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Abstract  

 

This paper presents a recombining trinomial tree for valuing real options with changing volatility. The 

trinomial tree presented in this paper is constructed by simultaneously choosing such a parameterization 

that sets a judicious state space while having sensible transition probabilities between the nodes. The 

volatility changes are modeled with the changing transition probabilities while the state space of the 

trinomial tree is regular and has a fixed number of time and underlying asset price levels. The presented 

trinomial lattice can be extended to follow a displaced diffusion process with changing volatility, 

allowing also taking into account the level of the underlying asset price. The lattice can also be easily 

parameterized based on a cash flow simulation, using ordinary least squares regression method for 

volatility estimation. Therefore, the presented recombining trinomial tree with changing volatility is more 

flexible and robust for practice use than common lattice models while maintaining their intuitive appeal.  
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1. Introduction 

Volatility estimation is often the most difficult task in financial option valuation. It is even more 

challenging with real options, as there is not always a tractable underlying asset with a known 

process and the volatility does not remain the same during the investment period. Volatility tends 

to decline over the time during many investment projects as new information and knowledge is 

gathered. The valuation method applied should also take this into account. On the other hand, a 

practical valuation method should also be robust and intuitively appealing. Therefore, this paper 

presents a recombining trinomial lattice for real option valuation (ROV) with changing volatility. 

The trinomial tree suggested and also its parameterization is straightforward, and as a lattice 

method, it is also capable to value investments with several interacting parallel and sequential 

real options. 

Contrary to financial options, the underlying asset value in ROV in the beginning is not often a 

known market-based value but more like an estimate with uncertainty. This is second order 

uncertainty, or ambiguity, meaning that the underlying asset value is not known well in the 

beginning. Then, after market information gathering and own activities over time, more reliable 

estimation of the investment’s expected value and its volatility can be made. As a result, 

volatility tends to decline over the time during many investment projects. For example, knowing 

the realized product sales for earlier time period is likely to improve the forward-looking 

estimation of the overall demand. 

While the volatility changes with financial options can be considered quit smooth, the situation is 

often different with real options. Usually the new information arrival, especially in case of R&D 

investments, is infrequent, and some of the uncertainty only reveals after own work. Instead of 

assuming continuous fluctuation according to the geometric Brownian motion, Willner (1995) 

suggests using pure jump process and Schwartz & Moon (2000) apply mixed jump-diffusion 

process. Nevertheless, even a univariate yet time-dependent stochastic process may provide a 

realistic approach for valuation. Managerial decisions related to the projects usually do not 

happen continuously but rather at certain time periods. The decisions, i.e. option exercise 

decisions, are made mostly at certain time points when new information from own activities and 

markets is gathered and analyzed. As a result, an investment can be considered as staged 

investment, or like a sequence of call options. More accurate multivariate modeling of the 

underlying asset value, if even possible, is not therefore necessary between the decision points, 

as long as the underlying asset value is approximated correctly at the decision point for making 

optimal decision about option exercise. Because of this rather discrete than continuous approach 

in decision making, a univariate uncertainty modeling is also able to capture the reality as well. 
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Changing volatility with a standard binomial lattice is problematic since the declining volatility 

means that the tree would not recombine. Without recombining, tree-based real options analysis 

is impracticable. Guthrie (2009) suggests a modification for binomial tree so that it allows 

changing volatility. The size of up and down movements and their corresponding transition 

probabilities are constant throughout the tree, but the time periods are of unequal length. When 

volatility is high, the time periods are short, so that the state variable changes frequently by the 

standardized amount. When volatility is lower, the periods are longer so that the changes in the 

state variable are less frequent. This binomial tree is presented on the left in figure 1. 

The method suggested by Guthrie (2009) is sufficiently straightforward extension to the basic 

CRR binomial tree and as such suitable for practitioners. One shortcoming of the approach is that 

because of the changing time period lengths, option exercise dates do not necessarily match 

precisely the actual decision moments. With several different volatility time periods, change in 

any single volatility during modeling requires adjusting the exercise dates and functions to the 

correct nodes. The length of times steps needs to be small enough everywhere in a tree for this 

adjusting to be possible. This is also required so that the transition probabilities would not 

become negative anywhere in a tree
1
. Another shortcoming is that in case of very small or even 

non-existing volatility during some time period, any up or down movement deviating from the 

expected future value - increasing according to the risk-free rate – would make the tree 

construction impossible. 

The trinomial tree presented in this paper is constructed by simultaneously choosing such a 

parameterization that sets a judicious state space while having sensible transition probabilities 

between the nodes. The volatility changes are modeled with the changing transition probabilities 

while the state space of the trinomial tree is regular and has a fixed number of time and 

underlying asset price levels. This is illustrated on the right side of figure 1, where the width of 

the arrow in the trinomial tree exemplifies the risk-neutral transition probabilities for up, middle 

and down movement. In the beginning, when the volatility is higher, the probability of going up 

or down is larger (thick arrows) than probability of moving to the middle value (thin arrow). 

Later, when the volatility has diminished, the probability of moving to the middle node is larger 

(thick arrow) and probabilities for up and down movements (thin arrows) are smaller. 

The parameterization presented in this paper for the trinomial tree is an exact solution both to the 

expected mean value and variance instead of being only an approximation for the variance. 

Unlike Boyle (1988), the transition probabilities also remain always stable for all dispersion 

                                                 

1
 Known issue also with standard (Cox-Ross-Rubinstein 1979) binomial tree 
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parameter values λ > 1. Also, recombining is set so that u·d = d·u = m
2
 = e

2r∆t
, because 

otherwise the discretized system would not hold with small or even zero volatility. The trinomial 

tree is always stable regardless of the length of the time step. Equations to describe stochastic 

process up and down movements are more accurate even with longer time steps. This is required 

because the time steps with real option valuation are chosen, due to managerial practicality, to be 

longer than is commonly used for financial options. 

 

Figure 1: Comparison of Guthrie (2009) binomial tree (left) and the trinomial tree (right) presented 

in this paper. Thickness of the arrows in the trinomial tree illustrates the transition probabilities 

between the tree nodes. 

This paper also presents a parameterization for the trinomial tree with changing volatility based 

on cash flow simulation. Therefore this paper also extends research of Copeland & Antikarov 

(2001), Herath & Park (2002), Mun (2003, 2006), Brandão (2005a, 2005b), Godinho (2006), and 

Haahtela (2008), applying Monte Carlo simulation on cash flows to consolidate a high-

dimensional stochastic process of several correlated variables into a low-dimension (univariate) 

geometric Brownian motion process. The volatility parameter σ of the underlying asset is then 

estimated by calculating the standard deviation of the simulated probability distribution for the 

rate of return. Similarly to Godinho (2006) and Haahtela (2008), cash flow and volatility 

realizations are conditional on earlier cash flow realizations, and ordinary least squares 

regression approach is used to estimate the continuation value and its volatility. In contrast with 

other cash flow simulation based consolidated approaches, the modeling presented in this paper 

allows changes in volatility while keeping the lattice recombining. Also, while most cash flow 

simulation based methods commonly assume underlying asset to follow geometric Brownian 

motion, the modeling and parameterization also allows use of displaced diffusion process of 

Rubinstein (1983) similarly to Camara (2002), Camara & Cheung (2004), and Haahtela (2006). 
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Next section discusses lattice methods and most common binomial trees. Section 3 extends the 

theoretical background of lattice methods and discusses trinomial trees. The main contribution of 

this paper is in Section 4 that describes the construction of the recombining trinomial lattice for 

real option valuation. Volatility changes are modeled with changing transition probabilities while 

keeping the state space regular with fixed number of time and underlying asset price levels. 

Section 5 explains how this trinomial lattice can be parameterized based on simulated cash flow 

calculation and ordinary least squares regression. Section 6 extends this approach further and 

shows how to apply displaced diffusion process for the trinomial tree. Section 7 concludes the 

paper. 

2. Lattice methods 

Lattice models are accurate, robust, and intuitively appealing tools for valuing financial and real 

options (Hahn 2005, p. 6). Lattices are much more easily explained to and accepted by 

management because the methodology is much simpler to understand (Mun 2006). This is 

valuable especially with sequential and parallel compound options, which is often the case in real 

applications (Trigeorgis 1996, Copeland & Antikarov 2001). They allow valuation of American 

options with early exercise possibility and they are suitable for valuing barrier options. Lattice 

methods also allow valuation of derivatives dependent of several underlying assets (Boyle 1988, 

Kamrad & Ritchken 1991) and they can be applied to several stochastic processes, including 

mean-reverting process (Hahn & Dyer 2007). Typically lattice methods are of binomial (two 

states) or trinomial (three states) type, but there are also quadranomial lattices, e.g. for jump-

diffusion process, and pentanomial lattices for rainbow options with two combined and 

correlated underlying assets (Mun 2006, 306). 

Lattice valuation models are based on a simple representation of the evolution of the underlying 

asset value. The two main ideas with lattice approaches are 1) the modeling of the continuous 

process with a discrete random walk and 2) the assumption of risk-neutral pricing (Wilmott 

et al., 1995, 180-181). In the continuous limit, a lattice with an infinite number of time steps to 

expiration represents a continuous risk-neutral evolution of the asset value. In a lattice method, a 

tree of possible values of underlying asset prices and their probabilities, given an initial asset 

price, is built. This tree determines the possible asset prices and the associated probabilities of 

these asset prices being realized. In other words, a lattice determines the assets prices and 

probabilities in a state space during each time period over the life-time and at the expiry of the 

security. The possible values of the security and therefore also the payoff of the option at expiry 

can then be calculated, and finally, by working back down the tree, the security can be valued. 

(Wilmott et al., 1995, 182). 
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Most simple presentation of a lattice model is a binomial model. A binomial approximation for 

the geometric Brownian motion process may be developed by assuming that during a short time 

interval ∆t, stock prices jump from an initial value, S, to either up to new value, Su, or down to 

the new value, Sd. The transition probability of moving up to Su is assumed to be p, so that the 

probability of moving down to Sd is 1-p. These parameters uniquely determine the evolution of 

the underlying asset, which, in turn, determine a unique value of the option on the stock. (Easton 

1996). However, the parameters p, u, q, and d cannot be chosen arbitrarily as they must give 

correct values according to the continuous-time process for the mean and the variance of the 

change in the stock price during the time interval ∆t. According to Lindeberg’s Central Limit 

Theorem, the following conditions are sufficient to ensure this convergence: 

a) Jumps are independent of the stock price level 

b) The mean of the binomial distribution is equal to the mean of the lognormal distribution 

c) The variance of the binomial distribution is equal to the variance of the lognormal 

distribution 

d) The probabilities pu and pd are positive in the limit between 0 and 1 but not equal either to 0 

or 1. 

e) The probabilities sum to 1 

 ��� � ��� � �	
� 
(1) 

 ���� � ���� � �
�	����
� 
(2) 

 �� � �� � 1 ;   0 � � � 1 
(3) 

The discretized dynamic process must give correct values to mean, increasing by risk-free 

interest rate according to the risk-neutral assumption, and variance of the asset dynamics at each 

time period of length ∆t. Therefore, Equation (1) must hold for the asset price and Equation (2) 

for the variance. Equation (3) ensures that the transition probabilities remain between 0 and 1, a 

necessary condition for the discrete world represented by the tree to preclude arbitrage. Another 

common restrictions is the recombination condition u·d = d·u = m
2
 so that the binomial lattice 

branches reconnect at each step. This is an important issue both from a computational efficiency 

and modeling simplicity perspective, because there are N +1 nodes at any stage N, whereas there 

are 2
N
 nodes at the same stage for a non-recombining binomial tree

2
. 

                                                 

2
 However, non-recombining binomial trees may be efficient in stage-gate structures common for real options, 

where only part of the full diffusion process has to be modeled, and numerical accuracy is less important in 

comparison with financial options. 
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There are three equations for the four unknowns, p, u, d, and q. In order to determine these 

unknowns uniquely we require another equation. Equations (2) and (3) determine all the 

statistically important properties of the discrete random walk. Therefore, the choice of the fourth 

equation is somewhat arbitrary (Wilmott et al., 1995). The choices for this additional restriction 

are theoretically infinite, and there is no obvious criterion to choose among these infinite choices, 

although it should be ideally selected to achieve the desirable convergence properties of the 

binomial approximation procedure (Tian 1993). All correctly chosen binomial tree 

parameterizations represent the same discrete constant volatility world, and all converge to the 

same theory, i.e the constant-volatility Black-Scholes theory, in the continuous limit. As a result, 

there are in general an infinite number of (equivalent) binomial trees due to a freedom in the 

choice of overall growth of the price at tree nodes. If all the node prices of a binomial tree are 

multiplied by some constant (and reasonably small) growth factor, we will end up with another 

binomial tree which has different (positive) probabilities but represents the same continuous 

theory. The familiar CRR (Cox, Ross & Rubinstein, 1979) binomial tree has the property that all 

nodes with same spatial index have the same price, making the CRR tree state space look regular 

in both spatial and temporal directions. Tian (1993) ensures that the third moment of the discrete 

time process is also correct according to the continuous-time process. The Rendlemann-Bartter 

(1979) (RB) and Jarrow-Rudd (1979) (JR) binomial trees have the property that all probabilities 

are equal to ½. It is also possible to grow the binomial tree precisely along the forward risk-free 

interest rate curve so that ud = e
2r∆t

.  

Cox, Ross & Rubinstein (1979) set the fourth equation as u·d = 1, and given the conditions of 

(1) - (3), as ∆t approaches zero, the following equations (4) – (6) hold: 

 � � ��√
� 
(4) 

 � � ���√
� 
(5) 

 � � ��	
� � ��
� � ��  
(6) 

CRR is most commonly used binomial model. It consists of a set of nodes, representing possible 

future stock prices, with a constant logarithmic spacing between these nodes. This spacing is a 

measure of the future stock price volatility. This leads to a tree with centrality property, meaning 

that the value of the underlying asset at the central node at time 2·dt is the same as at time zero. 

CRR model is intuitive and also pedagogically good (Geske & Shastri 1985), because it can be 
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used in explaining the idea of risk-neutral pricing and delta hedging while also illustrating the 

discretized stochastic process graphically. Secondly, before the era of PCs and spreadsheet 

programs, the computations required by the CRR model for options and the Greeks valuation 

were easier due to the centrality property. Therefore, CRR has become a de facto standard for 

binomial models yet some other binomial models are better in terms of consistency, accuracy, 

stability, and convergence (computational) speed. 

The parameters suggested by CRR are an exact solution to Equation (1) but only an 

approximation for Equation (2) For sufficiently small ∆t, (2) can be approximately satisfied. As a 

result of this approximation, consistency is not perfect, because the variance is slightly 

downward biased (Trigeorgis 1991). The largest disadvantage of the CRR is that it loses stability 

if Δ� � ��  �⁄  and as a result, other probability becomes larger that one and another smaller than 

zero.  

Another way to specify the equations for up and down movements is to set pu = pd = 0.5. In this 

case,  

 � � ��	���/��
���√
� 
(7) 

 � � ��	���/��
���√
� 
(8) 

 �� � ���	���/��
� 
(9) 

As a result, � # � $ 1, and therefore centrality is lost
3
. The advantage of RB parameterization is 

that it is an exact solution to the equations (1) and (2), and therefore it has perfect consistency so 

that the mean and variance of the underlying lognormal diffusion process are the same for any 

step size. Therefore the lattice is always stable, has correct volatility, and converges faster than 

CRR to the analytical continuous time solution (Jabbour et al., 2001). 

There are two small modifications suggested to the previously mentioned common binomial 

lattice models so that they would become better for real option valuation purposes. The standard 

deviation of the proportional change in the stock price in a small interval of time Δt is 

approximately �√Δ�. Therefore, volatility can be interpreted as the standard deviation of the 

percentage change in the stock price when return is expressed using continuous compounding. 

Because numerical accuracy requirements are smaller in ROV than with financial options (Mun 

2006), most managerially oriented books and their examples suggest using sufficiently long time 

steps. However, lattice valuation methods assume that Δt is a small time interval, and otherwise 

                                                 

3 Jabbour, Kramin & Young (2001) present how this can be modeled so that centrality remains as well. 
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certain models and their parameterizations become unreliable. Therefore, instead of using �√Δ�, 
a more precise expression for a deviation over a given time period should be used according

4
 to 

Equation (10): 

 %���
� � 1 & �√Δ� 
(10) 

One may also grow the tree along the forward. This can be done by setting u·d = e
2r∆t

. As a result 

of this centering condition and the previous suggestion for more accurate modeling with longer 

time steps ∆t, the binomial tree can be constructed with the following u, d, and p according to the 

Equations (11) – (13): 

 � � �%'(�)*�+�	
� 
(11) 

 � � ��%'(�)*�+�	
� 
(12) 

 � � ��	
� � ��
� � ��  
(13) 

This tree can be considered either as an extension to the CRR or to the RB parameterization. In 

this case, both up jump u and down jump d are slightly changed. As a result, the central line 

follows risk-free rate. Another advantage is that this parameterization is also always stable 

regardless of the length of the time step ∆t. Both of these properties are also essential in 

constructing a robust recombining trinomial tree for changing volatility. 

3. Trinomial trees 

Trinomial trees provide another discrete representation of stock price movement, analogous to 

binomial trees. The trinomial lattice has three jump parameters u, m and d and three related 

probabilities parameterized as p1, p2, and p3. During this time step the stock price can move to 

one of three nodes: with probability p1 to the up node, value Su, with probability p2 to the middle 

node, value Sm, and to the down node, value Sd, and with probability p3. We assume that the 

probabilities sum to unity, so we set p2 = 1 – p1 – p3. At the end of the time step, there are five 

unknown parameters: the two probabilities p1 and p3, and the three node prices Su, Sm and Sd. 

One way to construct trinomial trees is to view two steps of a binomal tree in combination as a 

single step of a trinomial tree. This can be applied to all standard binomial trees with constant 

                                                 

4 This is based on the properties of the lognormal distribution (Hull 2006, 281-283). Also Jabbour et al. (2001) 

present this modification. 
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volatility, e.g. CRR (1979), JR (1979), RB (1979), Trigeorgis (1991), Tian (1993), and Tian 

(1999). For example, a two step presentation of the CRR binomial lattice is: 

 ,� � ,��√�
�   
(14) 

 ,- � , 
(15) 

 ,� � ,���√�
� 
(16) 

 

 

�� � .�	
�/� � ���%
�/���
�/� � ���%
�/�/�
 

(17) 

 �� � . ��%
�/� � �	
�/���
�/� � ���%
�/�/�
 

(18) 

 �- � 1 � �� � �� 
(19) 

Trinomial trees can also be modeled starting from the same basic assumptions and restrictions 

that are used for binomial lattices. The transition probabilities are positive in the limit between 0 

and 1 and need to sum to unity (20), the mean of the discrete distribution is equal to the mean of 

the continuous lognormal distribution (21), and the variance is equal to the variance of the 

continuous distribution (22):  

 �� � �- � �� � 1;   0 < p < 1 
(20) 

 ��,� � �-,0 � ��,� � ,1 
(21) 

 ��
,��� � ,�1�� � �-
,�0� � ,�1�� � ��
,��� � ,�1�� � ,�2. 
(22) 

where 1 � �	
� and 2 � ���
�. 
The first trinomial tree was presented by Boyle (1986). The purpose of this model was to 

enhance the accuracy and speed over ordinary binomial lattice. Later, Boyle (1988) extended this 

approach for two state variables. Using equations (20) – (22), and setting u·d = 1, Boyle solved 

explicit expressions for transition probabilities: 

 

 

�� � 
2 �1� �1�� � 
1 � 1�
� � 1�
�� � 1�  
(23) 
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 �� � ��
2 �1� �1� � �3
1 � 1�
� � 1�
�� � 1�  
(24) 

 �- � 1 � �� � �� 
(25) 

If the original parameters of CRR for u and d were used, and setting m = 1, some of the transition 

probabilities would not remain between 0 and 1. Therefore, Boyle suggested using a dispersion 

parameter λ > 1 to increase u and lower d according to Equations (26) and (27): 

 � � �4�√
5 
(26) 

 � � ��4�√
5 
(27) 

where λ is greater than 1. However, this parameterization gives negative transition probabilities 

with small values of λ. By trying different values for λ, a range of values of u is obtained, and 

there is an interval within this range that produces acceptable values for all the probabilities. 

Boyle found that for a range of parameter values, the accuracy of the three-jump method with 5 

time intervals was comparable to that of the CRR method with 20 time intervals. He also 

recognized that the best results were obtained when λ was set so that the transition probabilities 

were roughly equal. Kamrad (1990; 14-19) enhanced the model to correct the possible problem 

of negative transition probabilities. 

While Boyle (1988) found the optimal solution by trial-and-error experiment so that the 

probabilities were roughly equal, Tian (1993) and Derman, Kani and Chriss (1996) present equal 

probability (1/3) trees with two different parameterizations for recombining trinomial tree
5
. Tian 

(1993) also presented another parameterization based on the idea of matching the first four 

moments. Tian (1993) found that his two trinomial models converged in practice to the 

continuous time solution as fast as the model of Boyle (1988). Other possible constructions for 

trinomial trees are two steps of JR or RB binomial tree which have pu = pd = 0.25 and pm = 0.5. 

Another interpretation and modeling of trinomial lattice is such that pm = 2/3 with � � ��√3
� 
                                                 

5 For equal probability (1/3) tree, Tian (1993) has a recombining of �� � 0.5�	
��3 � ���
�� while 

Derman et. al. (1996) has a recombining of �� � ��	
���� . Tian (1993) for matching the four moments has a 

recombining of �� � �	
5����
5��.  
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and � � 1 �⁄ . This parameterization shows the relation of trinomial lattice and explicit finite 

difference scheme (Hull 2006, 408-409, 427-428). Another common parameterization is to set 

pu = pd = 1/6 and pm = 2/3 (Derman et al., 1996). As a result, we can construct several kinds of 

trinomial trees and apply a variety of criteria, all of which may be equally reasonable. However, 

despite of their limiting similarity, one kind of tree may be more convenient than another. 

Trinomial trees have inherently more parameters than binomial trees, so there is more freedom 

over the choice of the state space. Of the five parameters needed to fix the whole tree, Equations 

(21) and (22) provide only two constraints, so there are three more parameters than are necessary 

to satisfy them. These additional parameters can be conveniently used to choose the “state space” 

of all node prices in the trinomial tree. As a result, it is possible to construct many “economically 

equivalent” trinomial trees which, in the limit as the time spacing becomes very small, represent 

the same continuous theory. These properties are often used in valuing implied trees with term- 

and skew structure (Derman et al., 1996) as well as barrier options (Hull 2006, 573-575). 

4. Recombining trinomial tree with changing volatility 

When volatilities are not constant, a common method is to choose the underlying asset prices for 

each node and then attempt to satisfy the two constraints through the choice of the transition 

probabilities. This method of initially choosing the state space of prices for the trinomial tree, 

and then solving for the transition probabilities, is familiar in most applications of the finite-

difference method (Derman et al., 1996). We must make a judicious choice of the state space in 

order to insure that the transition probabilities remain between 0 and 1, a necessary condition for 

the discrete world represented by the tree to preclude arbitrage. In choosing a state space, we 

eliminate three of the five unknown parameters corresponding to the evolution of each node, 

leaving only the transition probabilities to solve for. In a trinomial tree presented in this paper, 

construction of the tree happens so that we simultaneously choose such a parameterization that 

sets a judicious state space, i.e. specify the position of every tree node, while having sensible 

transition probabilities between the nodes. 

As a result, there are only three restricting equations for the three transition probabilities and 

three jumps, and therefore three additional equations are necessary to define a unique solution. 

Only one them is quite obvious to ensure that trinomial lattice is recombining: u·d = m
2
. Without 

recombining, the number of nodes on an N-period trinomial lattice is (3
N+1

-1)*0.5 while with 

recombining property this reduces to (N+1)
2
, making such a lattice computationally efficient. 

It is convenient to divide the equation (21) by S and (22) by S
2
. Then, Equation (20) can be used 

to remove pm from (21) and (22). Then, from (21) either pu or pd can be solved and substituted 
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into the latter equation (22). After some simplifications the equations can be solved to give 

explicit expressions for pu, pm, and pd as follows
6
: 

 

 

�� � 1�2 �1� �10�0���� �0� � �0 � ��  
(28) 

 �� � �� 90 � �� �0: � ;1 �0� �0< 
(29) 

 �- � 1 � �� � �� 
(30) 

where 1 � �	
� and 2 � ���
�. We also set u·d = m
2
 to make the tree recombining. So far we 

have defined the transition probabilities but not yet the actual up, middle and down jump 

movements. Derman et al. (1996) state that in a recombining constant volatility trinomial tree
7
, 

the following equations (31) – (33) must hold: 

 ,� � ,�=
��4�√
� 
(31) 

 ,� � ,�=
��4�√
� 
(32) 

 ,�� � ,�� � ,��=
� 
(33) 

for λ > 1 and any reasonable value of π. Given this knowledge, we start choosing the 

parameterization to satisfy the requirements and to construct a justified and robust state space. 

If the volatility becomes close to zero or is actually zero, the only possibility is that the following 

move forward in the lattice would have to happen with probability 1 to the expected value of the 

process in the following time period. As a result, one node value leaving forward from any node 

value in the state space has to be the expected value of the process in the next time period. 

Because of the risk-neutrality assumption, the expected value of the underlying asset increases 

according to the risk-free interest rate. Also, because u > m > d, this has to be the middle branch, 

and as a consequence, we need to set m = e
r∆t

. As a result, in equations (31) – (33), π = r. 

                                                 

6
 Boyle (1988) has slightly different parameters because he assumed centrality by setting u·d = 1. This presentation 

does not have this limiting assumption. 

7
 Assuming ∆t sufficiently small so that the higher order terms can be ignored 
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Now we are left with the >�√Δ� having the dispersion parameter λ > 1
8
. Previous literature 

regarding financial options suggests using λ values between 1.2 and 3
0.5

 (Yuen & Yang, 2010). 

Choosing a good value for the λ is a balanced decision between a good state space and 

reasonable transition probabilities. Because of the modified parameterization in comparison with 

Boyle (1988), there is no need to worry about negative transition probabilities as long as λ > 1. 

The smaller the dispersion parameter, the smaller are the up and down jumps. This sets the state 

space values closer to each other in a vertical level axis. This is desirable, as Widdicks et al. 

(2002) shows that the option pricing errors with lattice methods are related to the node 

positioning so that the closer the option exercise price is to the node, the more accurate the 

approximation of continuous time value. However, when λ is close to 1, the transition 

probability to jump into the middle branch becomes almost zero. As a result, some values in the 

state space are hardly reached, and the tree would behave more like a binomial tree. Thus, two 

advantages of the trinomial tree in comparison with the binomial tree, faster convergence and 

small oscillation, would be lost, and the precision would reduce.  

When λ increases, the jump sizes increase as well, but on the other, the transition probabilities 

become reasonable so that each node in the chosen state space can be reached. Boyle (1988) and 

Tian (1993) state that the closer the probabilities are to each other, being roughly equal, the faster 

the tree results converge to the correct value. Setting λ 1.5
0,5

 (~1.2247) makes the transition 

probabilities equal 1/3 when ∆t gets close to zero
9
. As a result, this can be considered the 

reasonable upper limit for λ
10
. Therefore, the dispersion parameter λ should be somewhere 

between 1 and 1.5
0.5

. There is no correct way of setting λ. However, a justified value for λ is 

1.12. This makes the state space dense, and provides sufficiently good transition probabilities. If 

a smaller λ would be chosen, the middle node transition probability would start to become quite 

small. With larger λ, the up and down jump transition in the first period would become closer to 

equal, but as a consequence, these transition probabilities would become sufficiently small 

during other time periods with smaller volatilities.  

Another slight modification is to use a more accurate estimate for deviation according to 

equation (10) instead of �√Δ�. After these modifications, the trinomial lattice parameter 

construction follows nicely the general form of parameterization for all the transition 

probabilities and jump sizes u, m and d according to the following equations (34) – (38): 

                                                 

8
 Actually, λ can also be a dispersion function for which λ >1 holds. 

9
 The probabilities remain sufficiently close to each other even with a small number of times and a long ∆t.

 

10
 In case of constructing a trinomial tree as two steps of CRR a tree, it would have λ 2

0.5 
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�� � 0�
2 � 1��� �0� � �0 � �� 
(34) 

 �� � �� 90 � �� �0: 
(35) 

 �- � 1 � �� � �� 
(36) 

 � � �	
��%'
?(��)*�+  
(37) 

 � � �	
��%'
?(��)*�+ 
(38) 

The up (37) and down (38) movements that determine the state space are calculated according to 

the largest volatility during the investment so that σ = max σi. These values of u and d are used 

for the whole state space during all the time periods regardless of the changing volatility. 

However, the transition probabilities calculated according to (34) – (36) hold only for the time 

period with the highest volatility. Transition probabilities for other time periods are calculated so 

that equation (21) holds for the expected value and (22) for the local volatility. 

Having equations (34) – (36) for pu, pd and pm for the time period with highest volatility, we can 

calculate the transition probabilities p
i
u, p

i
u and p

i
m for other time periods i according to as: 

 

 

��@ � �� ; �@�-AB<� 
(39) 

 ��@ � �� ; �@�-AB<� 
(40) 

 �-@ � 1 � ��@ � ��@  
(41) 

As a result, we have the parameterization available for constructing a recombining trinomial tree 

with changing volatility. The use of constructed lattice is similar to ordinary lattice process. After 

the underlying asset value paths are constructed according to (37) and (38), the option payoff 

functions are entered into model. Then, the option tree is evaluated by starting at the end of the 

tree and working backwards with dynamic programming according to the risk-neutral valuation 

and risk-neutral probabilities (39) – (41). The value of the option Vt is known at the end at time 

T, with strike price of I, and is for a call option worth Vt = Max(St – I, 0) and for a put option 

Vt = Max(I - St, 0). Because of the risk-neutrality assumption, the value at each inner node can 
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be calculated as the expected value at time t discounted at rate r for a time period Vt-1 according 

to: 

 ,��+ � ��,�,� � �-,�,-���,�,��	
�  
(42) 

Finally, working back through all the nodes provides the value of the option at time zero. The 

construction of this trinomial tree is illustrated in appendix 1. 

5. Trinomial tree parameterization based on a simulated cash flow calculation 

The volatility of the underlying process might not be known while its standard deviation
11

 may 

be available. According to the multiplicative geometric Brownian motion, the standard deviation 

of S over time is given according to the Equation (43): 

 D��
,� � ,�	�%���� � 1   �  ,�	�E�F �G��G � 1  . (43) 

Therefore, if the standard deviations of the underlying asset process at certain time points are 

known, it is possible to compute the average volatility for each time period. Starting from the 

beginning of the process, each σi can be calculated according to Equation (44):  

 

�@ � HIJ K;D��
,�@,L�	� <� � 1M � ∑ 
�@��@�@�+@OL�@  

(44) 

If standard deviation is also unknown, it has to be approximated somehow. Several authors have 

suggested different variations of applying Monte Carlo simulation on cash flow calculation to 

estimate the volatility. The existing cash flow simulation based volatility estimation methods are 

the logarithmic present value approach of Copeland & Antikarov (2001) and Herath & Park 

(2002), conditional logarithmic present value approach of Brandão, Dyer & Hahn (2005), two-

level simulation and least-squares regression methods of Godinho (2006). All these methods are 

based on the same basic idea. Monte Carlo simulation on cash flows consolidates a high-

dimensional stochastic process of several correlated variables into a low-dimension (univariate) 

geometric Brownian motion summary process. The volatility parameter σ of the underlying asset 

                                                 

11
 When using cash flow simulation based methods, we can sometimes only observe the standard deviation, and 

based on that knowledge, determine a justified stochastic process with correct parameter values.  
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is estimated by calculating the standard deviation of the simulated probability distribution for the 

rate of return. 

The cash flow simulation based volatility estimation presented here is based on using ordinary 

least squares regression for estimating the underlying asset value S as present value (PV) of all 

forthcoming cash flows. This stems from the ideas of Carriere (1996) and Longstaff & Schwartz 

(2001) regressing the ex post realized payoffs from continuation on functions of the values of the 

state variables. This regression provides an estimate of the conditional expectation function that 

determines the optimal exercise strategy between early exercise and continuation in case of 

American options. Smith (2005), Brandão et al. (2005), Godinho (2006) and Haahtela (2008) 

have applied this approach so that OLS regression is used for estimating PV with cash flow 

simulation state variables Xk,t as input parameters. However, instead of common approach of 

directly estimating volatility as standard deviation of rate of return as z = ln(St+1/St), a regression 

estimator is constructed to estimate underlying asset value and its standard deviation at different 

time points. Then, volatility is calculated according to Equation (44). While Longstaff & 

Schwartz (2001) approach actually avoids the need to approximate the value process and allows 

modeling of several kinds of options, it is not as flexible and convenient with several parallel and 

sequential interacting real options as the consolidated approach presented here. 

In the simulation approach for valuing options, a Monte Carlo simulation model is built that 

takes into account all of the uncertainties in the problem, which can then be used to calculate 

expected value and volatility for any given moment. To calculate the expected value and 

volatility at each decision point, we need to examine the expected future cash flows, conditioned 

on the resolution of all uncertainties up to that time. One alternative to do this is to use regression 

equations to determine this value and its standard deviation for each time point. Because of the 

risk-neutrality assumption, knowing PVt at any given moment means that we know its expected 

value at any given moment by discounting or undiscounting the value with risk-free interest rate.. 

Similarly to previous section, we rather estimate the standard deviation of the stochastic process, 

and then compute the volatility according to Equation (44). 

To do this, we can run a cash flow simulation model and record the PV of the forth-coming cash 

flows, and the state variable Xk,t values for each time period. Then we run a regression relating 

the PV for each year to the state variables Xk,t of the given year and earlier years.  The estimated 

regression equations provide estimates of the expected values as functions conditioned on the 

resolution of all uncertainties up to each time, and thus, PVt is calculated as the expected PV of 

subsequent cash flows. The expected value is the mean of the PV calculated from the simulated 

cash flows, but we also need to compute the deviation around the expected value for determining 

the standard deviation. This is computed as a standard deviation between the P2�Q , calculated as 
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the expected PV of subsequent cash flows, and the actual realized PVt, calculated as the 

realizations of the subsequent cash flows
12

. 

The standard deviation in this approach is actually computed as a standard root mean square of 

the deviations between the regression estimator results P2�Q  and the realized simulated results 

PVt. First, we calculate the estimated expected value for P2�Q  from the values of Xi,k generated in 

that trial using the regression equation. Then, we measure the differences between values 

predicted by the regression estimator and the values actually observed from the realized 

simulations. Then we square all the deviations, add them together, divide them by the number of 

measurements, and take the square root. Because the calculation is based on a forecasting error 

on simulation based realized values instead of true measured values, term root mean square error 

is often used instead of standard deviation
13

.  

The challenge in this approach is in determining a good regression estimator P2�Q . Usually a 

linear combination of the most significant cash flow calculation state variables Xk,t at the present 

moment t is a good approximation for the estimator. For the first time period, this expected value 

estimator can be constructed as follows: 

 P2+Q � R+ � S+,+T+,+ � S�,+T�,+ �⋯� SV,+TV,+ (45) 

On the other hand, it is not necessary to use the cash flow components Xk,t of a single year as 

explanatory variables. Often the whole cash flow of a time period CFt may be used as an 

explaining variable, so that: 

 P2+Q � R+ � S+WX+ (46) 

If these models are extended to other time periods, they become: 

 P2�Q � R� � S+,+T+,+ �⋯ � SV,�TV,� (47) 

and 

 P2�Q � R� � WX+ �⋯ WX��+ � S�WX� (48) 

                                                 

12
 This approach, similarly to Brandao et al (2005) and Godinho (2006), ensures that only the earlier years’ cash 

flow components are stochastic, and the expected underlying asset is conditional on the earlier outcomes of cash 

flow simulation. 
13

 Standard deviation is often used to describe deviations on realized observable historical data or measurable data. 

Mathematically, both are practically the same. 
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A possible combination of the two alternatives is to use them so that the earlier year cash flows 

CF1…CFt-1 and the cash flow calculation components Xk,t of the present moment t are used as 

explanatory variables as follows: 

 P2�Q � R� � WX+ �⋯WX��+ � S+,�T+,� � …� SV,�TV,�� �ZDD[SI� \[]\�  Z ��  �� 0D Z^ T� 
(49) 

This approach makes sure that the number of parameters Xk,t does not become too large in the 

estimator. When cash flow calculation model is done correctly, all the future cash flow 

component values are conditional on earlier realizations. Therefore, the explanatory power of 

earlier realizations other than their combined value (sum of earlier cash flows CF) is likely not 

necessary. However, the present state variables Xk,t at time t may provide better explanatory 

power than using only CFt. Also, a good possible explanatory regression function for PV may 

also have variables of higher order and cross-products, non-linear terms, powers, piecewise 

regressions and other functional forms. These may arise especially if there are cash flow 

simulation embedded options whose value are based on choosing the optimal decision in each 

time step during a single cash flow calculation simulation run (Haahtela 2010b). However, 

structure of the cash flow calculation, regression diagnostics, and sensitivity analysis assist in 

determining a good forward-looking regression estimator (Haahtela 2010a). 

6. Extending the trinomial tree to follow displaced diffusion process 

One viable and suggested extension to the presented trinomial lattice is to change the commonly 

assumed geometric Brownian motion into displaced diffusion process suggested by Rubinstein 

(1983): 

 �, � _,`�� � ���
,` � θ��b (50) 

Where σdd is volatility of the displaced diffusion and θ is shifting parameter. The evolution of ST 

subject to (50) out to a time horizon T in a risk-neutral world is given by 

 ,� � �,`,L � c��
	���dd√�e� � c  with f~h
0, 1� (51) 

The corresponding underlying asset value distribution is a shifted lognormal distribution. The 

relationship between volatility σ and σdd is as follows: 

 ,L� � �,`,L � c���� (52) 

Displaced diffusion process with different values of Sθ and θ is capable to model stochastic 

processes that are between multiplicative (lognormal) and additive (arithmetic) processes. It 
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provides also good approximation for square root process and also for certain range of constant 

elasticity of variance processes and extreme value processes. It also allows negative underlying 

asset values, a property that has been exploited by Camara (2002) and Haahtela (2006). 

The modeling of σdd based on cash flow simulation is done quite similarly as in case of an 

ordinary geometric Brownian motion. Starting from S1 (estimated as PV1), we can fit
14

 the 

regression estimator values into a shifted lognormal distribution (also called displaced lognormal 

distribution). This gives us a three-parameter description of the lognormal distribution with 

parameters Sθ,1, θ1 and standard deviation of S1 in time t1. Both Sθ,1 and θ1 are discounted to time 

t0. Then, using Sθ,0 instead of S0 in Equation (44), we can calculate σdd,1. Displaced volatilities 

for other time periods σdd,t are calculated using the same equation with the same changes in 

parameters. Jump sizes udd and ddd are calculated using σdd and the trinomial tree is constructed 

using Sdd,0 as the starting value for the underlying asset stochastic process. Then, from each node 

value, θ0e
rt
 is subtracted

15
. Another alternative is to subtract θ0e

rt
 only from the terminal values, 

and then calculate each inner node of earlier time periods according to equation (42). As a result, 

we have constructed a recombining trinomial tree that allows changes in volatility and also takes 

into account the level of the underlying asset value.  

7. Conclusions 

This paper presented a recombining trinomial tree for real option valuation with changing 

volatility. This was done by simultaneously choosing a parameterization that set a judicious state 

space while having sensible transition probabilities between the nodes. The volatility changes are 

modeled with the changing transition probabilities while the state space of the trinomial tree is 

regular and has a fixed number of time and underlying asset price levels. 

The presented trinomial lattice can be extended to follow a displaced diffusion process with 

changing volatility, allowing also taking into account the level of the underlying asset price. The 

lattice can also be easily parameterized based on a cash flow simulation, using ordinary least 

squares regression method for changing volatility estimation. The recombining trinomial tree 

with changing volatility is more flexible and robust for practice use than common lattice models 

while sustaining their intuitive appeal. Therefore, this approach is also suitable for managerial 

valuation. 

                                                 

14
 All common simulation and distribution fitting software have a shifted lognormal distribution as an alternative. 

This includes current versions of Palisade’s @Risk and Oracle’s Crystal Ball MS Excel add-in simulation software. 
15

 An easier alternative is to subtract θ0e
rt
 only from the end node values, and then calculate each inner node of 

earlier time periods according to equation (42). 
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APPENDIX 1: Illustration of gBm and displaced diffusion recombining trinomial 

trees with changing volatility in a spreadsheet format. 
 

Figure 2 presents a trinomial tree of this paper in a spreadsheet calculation format. The stochastic 

process is described either according to Std(S)i or σi. Other input parameters are r, T, n, and S.  

 

If we do not know σi, we can calculate them from the standard deviation of the stochastic process 

according to eq. (44). Then we choose the maximum of σi, and together with other parameters, 

set m = e
r∆t

 and calculate values for u (eq. 37) and d (eq. 38). Then, transition probabilities pu, pd 

and pm are calculated according eq. (34) – (36). Then we calculate the transition probabilities p
i
u, 

p
i
u and p

i
m for other time periods according eq. (39) – (41). The trinomial tree is constructed and 

then used for valuation similarly to other common trees. 

 

 
 

Figure 2: illustration of recombining gBm trinomial tree with changing volatility in a spreadsheet. 

r 0,05 σmax 41,85 % u 1,4417 pu 0,3244

T 4 λ 1,12 m 1,0253 pm 0,2194

n 8 d 0,7292 pd 0,4562

S 1000

Std(S)i 460 582 658 721

σi 41,85 % 26,38 % 18,28 % 14,41 %

pu' 0,3244 0,1289 0,0619 0,0385

pm' 0,2194 0,6899 0,8510 0,9075

pd' 0,4562 0,1812 0,0871 0,0541

18659

12943 13270

8978 9205 9438

6227 6385 6547 6712

4320 4429 4541 4656 4774

2996 3072 3150 3230 3311 3395

2078 2131 2185 2240 2297 2355 2415

1442 1478 1516 1554 1593 1634 1675 1717

1000 1025 1051 1078 1105 1133 1162 1191 1221

729 748 767 786 806 826 847 869

532 545 559 573 588 603 618

388 398 408 418 429 439

283 290 297 305 312

206 211 217 222

150 154 158

110 112

80

year 1 year 2 year 3 year 4
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The following figure 3 presents the trinomial tree with displaced diffusion process. Both trees 

(gBm and displaced diffusion) have the same expected value and standard deviation, but 

different shape for the uncertainty cone. Displaced diffusion process also allows negative 

underlying asset values. Similarly to the gBm tree, the middle branch value always increases 

according to m = e
r∆t

. 

 

From the spreadsheet modeling perspective, the main difference is that udd and ddd are calculated 

using σdd,max. Also, tree is constructed using Sdd,0 as the starting node value, and θ0e
rt
 is 

subtracted from each node, or only from the end node values, and then the earlier node values of 

the tree are calculated according to eq. (42).  

 

 
 

Figure 3: Illustration of recombining displaced diffusion trinomial tree with changing volatility. 

r 0,05 σdd,max 21,62 % udd 1,2184 pu 0,3623

T 4 λ 1,12 m 1,0253 pm 0,2072

n 8 ddd 0,8629 pd 0,4305

Sdd,0 2000 θ -1000

Std(S)i

σdd,i

σi

pu'

pm'

pd'

8489

6779 6951

5380 5516 5656

4236 4343 4453 4566

3302 3385 3471 3559 3649

2539 2604 2669 2737 2806 2877

1918 1966 2016 2067 2119 2173 2228

1411 1447 1484 1521 1560 1599 1640 1681

1000 1025 1051 1078 1105 1133 1162 1191 1221

700 718 736 755 774 794 814 834

438 449 460 472 484 496 509

207 212 218 223 229 234

3 4 4 4 4

-177 -181 -186 -190

-336 -345 -354

-479 -491

-607

460

21,62 %

0,3623

0,2072

0,4305

0,1571

0,6561

0,1867

582

14,24 %

658

10,05 %

0,0783

0,8287

year 1 year 2 year 3 year 4

41,85 % 26,38 %

721

8,00 %

18,28 % 14,41 %

0,0930

0,0495

0,8916

0,0589


