily withtimal coupon exceeding the revenue
level at the investment maturity. With heavy boriogy the firm’s equity holders will no
longer have room for delayed default at the eadsry and default will be triggered at
higher levels of revenues. This is because at dgnhing of investment the firm faces
high coupon payments for the next few years. If fime survives the first stages the
remaining payments are reduced substantially amengthat the firm has a relatively
long horizon ahead it may have better chances ttatsituation is reversed. The
numerical results show that the high coupon leaedsused so as to raise as much more
debt possible, exploit better the tax advantagdetit and raise the investment trigger,
i.e., investment in states that would not have bgessible if the firm did not borrow

heavily. Table 4 illustrates the case wikg =5 (with T = 20like before). The results

show clearly that coupon levels at 100% of revenmey be binding the firm from
exploiting higher tax benefits, raising more debtd aincreasing the states were
investment is possible. It should be emphasized #ilavalues are the expected
discounted values at investment maturity. Levenag@s (last column) are the ones at
investment maturity (and since they are the sameaah state only one number is
reported). The higher values of investment costthedralue of unlevered assets and tax
benefits may thus reflect the fact the firm mayéaxtend the states where investment
takes place if it can borrow heavily. In the case principal exists, our results have
shown that equity holders will no longer have thmlity to use high coupon levels

because that will be connected to high principdlies necessary to be paid in a short
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time horizon. For this reason, the result is res@rand the firm borrows more heavily at
longer debt horizons (confirming the results ofdral and Toft, 1996). With respect to
the default trigger in the existence of principal/ments, the results show that the default
trigger at shorter debt horizons is smaller tham ¢brresponding period default trigger
for longer debt horizon and only exceeds that afjer term horizons at the maturity of
the short horizon debt (where as we have mentideddre the default trigger jumps
upwards). Thus, we show that the result of Lelamdi Boft (1996) that the default trigger
for short horizons is higher than that of long hons is averaging the true results (with

latter effect dominating).

[Insert Table 4 here]

Our final set of results for this subsection reltdethe investigation of optimal debt
maturity choice. The following table shows the eswf (levered) firm at = 0 under
alternative assumptions about the choice of debtunty at the maturity of the

investment horizorT; . The firm’s operational phase 1§ = 20 years and we allow for
debt maturity choice among 4 discrete choidgs= 5T, =10,T, =15 or T, =20. The

last row shows the results when optimal choicesalleaved among these 4 alternative
maturity choices at each end node at the investmemdrity. The results in parenthesis
for the debt horizon of 5 years are firm values mheupon levels are restricted to be at
100% of the revenue level at maturity (in this c#s® constraint of coupons at 100%
level is binding). The results show that with unstbained coupon levels, the optimal
debt maturity is to select a short horizon. Th&uteholds for different model parameters,
f.e., lower opportunity costs and lower volatiligvels. The results differ from Leland
and Toft (1996). The reason is the presence ofabe value of debt in their numerical
simulation. We have performed the same simulatisisg a positive face value of debt
which is connected to the selected coupon levelvaadndeed show that it is always

optimal to select the longer term maturity (in @aseT, = 20 years). This comparison

may reveal potential differences in maturity setectbetween regular bond issues with
principal payments and bank loans were the payraetgenerally fixed throughout the

horizon. In the latter case, it is possible thatstmints that coupon levels cannot exceed
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the current revenue levels of the firm may exist] & that case the firm may select a

medium term debt maturity (in this case 10 years).

[Insert Table 5 here]

The results show that optimal leverage ratios (cés® principal) are decreasing in debt
maturity choice: leverage ratios are as high as 8% year horizon debt, 71% for 10
year horizon debt, 70% for 15 years horizon delot 5% for 20 year horizon debt. In
the case of a positive principal payment at the @nithe debt horizon we have observed
that this result is reversed (consistently withdrel and Toft, 1996).

3.2. Optimal investment timing

In this subsection we investigate the shape ofobtemal investment trigger for finite
maturity investment options and finite horizon @igmal phase at different model
parameters. A particularly interesting case relateallowing for separate levels of the
erosion parametef andc before and after the investment trigger and ingashg the
impact on values and the investment trigger. Funtloee, we investigate the optimal
choice of leverage along the investment trigger aptimal values of coupon, equity,
debt, the value of unlevered assets, the tax Wenefid bankruptcy costs along the

investment trigger.

Table 6 provides a set of results based on an Aaeroption withT, =5. The
operational phase is assumed toThe= 20. It is assumed that decisions are taken every

year, i.e.,At = 1(including the investment timing and operatiordefault decision in the

operational phase). An approximationf, = [BR®ice steps is used.

[Insert Table 6 here]

The results show that for a lower opportunity dosth before and after the investment

enhances, the firm, equity and debt values valndseapected investment are increased.

28



Furthermore, it increases the tax benefits of debstantially despite a small increase in
bankruptcy costs. A lower volatility before invesimi decreases option value and thus
firm value drops; on the other hand a lower vatgtiafter investment enhances firm
value by enhancing the unlevered firm value, theltanefits and reducing bankruptcy
costs. Effectively, a lower volatility after theviestment allows more debt to be raised.
Similarly, smaller bankruptcy costs increase firalue by increasing expected unlevered
firm value, tax benefits while there is a smallremse in bankruptcy costs. A lower
bankruptcy costs also allows for more debt to heeth As expected, a lower tax rate
enhances firm value mainly by enhancing the vahleuered assets despite the fact that
tax benefits are reduced substantially. This resubuld not feasible in models

concentrating on the modeling of the value of uated assets as the stochastic variable.

Figure 6 shows the investment trigger for differemidel parameters uniformly applied
before and after the investment. The case analigedth an initial valueP = 10. In
years where no trigger is presented the algoritigmased that “delay” is optimal for all
range of possible values produced by the Idttidhe following figure shows that
compared to the base case a lower opportunity witistesult in a higher investment
trigger in all years prior to maturity and a lowaslatility results in a decrease in the
investment trigger. These results confirm that résults are consistent with what one
would expect from option thectyLower bankruptcy costs and lower taxes will catlise

firm to invest earlier than the base case.

8 The investment trigger can be calculated by rupaiternative P values at each year assuming the
remaining horizon is left. This could make the geg even more accurate but would increase
computational time. The triggers produced hereicaith illustrate the main insights.

° Note that the fact that investment trigger poartlbwer dividend at the maturity of the investmint
lower than the base case is also what one shopkcexThis is because at maturity levered firm gadith
lower opportunity cost is higher than the base easkthis allows the firm to invest earlier.
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[Insert Figure 6 here]

Figure 7 focuses on a comparison between the lzse and alternative parameters for

the opportunity cost and volatility before and aftee investment.
[Insert Figure 7 here]

It is observed that a lower opportunity cost beforeestment produces the opposite
effect on the trigger compared to a lower oppotjuoost after. A lower opportunity cost
before investment acts on the investment triggeilaily to the result of a dividend yield
effect in standard call options: the firm loosétdiby waiting and this creates a tendency
to delay investment more. On the other hand howeveywer opportunity cost after the
investment has the effect of an enhanced leverkg \far the firm and this means that
the firm may now invest at lower values Bf A lower volatility before produces the
result one would expect from option pricing thedhe option value to wait gets reduced
and the firm invests earlier. A lower volatilitytaf the investment produces a similar
drop in the investment trigger, but now for diffietreeasons. This result is now driven by
an effect similar to the effect of a lower divideyiéld after the investment, i.e., a lower
volatility after the investment trigger causes kiered firm value to increase (see table

6) and allows the firm to invest earlier.

Figure 8 shows the leverage ratios at the invedtniegger. These values where

calculated as the value of debt at the investnmégger over the gross value of levered
firm (before subtracting the investment c&t) The results show that leverage ratios
remain constant along the investment trigger foy given parameter. The result that
leverage ratios are constant for American perpeaipabns was known (e.g., see Koussis
and Martzoukos, 2009); the results here show thigt is so even for finite horizon

investment options with finite operational phass. epected, leverage ratios are higher

when the opportunity cost, volatility and bankryptost are lower—situations where the

91 the cases where investment is delayed the éegbealue of costs was added to the net levered fir
value.
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probability of default may be reduced, debt taxdfies are enhanced or bankruptcy costs
are reduced. Leverage ratios get reduced whenatheate is lower because the tax

benefits of using debt are reduced.

[Insert Figure 8 & Figure 9 here]

In Figure 9 the sensitivity to the opportunity casid the volatility before and after the
investment is investigated. The results show thhatwmatters for capital structure
decisions are the parameters in the operationaephais observed that leverage ratios
remain the same when these parameters are diffieréim¢ investment stage. Given that
the investment trigger changes when these parasneli@nge (see Figure 6) it must be
that adjustments in the default trigger are suel debt and equity values create constant

leverage ratios.

4. Conclusions

Finite horizon investment options with finite op@oaal phase generally require
numerical solutions. An intuitive binomial lattideased framework for the analysis of
finite investment options with finite operationahgse is developed. Solutions for
European and American type finite horizon investmeptions with optimal capital
structure and a multi-stage investment setting withitiple debt issues are discussed.
The analysis shows that optimal leverage ratiosateaffected by option moneyness at
the investment trigger confirming earlier literaumresults in perpetual horizon.
Sensitivity results show that leverage ratios awwelr when the operational phase is
longer. Long term debt maturity is optimal whennpipal payments exist while the
reverse is true in the absence of principal paymdrmverage ratios are higher for longer
debt horizons for the case with principal paymemitde this result is reversed when no
principal payments exist. Sensitivity results widspect to model parameters enhance
our intuition about the impact of several paransetar the firm investment and default

policy and firm value. In particular, it is showmat a lower investment trigger exists for
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the cases of lower volatility, higher opportunityst, lower bankruptcy cost and lower tax
rate. Leverage ratios are higher when the vohatibpportunity cost and the bankruptcy
costs are lower and are reduced at lower tax r#ttés.shown that leverage ratios are
affected by the opportunity cost and volatilityttlexists in the operational phase and are

not affected by the parameters in the investmegest
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Figure 1: Optimal coupon selection using the numerical lattice model

40.000

35.000 __———¢——0—0—0— 00—,

30.000 //
25.000

20.000

15.000

10.000 -

5.000

0.000 T T T T T T T
0.00 2.00 4.00 6.00 8.00 10.00 10.80 10.90

12.00 14.00

Note: Parameters are those of panel A of tablf £:9.2308 (that corresponds to value-unlevered)6ffor panel A), C =0, risk-free
rater = 0.06, competitive erosiofi= 0.06, volatilityc = 0.25, investment co$t= 100, b = 0.5, tax rate = 0.35. In panel AP =

9.9308 (that corresponds to value-unlevered of .180)ution provided for coupons ranging from 0-l#hwincrements of 1. For
coupon levels close to the perpetual solution o84 @enser choices of increments of 0.1 where padd. The optimal solution of
the numerical model was found at R = 11 and regultevalue of 35.908. The analytic solution withtiopal coupon is 35.420 while a

coupon of 10.84 applied in the numerical model ltesn 35.700.
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Figure 2: A graphical illustration of the forward-backward algorithm for one-stage

investment options
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Figure 3. A graphical illustration of the forward-backward algorithm for multi-
stage investment issues with multiple debt issues
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Figure 4a: Optimal coupon levels at different pricesat investment maturity

5000.00
4000.00
Price, Coupon 3000-00 = Price
value  5000.00 - —#— Coupon

1000.00

0.00 T T T T
0 5 10 15 20 25 30 35 40 45 50 55 59

Price state (high to low) at investment maturity

Figure 4b: Optimal values of equity, debt, levered firm and its components at

different pricelevel states at the maturity of the investment horizon

50000.00
45000.00 ]\
40000.00 "\ Debt
30000.00 —=—Equity
% 25000:00 i\ —a&— Levered (Gross)
> 20000.00 - \\X\A —=— Unlevered
15000.00 —%—TB
10000.00 \K‘ ®—BC
5000.00
0.00

0O 5 10 15 20 25 30 35 40 45 50 55 59
Price state (high to low) at investment maturity

Note: Parameters ard =10, C =0, risk-free rate= 0.06, competitive erosiah= 0.06, volatilityc = 0.25, investment cost= 100,

b =0.5, tax rate = 0.35 and T= 5, T- = 20. Optimal coupon is chosen among a grid of @@@ts of each price level are used (n
=100 ) with maximum coupon level equal to the rexerevel of the state fg. = 100). The diagram shows the states where
investment is exercised at maturity starting froighkst (state 0) to state 59 among a total of 12&s. The diagram was produced
from the case whereN=1 and N; =24 so that N= 120 and N= 600.
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Figure5: Default trigger functions at selected values of P at maturity
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Note: Parameters ard =10, C =0, risk-free rate= 0.06, competitive erosiah= 0.06, volatilityc = 0.25, investment cost= 100,
b =0.5, tax rate = 0.35 and T= 5, T- = 20. Optimal coupon is chosen among a grid of @@@ts of each price level are used (n
=100 ) with maximum coupon level equal to the rexetevel of the state (g = 100). The diagram shows the default trigger for

selected terminal values at the investment matuFitg diagram was produced from the case whesg=NL and N; =12 so that N=

60 and N = 240.
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Figure 6: Investment trigger for different model parameters
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Note: Parameters ard® =10, C = 0, risk-free rate= 0.06, competitive erosiah= 0.06, volatilityc =
0.25, investment codt= 100, b = 0.5, tax rate = 0.35 and T= 5, T = 20. Optimal coupon is chosen
among a grid of 20 points of each price level amd=R0 ) with maximum coupon level equal to double
the revenue level of the state.{c= 40). The figure results assumgds¥ 1 and N; =12 so that N= 60
and N- = 240.



Figure 7: Investment trigger for different model parameters before and after

investment
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Note: Parameters areP? =10, C = 0, risk-free rate= 0.06, competitive erosiofh = 0.06, volatilityc = 0.25,
investment cost = 100, b = 0.5, tax rate = 0.35 and T= 5, T- = 20. Optimal coupon is chosen among a grid of

20 points of each price level and. &20 ) with maximum coupon level equal to double tevenue level of the

state (gax = 40). The figure results assumgd¥ 1 and N; =12 so that N= 60 and M = 240.
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Figure 8: Leverageratios at the investment trigger for different model parameters
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Note: Parameters ar® =10, C =0, risk-free rate= 0.06, competitive erosiah= 0.06, volatilityc =
0.25, investment cost= 100, b = 0.5, tax rate = 0.35 and T= 5, T- = 20. Optimal coupon is chosen
among a grid of 20 points of each price level and=R0 ) with maximum coupon level equal to double
the revenue level of the state,{c= 40). The figure results assumgd¥ 1 and N; =12 so that N=

60 and N = 240.

Figure 9: Leverage ratios at the investment trigger for different model parameters
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Note: Parameters ard® =10, C = 0, risk-free rate= 0.06, competitive erosiah= 0.06, volatilitys =
0.25, investment cod$t= 100, b = 0.5, tax rate = 0.35 and T =5, T = 20. Optimal coupon is chosen
among a grid of 20 points of each price level amd=R0 ) with maximum coupon level equal to double
the revenue level of the statg,{c= 40). The figure results assumgds¥ 1 and N; =12 so that N= 60
and N- = 240.
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Table 1la: Numerical accuracy of the numerical lattice model

Panel A: Zero operational costs (C =0, R =10.84)
Numerical Model (without abandonment option)

M1 M2 M3
T|::400, Tl =200 T|::400, Tl =200 T|::400, Tl =200
Analytic (A) Ng=1,000,N; =500  Ng=2,000 N; = 1,000 Ng=3,000 N, = 1,500 %Diff (A-M1) %Diff (A-M2) %Diff (A-M3)
Equity 25.791 25.885 25.890 25.855 -0.004 -0.004 -0.002
Debt 44.098 37.645 43.197 43.739 0.171 0.021 0.008
V Unlevered 59.138 54.464 58.285 58.849 0.086 0.015 0.005
Tax benefits 14.220 12.110 13.999 14.126 0.174 0.016 0.007
Bankr. Costs 3.469 3.044 3.198 3.380 0.140 0.085 0.026
V Levered 35.420 34.939 35.960 35.700 0.014 -0.015 -0.008

Panel B: Positive operational costs (C =7, R =17.7)
Numerical Model (without abandonment option)

M4 M5 M6
TF:4OO! Tl =200 TF:400, Tl =200 TF:400, Tl =200
Analytic (A) Ng =1,000, N; = 500 Nk =2,000 N; = 1,000 Ng =3,000 N; = 1,500 %Diff (A-M4) %Diff (A-M5) %Diff (A-M6)
Equity 11.002 10.747 10.799 11.165 0.024 0.019 -0.015
Debt 18.622 19.592 20.103 17.849 -0.050 -0.074 0.043
V Unlevered 24.769 25.641 25.397 24.252 -0.034 -0.025 0.021
Tax benefits 6.087 6.297 6.639 5.862 -0.033 -0.083 0.038
Bankr. Costs 1.231 1.600 1.135 1.101 -0.231 0.085 0.118
V Levered 19.344 19.159 19.927 19.421 0.010 -0.029 -0.004
Numerical Model (with abandonment option)
M7 M8 M9
T|::400, Tl =200 T|::400, Tl =200 T|::400, Tl =200
Analytic (A) Ng =1,000, N; = 500 Nk =2,000 N; = 1,000 Ng =3,000 N; = 1,500 %Diff (A-M7) %Diff (A-M8) %Diff (A-M9)
Equity 11.002 10.747 10.799 10.674 0.024 0.019 0.031
Debt 18.622 19.872 20.375 20.490 -0.063 -0.086 -0.091
V Unlevered 24.769 26.202 25.942 26.331 -0.055 -0.045 -0.059
Tax benefits 6.087 6.297 6.639 6.565 -0.033 -0.083 -0.073
Bankr. Costs 1.231 1.880 1.407 1.732 -0.345 -0.125 -0.290
V Levered 19.344 19.440 20.200 19.675 -0.005 -0.042 -0.017

Note: Parameters for both pand?s= 9.2308 (that corresponds to value-unleveredviéstment takes place today of 100 for panel &k-fiee rate = 0.06, competitive erosiah= 0.06, volatilitys =
0.25, investment cost= 100, b = 0.5, tax rate = 0.35. In panel A, solution obtained using modehwitt abandonment option on unlevered assets. The sssults are obtained by using the model
with abandonment option (since operation costzarm). The coupon levels in both panels corresporide optimal coupon levels according to the Maurel Sarkar (2005) perpetual model (Analytic

solution).Ndec = Nin all models and N=1
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Table 1b: Yearly decisionswith different accuracy of lattice steps per year

Panel A: Zero operational costs (C =0, R =10.84)

Numerical 1
T£=400, T, = 200 TF=400, T, = 200 Te=400, T, = 200
Analytic (A)  Np =5, Ng=2000, N; = 1,000 N =7, Ne=2,800, N; = 1,400 Na =8, Ng=3,200, N; = 1,600 %Diff (A-1)  %Diff (A-2) %Diff (A-3)
Equity 25.791 26.142 25.976 25.686 -0.013 -0.007 0.004
Debt 44.098 45.074 49.843 55.189 -0.022 -0.115 -0.201
V Unlevere 59.138 60.394 63.844 67.733 -0.021 -0.074 -0.127
Tax benefit 14.220 14.492 16.027 17.716 -0.019 -0.113 -0.197
Bankr. Cos 3.469 3.669 4.052 4573 -0.054 -0.144 -0.241
V Levered 35.420 36.852 37.350 37.592 -0.039 -0.052 -0.058
Panel B: Positive operational costs (C =7, R =17.7)
Numerical 1
T£=400, T, = 200 TF=400, T, = 200 TF=400, T, = 200
Analytic (A)  Np =5, Ng=2000, N; = 1,000 N =7, N=2,800, N; = 1,400 Na =8, Ng=3,200, N; = 1,600 %Diff (A-1)  %Diff (A-2) %Diff (A-3)
Equity 11.002 10.746 11.023 10.995 0.024 -0.002 0.001
Debt 18.622 20.838 19.369 19.576 -0.106 -0.039 -0.049
V Unlevere 24.769 26.134 25.423 25.617 -0.052 -0.026 -0.033
Tax benefit 6.087 6.815 6.310 6.360 -0.107 -0.035 -0.043
Bankr. Cos 1.231 1.366 1.340 1.406 -0.099 -0.082 -0.125
V Levered 19.344 20.148 19.887 19.862 -0.040 -0.027 -0.026
Numerical 4
T£=400, T, = 200 TF=400, T, = 200 TF=400, T, = 200
Analytic (A)  Np =5, Ng=2000, N; = 1,000 Np =7, Ng=2,800, N; = 1,400 Npa =8, Ng=3,200, N, = 1,600 %Diff (A-4)  %Diff (A-5) %Diff (A-6)
Equity 11.002 10.746 11.023 10.995 0.024 -0.002 0.001
Debt 18.622 21.136 19.632 19.846 -0.119 -0.051 -0.062
V Unlevere 24.769 26.730 25.948 26.158 -0.073 -0.045 -0.053
Tax benefit 6.087 6.815 6.310 6.360 -0.107 -0.035 -0.043
Bankr. Cos 1.231 1.664 1.603 1.676 -0.260 -0.232 -0.266
V Levered 19.344 20.446 20.150 20.132 -0.054 -0.040 -0.039

Note: Parameters for both pand?s= 9.2308 (that corresponds to value-unleveredviéstment takes place today of 100 for panel &k-fiee rate = 0.06, competitive erosiah= 0.06, volatilityc =

0.25, investment cost= 100, b = 0.5, tax rate = 0.35. In panel A, solution obtained using modehwitt abandonment option on unlevered assets. The sssults are obtained by using the model

with abandonment option (since operation costzam). The coupon levels in both panels corresporide optimal coupon levels according to the Maurel Sarkar (2005) perpetual model (Analytic

solution).Ndec = 1 in all models (yearly decisiavith At = 1) and N; varied between 5, 7, and 8 per year.
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Table 2: Sensitivity of resultson the operational phase horizon

Firm Unlverered TB BC Equity Debt Inv
Te =10 4.5049 14.3773 4.1835 0.7874 5.0331 12.7404 13.2686
Te =15 9.7618 25.6429 6.9571 1.3641 9.9943  21.2417 21.4742

T =20 14.7991 34.0524 8.8098 1.7488 141937 26.9197 26.3143
Te =25 19.0896 42.1125 10.8133  2.3435 17.3438 33.2386 31.4927
T =30 22.4604 49.5776 12.6012 2.8656  20.4442 38.8690 36.8528
Te =35 25.1912 51.9467 13.2539  3.1566 21.0190 41.0250 36.8528
Te =40 27.1697 53.7018 13.6689  3.3482  21.6204 42.4022 36.8528

Note: Parameters ard® =10, C =0, risk-free rate= 0.06, competitive erosiah= 0.06, volatilityc = 0.25, investment cost= 100,
b = 0.5, tax rate = 0.35 and investment horizon ¥ 5. An optimal coupon is chosen among a gridlGff points of each price level
are used (=100 ) with maximum coupon level equal to the rexelevel of the state g = 100). Table results were produced using

Neec= 1 and N; =24 so that N= 120 and N= (T¢/T1) N;.

46



Table 3: Levered firm values for European type investment option with finite
horizon operational phase (T = 20)
Panel A: Yearly decisons

Coupon based on infinite horizon solution

T1=1 T1=3 T1=5 T1=7 T1=10
Nar=1 9.5397 13.4663 15.0437 15.5177 14.6966
Nat = 7.0776 12.1421 14.1406 14.8514 14.7165
Na: =12 7.0968 12.1635 14.1536 14.8594 14.7207
Na; =18 6.4834 11.7823 13.8849 14.6586 14.5832
Na: = 24 6.6746 11.8905 13.9542 14.7068 14.6136

Optimal coupon level

T1=1 T1=3 T1=5 T1=7 T1=10
Na =1 10.2260 14.1111 15.8170 16.4309 15.6282
Nar =6 7.7494 12.7383 14.8348 15.6700 15.6858
Na; =12 7.7361 12.6966 14.7887 15.6244 15.6436
Na: =18 7.7335 12.6950 14.7879 15.6239 15.6435
Na =24 7.7399 12.7056 14.7991 15.6349 15.6536

Panel B: Decisions on more frequent intervals

Coupon based on infinite horizon solution

T1=1 T1=3 T1=5 T1=7 T1=10
Ngec = 1 9.5397 13.4663 15.0437 15.5177 14.6966
Ngec = 6 5.3688 10.2473 12.3305 13.1763 13.2583
Ngec = 12 4.7698 9.8394 12.0063 12.9059 13.0445
Ngec = 18 4.8194 9.8563 12.0066 12.8973 13.0296
Ngec = 24 4.8485 9.8481 11.9913 12.8802 13.0127

Optimal coupon level

T1=1 T1=3 T1=5 T1=7 T1=10
Ngec = 1 10.2260 14.1111 15.8170 16.4309 15.6282
Ngec = 6 6.0279 10.8178 12.9736 13.9240 14.1386
Naec =12 5.6924 10.5362 12.7265 13.7046 13.9537
Ngec = 18 5.5272 10.4151 12.6255 13.6176 13.8824
Naec = 24 5.4167 10.3360 12.5601 13.5615 13.8367

Note: Parameters ard =10, C =0, risk-free rate= 0.06, competitive erosiah= 0.06, volatilityc = 0.25, investment cost= 100,
b = 0.5, tax rater = 0.35. For panel A the numerical method uses a aowgibained from the perpetual horizon solution Rf=
10.842 at all end nodes of the investment horidzarpanel B an optimal coupon is chosen amongcdaad 100 points of each price

level are used (=100 ) with maximum coupon level equal to the rexelevel of the state {g = 100).
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Table 4: Firm value and other information for a short debt maturity horizon with

coupon levelsvaried between 100%-300% of the revenue level at maturity

Coupon level Firm Unlevered TB BC Equity Debt Inv Lev
100% 15.4617 34.0524 7.7304 0.0068 19.6824 22.0936 26.3143 0.53
150% 19.2056 38.1928 12.7363 0.2309 14.0779 36.6204 31.4927 0.72
200% 20.6256 38.1928 14.9399 1.0145 8.4182 43.7000 31.4927 0.84
250% 20.6256 38.1928 14.9399 1.0145 8.4182 43.7000 31.4927 0.84
300% 20.6256 38.1928 14.9399 1.0145 8.4182 43.7000 31.4927 0.84

Note: Parameters ard® =10, C =0, risk-free rate= 0.06, competitive erosiah= 0.06, volatilityc = 0.25, investment cost= 100,
b=0.5, tax rate = 0.35 and T=5, T = 20 and debt maturitypT= 5. Optimal coupon is chosen among a grid of A6iits of each
price level are used {100 ) with maximum coupon level equal tg,c= 100, 150, 200, 250 and 300. The table was edidor
the case wheredst=1 and N; =24 so that N= 120 and N= 480.
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Table5. Firm valueswith choice of debt maturity

Nar =1 Np =6 Na¢ = 12 Na¢ = 18 Na = 24
Debt horizon, T, =5 23.6135 (16.2412) 21.1161 (15.4127) 21.0236 (15.4533) 20.971 (15.4500) 20.6256 (15.4617)
Debt horizon, Tp = 10 18.5183 17.5631 17.4435 17.3423 17.4695
Debt horizon, Tp = 15 17.2595 16.2703 16.0316 16.0518 15.9579
Debt horizon, Tp =20 15.8170 14.8348 14.7887 14.7879 14.7991
Optimal debt horizon 23.6135 21.1161 21.0236 20.971 20.6256

Note: Parameters ar® =10, C =0, risk-free rate= 0.06, competitive erosiah= 0.06, volatilityc = 0.25, investment cost= 100,

b= 0.5 tax rate = 0.35 and T= 5, Tr = 20 and debt maturity varied between=5, 10, 15 and 20. Optimal coupon is chosen
among a grid of 100 points of each price level ased (g =100 ) with maximum coupon level equal t@,c= 300. Solution in
parenthesis for 3= 5 are for the case wherg.g= 100. The table was produced for the case where=N. and N; =24 so that N=
120 and M= 480.
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Table 6: American option with finite investment horizon

Base Case

Lower & before (& before = 0.02)
Lower & after (& after=0.02)

Lower & before and after (& = 0.02)
Lower o before (o before = 0.15)
Lower o after (o after= 0.15)

Lower o before and after (o = 0.15)
Lower bankrupcy costs (b = 0.25)
Lower tax rate (T = 0.15)

Firm Unlevered B BC Equity Debt Inv
16.027 37.688 9.356 1.595 17.121 28.328 29.422
25.114 50.397 12.512 2.133 22.894 37.881 35.661
42.638 86.209 24.743 4911 30.437 75.605 63.403
56.281 92.360 26.508 5.261 32.608 80.998 57.326

9.150 34.811 8.642 1.474 15.814 26.165 32.829
18.426 44.900 13.481 1.568 16.729 40.084 38.387
11.356 42.159 12.658 1.472 15.708 37.637 41.989
17.365 39.770 11.195 1.631 12.455 36.879 31.968
23.049 60.016 4.044 1.287 34.526 28.247 39.724

Note: Parameters ar€ =10, C =0, risk-free rate= 0.06, competitive erosiah= 0.06, volatilityc = 0.25, investment cost= 100,

b= 0.5, tax rate = 0.35 and T= 5, Tr = 20. Optimal coupon is chosen among a grid op@dts of each price level and.(®20 )

with maximum coupon level equal to double the rexelevel of the state {g;= 40). The table results assum@/N 1 and N; =12

so that N = 60 and N = 240.
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