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1. Introduction

It is standard practice in finance and strategy to interpret real investment opportunities as being

analogous to options. This view is well accepted among academics and practitioners alike and is the

core of real options analysis (ROA). It allows one to capture the dynamic nature of decision making

because it factors in management’s flexibility to revise and adapt strategy in the face of market

uncertainty. This approach is summarized in the works of Dixit and Pindyck (1994) and Trigeorgis

(1996).

Standard ROA, however, has not adequately addressed strategic interactions. The exercise deci-

sions of a financial option holder have little impact on the underlying asset’s value dynamics. Since

mainstream ROA draws from contingent-claims analysis (based on financial options), a key feature

specific to real assets is often ignored — namely, the interplay or strategic interactions taking place

among (real) option holders. This oversight may result in misestimating the value of strategic options
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and in suboptimal investment policies. The inadequate treatment of competitive dynamics among

(real) option holders remains one of the most compelling research gaps (Trigeorgis 1996, p. 376).

Bridging this gap requires concurrently taking into account both market and strategic uncertainties

via the combined use of ROA and game theory.1

In modeling multistage, multiplayer problems, one has to consider the possibility that players

will react optimally in the future, conditional on the information they gather over time.2 In order to

analyze strategic interactions in multistage deterministic settings, one often distinguishes two types

of information structure. In closed-loop strategies, the players can condition their actions (when

called upon to play) on the observed sequence of rivals’ moves. In contrast, open-loop strategies do

not depend on rivals’ previous play and instead set ex ante a certain investment path to be pursued

regardless of the rivals’ decisions. If the information structure allows players to condition their actions

on previous plays, as in closed-loop strategies, then the subgame-perfect solution concept may yield

stronger predictions.3 Nash equilibria in open-loop strategy profiles often fail to be subgame perfect

when firms can observe (and react to) their rivals’ moves.4 The open-loop approach is often employed

in economic analysis when many small players cannot condition their play on their opponents’

actions. Fudenberg and Levine (1988) have shown that, as the number of players increases, the

outcome of a perfect equilibrium in closed-loop strategies converges to a Nash equilibrium in open-

loop strategies. Therefore, the Nash equilibrium in open-loop strategies provides a good benchmark

and reasonable predictions for large oligopolies when firms formulate their strategy in isolation and

their decisions do not materially affect the decision making of rivals.

The distinction between open-loop and closed-loop strategies has not always been clear in the

1Smit and Trigeorgis (2004) discuss discrete-time option games, whereas Grenadier (2000) and Huisman (2001)
examine a number of continuous-time models. Chevalier-Roignant and Trigeorgis (2010) provide an overview of both
types of “option games”.

2This has different implications depending on whether a single player is faced with deviations from an expected
market development or multiple players must predict what will be the outcome of strategic interactions over time. The
first case is characterized by Bellman’s principle of optimality, whereby the agent acts optimally in every (exogenous)
state of the world; the second case is characterized by subgame perfection, whereby players act optimally (as part of
a Nash equilibrium) both on and off the equilibrium path.

3In most cases, perfect equilibria are best because most dynamic games assume negligible information lags between
a player’s move and rivals’ observations. However, Nash equilibria in open-loop strategies are best when information
lags are infinite or firms are precommitted to a certain path of investment. See Fudenberg and Tirole (1991) for
further details.

4In open-loop models there is a single proper subgame (the game as a whole); this explains why the Nash equilibrium
in open-loop strategies is subgame perfect if firms cannot condition their actions on rivals’ play.
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emerging literature on “option games”. Several authors (e.g., Leahy, 1993; Baldursson and Karatzas,

1996; Baldursson, 1998) have examined investment behavior in (perfectly) competitive markets under

uncertainty where firms use capital stock as a control variable and may increase that stock by a small

amount (infinitely divisible capital).5 These models assume that the Nash equilibrium (in open-loop

strategies) is the appropriate solution concept and do not discuss which information structure is the

most descriptive of the dynamic game considered. A new strand in the literature (see, e.g., Back

and Paulsen, 2009; Novy-Marx, 2009) considers perfect equilibria in an oligopoly where firms make

incremental capital investments. In contrast, several real options models (see, e.g., Smets, 1991;

Grenadier, 1996; Huisman and Kort, 1999) have been developed in a duopoly setting and examine

lumpy investments under closed-loop strategies.

In this paper we address a discrete or lumpy investment decision in the context of an oligopoly,

examining whether firms should enter the market now or later.6 This problem was previously studied

in the field of industrial organization previously by Reinganum (1981a,b); Gilbert and Harris (1984);

Fudenberg and Tirole (1985), and Reynolds (1987). However, these authors assume a deterministic

market environment. In this paper, we link the two previous approaches by exploring optimal

market-entry strategies that allow for uncertainty in market development as modeled by stochastic

(Itô) processes. To the best of our knowledge, only Bouis et al. (2009) have addressed oligopoly

(more than two firms) and lumpy investment. Our setting and modeling approach differs from

theirs which uses numerical analysis to study the investment behaviors in large oligopolies. Here we

shall deal concurrently with an exogenous shock and endogenous market-entry decisions.

The paper is organized as follows. Section 2 sets up the problem faced by would-be market

entrants and presents the model assumptions. Section 3 examines the investment timing problem in

a new market under uncertainty and demonstrates that investment takes place in sequence regardless

of whether or not firms can condition their decision on previous rivals’ moves. The open-loop

5As noted by Pindyck (1988), the assumption that firms can continuously add incremental amounts of capital is
an extreme one; in fact, most business problems involve discrete or lumpy investment decisions.

6In reality, firms typically do not limit their market-entry strategy solely to determination of the entry time; rather,
they determine the staging of entry, the appropriate scale of production, the type of product to manufacture, etc. For
simplicity, economists frequently abstract market-entry strategy to focus on the timing issue in isolation.
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equilibrium in Section 3.1 describes an oligopoly with a large number of incumbents (i.e., perfect

competition); the closed-loop duopoly model is discussed in Section 3.2. Section 4 compares the

market-entry sequences with the socially optimal benchmark, confirming that only the open-loop

market-entry sequence is necessarily socially optimal; in the closed-loop case, where firms can observe

and react to their rivals’ previous moves, the market-entry sequence need not be socially optimal.

Section 5 concludes.

2. Model Setup and Assumptions

We consider settings to involve complete information on historic market developments and firm

investment decisions and in which (option-holding) firms have common priors about the probabilities

of (future) exogenous events (homogeneous expectations). Consider the filtered probability space

(Ω,H, P ), where the filtration H ≡ {Ht}t≥0 is a family of “tribes” that allow perfect recall: Hs ⊆ Ht

for all s = 0, . . . , t. The tribe Ht denotes for the possible histories (information set) on which

the decision maker bases her decision at time t; the information set keeps track of the exogenous

market development and the evolution of industry structure. For tractability, we restrict ourselves

to a Markov environment where the latest (i.e., current) state (shock and industry structure) is a

sufficient statistic on which firms can condition their decision making.7 We consider an oligopoly with

n identical firms, where each firm has an infinitely lived investment option (modeled as a perpetual

American call, as in McDonald and Siegel 1986) but where no firm is active in the marketplace

at the outset. When new firms enter the market, they incur a positive lumpy (sunk, exogenous)

investment cost I.

Assume the market is subject to an exogenous (H-adapted8) shock {Xt}t≥0 that follow a time-

homogenous Itô process characterized by the stochastic differential equation

dXt = µ(Xt) dt+ σ(Xt) dzt, (1)

7This restriction enables us to reduce the state space and avoid the “curse of dimensionality” by allowing the use
of Markov strategies (i.e., strategies based on the latest values of states).

8An H-adapted process is Ht-measurable for all t ∈ R+. The assumption of adaptedness to the filtration means
that no foresight about the future economic development is permitted; this is equivalent to the non–anticipativity
constraint in operations research.
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where z = {zt}t≥t0 is a standard Brownian motion and the process starts at X0 = x almost surely.9

This process covers a fairly broad family of stochastic processes used in economic analysis, such as

arithmetic Brownian motion (where µ(Xt) = µ and σ(Xt) = σ with µ, σ ∈ R), geometric Brownian

motion (where µ(Xt) = µXt and σ(Xt) = σXt with µ, σ ∈ R), and the geometric Ornstein–

Uhlenbeck process (where µ(Xt) = ηXt(Xt − X̄) and σ(Xt) = σXt with X̄ the long-term average,

η the speed of mean reversion, and σ ∈ R). Assume that the drift process exhibits a long-term

positive growth. The state of the industry structure is captured by an integer-valued (H-adapted)

nondecreasing process m = {mt}t≥0 that indicates the number of incumbent firms as of time t.

The revenue function r(·, ·) of an incumbent firm at time t depends on the current value of the

exogenous shock and also on the number of incumbent firms:

r : R×N→ [0,∞).

The (stochastic) revenue function is Ht-measurable, twice continuously differentiable, and nonde-

creasing in the shock; it is also decreasing in the number of incumbent firms. Denote the cost

incurred by an incumbent firm at time t by

c : R×N→ [0,∞).

The cost function c (·, ·) also is Ht-measurable, twice continuously differentiable, and nondecreasing

in the shock. When new entrants arrive, this cost might be reduced owing to spillover effects, best

practices, or asset sharing with competitors. On the other hand, the cost might increase in the

number of incumbent firms in response to higher demand for inputs.10 The instantaneous profit

flow π (·, ·) ≡ r(·, ·)− c(·, ·) to an incumbent is Ht-measurable, twice continuously differentiable, and

strictly increasing in the shock. However, it is strictly decreasing in mt because competitive arrivals

are viewed as a negative externality.

We assume that risk-neutral firms face a constant, risk-free rate r that is common to all market

9For technical reasons (existence conditions), assume further that the drift and the volatility processes (µ : R→ R
and σ : R → R, respectively) are H-adapted and have finite variations and, assume there exist constants C,D ∈ R+

such that: (i) |µ(Xt)|+ |σ(Xt)| ≤ C (1 + |Xt|), for all Xt ∈ R, t ≥ 0 (linear growth condition); (ii)
∣∣µ(X1

t

)
− µ

(
X2

t

)∣∣+∣∣σ(X1
t

)
− σ

(
X2

t

)∣∣ ≤ D ∣∣X1
t −X2

t

∣∣, for all X1
t , X

2
t ∈ R, t ≥ 0 (Lipschitz condition).

10If c(·, ·) were decreasing in mt, we would assume that the decrease in c (·, ·) is strictly less than the decrease in
r (·, ·).
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participants (including the central planner).11 Assumption 1 reflects the market’s incipience, with

no firm investing or operating at the outset. Firms that have not yet entered the market are not

affected by rivals’ investment decisions.

Assumption 1. No firm is active at the outset (m0 = 0), and none has an incentive to immediately
invest:

E0

[∫ ∞
0

e−rsπ (Xs, 1) ds− I
]
< 0.

The operator Et[·] is used henceforth as shorthand for E
[
·
∣∣∣h̃t], that is, the expectation conditional

on the (payoff-relevant) history h̃t ≡ (Xt,mt) ∈ Ht.

3. Market-Entry Sequencing

We now show that regardless of whether or not firms can condition their action on previous

moves (closed-loop versus open-loop strategies), the equilibrium market entries are characterized by

a time sequencing or ordering of the firms. We first examine a large oligopoly in which firms do not

observe their rivals’ play (open-loop strategies). We then discuss the preemption that arises when

firms observe their rival’s move in a duopoly model (closed-loop strategies). This latter approach

has been formulated by Dixit and Pindyck (1994) for a multiplicative shock that follows a geometric

Brownian motion and (implicit) mixed strategies. We shall derive an analogous result for the general

Itô process with related behavioral strategies.

3.1. Market-Entry Sequencing for Open-Loop Strategies

As already noted, the Nash equilibrium in open-loop strategies is a good approximation for large

oligopolies. To adapt the game-theoretic notion of open-loop strategies (developed in a deterministic

environment) to a setting where market features evolve stochastically, we must refine the notion of

open-loop strategies to account for the exogenous shock. In this context, an investment policy is a

decision rule based solely on the observed resolution of market uncertainty over time but not on the

sequence of moves in the industry.12 This assumption is reasonable in some circumstances, since it

11The assumption of risk neutrality can be relaxed if arbitrage opportunities in the market do not exist and the
market is complete. Along the lines of Cox and Ross (1976) and Harrison and Kreps (1979), we could replace the
drift in the stochastic differential equation (1) by the one that is prevalent in a risk-neutral environment. In this case,
z would be a standard Brownian motion under the equivalent martingale measure.

12In this sense, an investment policy is open-loop with respect to the filtration of the strategy space but closed-loop
with respect to nature’s moves.
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may be easier to gather information about the prospects of a given market than about rivals’ likely

competitive moves.

Definition 1. An investment policy is a decision rule that maps, for every possibly state x ∈ R of
the shock, an action ait ≡ ai(x) ∈ Ai(ht) ⊆ {0, 1}. Here, ait indicates whether firm i operates (1) or
not (0), and Ait is the stage action set.

An investment policy is a pure strategy — that is, a map from the information set (where the

payoff-relevant history is the value of the exogenous shock in the Markov environment) to actions

(to “enter” or “not”). Investment is assumed to be irreversible, so the firm continues to operate

indefinitely once investment takes place. Given the infinite planning horizon, Bellman’s principle of

optimality prescribes that the existence of a fixed threshold level Xi that partitions the state space

for the exogenous shock such that (−∞, Xi) is the inaction region and [Xi,∞) is the action region.

We can thus simplify the strategy formulation and define it as selecting the investment threshold

Xi, rather than specifying the mapping in Definition 1. We associate to this threshold Xi a (H-

adapted) stopping time τi ≡ inf {t ≥ 0 | Xt ≥ Xi} at which investment occurs.13 The assumption of

irreversibility makes it possible to relate the stage action ait in Definition 1 to the stopping time τi

via the relationship

ait = 1{t≥τi}, t ≥ 0,

where 1 is the indicator function. The process that indicates the number of incumbent firms at time

t is m = {mt}t≥0, where mt =
∑n
i=1 a

i
t. Given Definition 1, we can now define the Nash equilibrium

in investment policies for a generic payoff function F i(·, ·). Let X−i denote the strategy profile of

all firms except firm i.

Definition 2. The profile of investment policies X∗ = (X∗1 , . . . , X
∗
n) is a Nash equilibrium if and

only if, for each firm i = 1, . . . , n,

F i
(
X∗i , X

∗
−i
)
≥ F i

(
Xi, X

∗
−i
)
, ∀Xi ∈ R.

If a firm were to enter the market immediately, then it would receive (at time t)

W (Xt,mt) = Et
[∫ ∞

t

e−r(s−t)π (Xs,ms) ds− I
]
. (2)

13The finiteness of the first-hitting time typically involves conditions on the drift of the exogenous shock process
{Xt}t≥0. These conditions are specific to the case considered.
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3.1.1. Myopic Behavior in Large Oligopolies

The investor’s present expected value when firm i decides to enter the market at time τi is given

by

V i0 (Xi, X−i) = V i(x;Xi, X−i) ≡ E0

[∫ ∞
0

e−rsaisπ(Xs,ms) ds− e−rτiI
]
. (3)

Here {ms}s≥0 evolves over time with the arrival of new firms in the marketplace. For a given

profile of investment policies by rivals X−i, firm i chooses its investment policy to maximize its

payoff V i0 (Xi, X−i). Determining the Nash equilibrium in investment policies corresponds to the

multiplayer optimization problem

V i0
(
X∗i , X

∗
−i
)
≡ sup
Xi∈R

V i0
(
Xi, X

∗
−i
)
, ∀i = 1, . . . , n. (4)

Here firm i takes account of the impact of future investments on its value function when formulating

its optimal strategy. We then refer to i as a strategic firm.

In contrast, a myopic firm ignores the investments of other players in its maximizing behavior.

In other words, it invests as if no other investment occurs in the industry. The value that myopic

investors expect to receive (i.e., their beliefs about payoff) is

vi0(Xi) = vi(x;Xi) ≡ E0

[∫ ∞
0

e−rsaisπ(Xs,mτi) ds− e−rτiI
]
. (5)

The number of incumbents in equation (5) is hypothetized to remain constant (at level mτi) after

firm i’s entry, whereas the strategic firm’s maximization problem in equation (3) takes account of

future firm arrivals. Because firm arrivals induce negative externalities on the incumbent firm’s

profit, the myopic firm believes to it is entitled to a higher value than is a strategic firm for the same

strategy profile X = (Xi, X−i). This may be expressed formally as follows:

V i0 (Xi, X−i) ≤ vi0(Xi) <∞, ∀X = (Xi, X−i) ∈ Rn.

Both V i (·; ·, ·) and vi (·; ·) are increasing in x. The myopic firm behaves rationally under the re-

striction that the effects of rivals’ investments on its value can be ignored. In this case, the optimal

strategy solves the following problem:

vi0 (X∗i ) ≡ sup
Xi∈R

vi0 (Xi) , ∀i = 1, . . . , n. (6)
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Proposition 1 establishes that both strategic and myopic firms follow the same Nash equilibrium

strategies. The intuition behind this claim involves the strategic firm’s taking into account a (neg-

ative) value component that is not material for strategy formulation. This property simplifies the

underlying problem, allowing one to derive the Nash equilibrium investment policy profiles of strate-

gic firms based on the myopic firm’s simpler value functions of equation (5).

Proposition 1. In a Nash equilibrium in investment policies, a strategic firm formulates the same
investment policy as a myopic firm.

Proof. Define CE(·, ·) ≡ V i0 (·, ·) − vi0 (·), where CE denotes competitive erosion. From equations
(3) and (5), it follows that

CE(Xi, X−i) = E0

[∫ ∞
0

e−rsais {π (Xs,ms)− π (Xs,mτi)} ds

]
= E0

[∫ ∞
τi

e−rs {π (Xs,ms)− π (Xs,mτi)} ds

]
.

Assume a weak ordering of firms, with firm i investing at τi <∞ (and firm i+ 1 at τi ≤ τi+1 <∞),
such that i = mτi firms are operating in the time interval [τi, τi+1]. Then

CE(Xi, X−i) = E0

[ ∫ τi+1

τi

e−rs {π(Xs, i)− π(Xs, i)} ds

+

∫ ∞
τi+1

e−rs {π(Xs,ms)− π(Xs, i)} ds

]
= E0

[ ∫ ∞
τi+1

e−rs {π(Xs,ms)− π(Xs, i)} ds

]
. (7)

This shows that CE(Xi, X−i) depends not on Xi but only on X−i, so CE(Xi, X−i) = CE(X−i)
and V i0 (Xi, X−i) = vi0 (Xi) +CE(X−i). Furthermore, since the profit is decreasing in the number of
firms, we have CE(X−i) ≤ 0. The term CE(X−i) can thus be interpreted as the competitive value
erosion incurred by the (strategic) investor. Following Slade (1994), call vi0 (·) the fictitious objective
function. Observe that CE(X−i) does not affect the optimizing behavior of the strategic firm i:

X∗i ∈ arg max
Xi∈R

V i0
(
Xi, X

∗
−i
)
⇐⇒ X∗i ∈ arg max

Xi∈R
vi0(Xi) .

Proposition 1 can now be used to derive sufficient conditions for the Nash equilibrium based

on the value function of the myopic firm in equation (5). These conditions are summarized in

Proposition 2. For tractability, we omit the dependence of the value functions on the information

set and on the investment trigger X∗i .

Proposition 2. Firm i’s optimal investment policy X∗i must solve the following system of equations:

rvi −Dvi = 0, (8a)

vi
∣∣
x=X∗

i

= W i
∣∣
x=X∗

i

, (8b)

vix
∣∣
x=X∗

i

= W i
x

∣∣
x=X∗

i

, (8c)

lim
x→0

vi(x;X∗i ) = 0. (8d)
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The term Dvi in equation (8a) corresponds to the expected capital gain over an infinitesimally

small time interval. It is given by

Dvi ≡ lim
h→0

Et
[
vit+h

]
− vit

h

= vixµ(Xt) +
1

2
vixxσ(Xt)

2
. (9)

Here vix and vixx indicate respectively the first- and second-order derivatives of vi0 with respect to

X0 = x (D is the infinitesimal generator in stochastic calculus). Equation (8a) is the Hamilton–

Jacobi–Bellman (HJB) equation. Equation (8b) is the value-matching condition; it prescribes that,

at the time of optimal exercise, the firm is indifferent between investing now (and receiving W )

and waiting (and receiving obtaining value vi). The “smooth pasting” condition represented by

equation (8c) ensures that the first-order derivative of the value function is continuous at the optimal

threshold. Finally, condition (8d) implies that the value function does not “explode” when the

underlying shock has a low value. These conditions are fairly standard is real options analysis.

Proof. The proof is equivalent to that for the Stefan problem in optimal stopping theory as derived
by Peskir and Shiryaev (2006), for example.

3.1.2. Market-Entry Sequencing as a Nash Equilibrium

We have characterized the optimal Nash investment policies formulated by option-holding firms,

but we have not yet characterized the timing of when market entry takes place. We next examine

whether firms enter simultaneously, sequentially, or sequentially but with clustering effects.

Without loss of generality, we assume a weak ordering of investment with firm i denoting the ith

investor. From equation (3), it follows that

V i0 (Xi, X−i) = E0

[
n∑
k=i

∫ τk+1

τk

e−rsπ (Xs, k) ds− e−rτiI

]
, (10)

where (by convention) τn+1 ≡ ∞.

Proposition 3. Given a weak ordering of market-entry times, each firm has a unique optimal
threshold X∗i . The thresholds for i = 1, . . . , n are distinct, and investment takes place in sequence.
Formally:

0 < τ∗1 < · · · < τ∗n <∞,

where τ∗i = inf {t ≥ 0 | Xt ≥ X∗i }.

Proof. We know that vi0(·) is strictly increasing in
[
X∗i−1, X

∗
i+1

]
, so the function

L vi ≡ rvi −Dvi (11)

10



is also strictly increasing. Here Dvi is as defined in equation (9), and by equation (8a) we have
L vi

∣∣
x=X∗

i

= 0. To see that X∗i ∈
(
X∗i−1, X

∗
i+1

)
, evaluate (11) at Xi = X∗i−1. Since L vi is

strictly increasing L v
∣∣
x=X∗

i−1

< 0. Similarly, it follows that L vi
∣∣∣
x=X∗

i+1

> 0 at Xi = X∗i+1. The

threshold X∗i (characterized by the conditions in Proposition 2) is the unique maximum of vi0(·) in(
X∗i−1, X

∗
i+1

)
.

Proposition 4. The Nash equilibria in investment policies are characterized by the following prop-
erties.

(i) The set (n-tuple) of market-entry thresholds X∗ = (X∗1 , . . . , X
∗
n) where X∗i , i = 1, . . . , n, solves

equations (8a)—(8d), is a Nash equilibrium in investment policies.

(ii) There are in total n! Nash equilibria in market-entry policies, and each is characterized as a
permutation of the market-entry thresholds in part (i).

Proof. See Appendix I.

It cannot be readily predicted which Nash equilibrium is the most likely to occur among the n!

equilibria of Proposition 4.14 Example 1 considers a special case involving a multiplicative shock

that follows the geometric Brownian motion and admitting a closed-form solution.15

Example 1. Suppose the shock {Xt}t≥0 follows the geometric Brownian motion

dXt = µXtdt+ σXtdzt,

where µ, σ ∈ R+ and µ < r. The shock enters the profit function multiplicatively: π(Xt,mt) =
Xtπ (mt) for all Xt ∈ R+ and all mt ∈ N. Then the optimal (Nash equilibrium) threshold X∗i for
the ith market entrant, i = 1, . . . , n, is such that

X∗i
π(i)

δI
=

β1
β1 − 1

.

Here δ ≡ r − µ > 0, and β1 is the positive root of the “fundamental quadratic” given by

β1 ≡
1

2
− µ

σ2
+

√(
1

2
− µ

σ2

)2

+ 2
r

σ2
(> 1) .

When firms pursue the Nash equilibrium investment policies, the value function for a (strategic) firm
i = 1, . . . , n is

V i0
(
X∗i , X

∗
−i
)

=

(
X0

X∗i

)β1
(
X∗i

π(i)

δ
− I
)

+ CE
(
X∗−i

)
, (12)

where the last competitive erosion term is

CE
(
X∗−i

)
=

n∑
m=i+1

(
X0

X∗m

)β1

X∗m

(
π(m)− π(m− 1)

δ

)
(≤ 0) .

14If firms were asymmetric, then we could reasonably predict that the more likely investment sequence would be
the socially optimal one by employing focal-point or commonsense considerations.

15Proposition 4 is derived for the fairly general case of when the profit functions are twice continuously differentiable
in the shock and are subject to a shock that follows a time-homogeneous Itô process. Existence of an analytical solution
to this problem is not ensured generally but only under restrictive assumptions for the process and the profit function.
The geometric Brownian motion is standard in economic analysis because it is fairly descriptive of problems faced by
economic agents and often yields closed-form solutions.
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Proof. In the case of geometric Brownian motion, it follows from equations (8a) and (9) that the
solution solves the second-order differential equation

rvi − µXtv
i
x +

1

2
σ2X2

t v
i
xx = 0.

This equation has solutions of the form

vi(x;Xi) = Axβ1 +Bxβ2 ,

where A and B are constants to be determined and

β2 ≡
1

2
− µ

σ2
−

√(
1

2
− µ

σ2

)2

+ 2
r

σ2
(< 0) .

From the boundary conditions (8b)—(8d), one can derive the closed-form solutions. According to

(8d), B = 0. By (8b) and (2), we have vi(X∗i ;X∗i ) = A(X∗i )β1 = X∗i
π(i)
δ − I and so

A = (X∗i )
−β1

[
π(i)

δ
X∗i − I

]
. (13)

From (8c), it follows that vix(X∗i ;X∗i ) = Aβ1 (X∗i )
β1−1 = π(i)

δ . By (13),

β1

[
(X∗i )

β1−1−β1+1 × π(i)

δ
− (X∗i )

β1−1−β1 I

]
=
π(i)

δ
.

Therefore, X∗i = δI
π(i)

β1

β1−1 . The value of the strategic firm is obtained by specializing equations (3)

and (7).

Proposition 5 establishes that early entrants into an emerging market are better-off than later

entrants. Given that π(·, ·) depends on the number of firms operating at time t but not on the

ordering of entries, firms cannot secure a sustainable first-mover advantage. It is interesting that,

although firms are assumed to be symmetric, they receive asymmetric values in equilibrium (open-

loop approach).

Proposition 5. In a Nash equilibrium in investment policies, firms’ equilibrium values decline
monotonically with their order of entry: an earlier investor is better-off (on average) than a later
market entrant. Hence there exist early-mover advantages V i0 (X∗) > V j0 (X∗) , i < j.

Proof. For two firms i and j, assume a weak ordering of investments with firm i investing earlier
than firm j, so that X∗i < X∗j or τ∗i < τ∗j . It then follows from the uniqueness of the maximum X∗i
and the definition of the Nash equilibrium in (4) that

V i0
(
X∗i , X

∗
j , X

∗
−i,j
)
> V i0

(
X∗j , X

∗
j , X

∗
−i,j
)
.

Because firms are symmetric, we have

V i0
(
X∗j , X

∗
j , X

∗
−i,j
)

= V j0
(
X∗j , X

∗
j , X

∗
−i,j
)
,

≥ V j0 (X∗) .

The last inequality follows because firm j is not worse-off if firm i invests later (at X∗j > X∗i ).

12



It may seem counterintuitive that symmetric firms receive asymmetric values in Nash equilibrium

(with open-loop investment policies) and that firms do not struggle to become the first investor.

These results stem frm the assumption that firms act myopically and do not revise their strategy

over time. For closed-loop strategies, as discussed next, results may well differ because firms can

react to their opponents’ moves.

3.2. Market-Entry Sequencing for Closed-Loop Strategies

In the Section 3.1, we assumed that the investment option was available to a large number of

firms, so that potential entrants could not observe their rivals’ moves. This assumption was sufficient

for the Nash equilibrium in investment policies to be a reasonable solution concept and to provide

the most accurate prediction concerning the industry dynamics. The optimal investment triggers

were selected myopically in that they were not linked to the investment decisions of future entrants

(thus, firms behaved as if they were the last investor to enter the market or like a monopolist with

a exclusive right to enter). In this section, we look at the problem where (exogenous) entry barriers

exist that prevent more than two firms from entering the market.

Next we briefly summarize what happens when firms devise investment strategies that are closed-

loop with respect to the filtration of (both) the strategy and the state space, as opposed to strategies

that are open-loop with respect to the strategy space.16

3.2.1. Markov Perfection in Investment Strategies

From a game-theoretic viewpoint, investment policies (as formulated in Definition 1) are pure

strategies whereby players select an investment path
{
ait
}
t≥0 in response to the actual development

of a market shock but ignoring the industry structure evolution {mt}t≥0. Fudenberg and Tirole

(1985) have shown that, in a deterministic duopoly setting, closed-loop investment strategies cannot

be considered in a similar manner (i.e., via pure strategies). Only randomization allows us to give

theoretical explanations for certain effects that are heuristically expected, such as preemption or a

war of attrition.

16This problem has been discussed heuristically in Dixit and Pindyck (1994, Chap. 9) for the case of a multiplicative
shock that follows a geometric Brownian motion. Here, we derive a solution for a general shock — not necessarily
multiplicative — that follows a time-homogenous Itô process. For a discussion close to ours but employing mixed
strategies, see Thijssen, Huisman, and Kort (2002).
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In some circumstances or subgames, the pure-strategy formulation for deriving what to do (a

binary decision) in each state of the world fails to result in a unique Nash equilibrium in pure

actions; this failure is due to the lack of convexity of the instantaneous discrete action set. Hence,

“convexifying” the instantaneous action set may help solve this problem by randomization and the

formulation of market-entry strategies as behavioral strategies in continuous time. A behavioral

strategy specifies a probability distribution ∆Ai
(
h̃t

)
over pure actions Ai

(
h̃t

)
for each history path

h̃t = (Xt,mt), where the probability distributions for different histories are independent.17

Definition 3. A behavioral market-entry strategy is a decision rule that maps every possible history

h̃t = (Xt,mt) to a mixed action αit ≡ αi
(
h̃t

)
∈ ∆Ai

(
h̃t

)
⊆ [0, 1].18 The mixed action αit mea-

sures the instantaneous probability of investing in the short time interval [t, t+ h] in state h̃t as h
approaches zero.19

Because investment is irreversible, the mixed action set may change over an industry’s evolution.

Formally, ∆Ai(h̃t) ∈ {1} after firm i’s entry. In light of Definition 3, we can pin down the appropriate

solution concept — namely, Markov perfect equilibrium.

Definition 4. A Markov perfect equilibrium (MPE) is a profile of Markov investment strategies
α∗ = (αi∗t , α

j∗
t )t≥0 that form a perfect equilibrium; in other words, (αi∗s , α

j∗
s )s≥t is a Nash equilibrium

for all h̃t, t ≥ 0.20

We consider next the values of strategic firms. The value of a leader investing at time t is

L(Xt) ≡ Et

[∫ τF

t

e−r(s−t)π(Xs, 1) ds+

∫ ∞
τ∗
F

e−r(s−t)π(Xs, 2) ds− I

]
, (14)

where X∗F is the threshold at which the follower enters and τ∗F = inf {t ≥ 0 | Xt ≥ X∗F } is the

follower’s entry time. The value of the follower (at time t) is

F (Xt) ≡


Et
[ ∫∞

τ∗
F
e−r(s−t)π(Xs, 2) ds− e−r(τ∗

F−t)I
]

if Xt ≤ X∗F ,

Et
[ ∫∞

t
e−r(s−t)π(Xs, 2) ds− I

]
if Xt > X∗F .

(15)

17A behavioral strategy differs from a mixed strategy in that a mixed strategy determines a probability distribution
over pure strategies (i.e., over mappings from information sets to actions). A behavioral strategy randomizes, perhaps
degenerately, the action of the player in each state. Kuhn’s (1953) theorem establishes an equivalence between these
two definitions of randomization (mixed and behavioral strategy) under certain conditions. In both cases, the action
sets may differ for different histories h̃t.

18Fudenberg and Tirole (1985) and Thijssen, Huisman, and Kort (2002) provide an alternative formulation using
mixed strategies in continuous time rather than behavioral strategies. These authors consider a cumulative distribution
function representing the cumulative probability that firm i has invested in state h̃t or at any previous time, and αi

t
is a “probability of atoms” — a sort of density function. The equivalence between the definitions of mixed strategy
and behavioral strategy in such settings is rigorously shown by Touzi and Vieille (2002).

19Here αi
t is the limit (as the time length h approaches zero) of the discrete-time mixed-action measures in strategic-

form games. When αi
t > 0, the firm invests immediately and enters the market.

20The equilibrium strategy profile must be adapted to the payoff-relevant history filtration. For a formal definition
of MPE, see Maskin and Tirole (2001).
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Alternatively, the option-holding firms might decide to invest at the same time, which would result

in the following value of simultaneous immediate investment:

C(Xt) ≡ Et
[∫ ∞

t

e−r(s−t)π(Xs, 2) ds− I
]
. (16)

For t ≥ τF , we have C(Xt) = F (Xt).

Proposition 6. Given that no firm invests at the outset (Assumption 1), the profile of symmetric
market-entry strategies α∗ = (αi∗t , α

j∗
t )t≥0 written as

α∗(x) = αi∗(x) = αj∗(x) =

 0 if x ∈ (−∞, X∗P ) [don’t invest for low values],
φ(x) if x ∈ [X∗P , X

∗
F ) [mix for intermediate values],

1 if x ∈ (X∗F ,∞) [invest for high values],

where

φ(·) =
L(·)− F (·)
L(·)− C(·)

∈ [0, 1] (17)

constitutes a unique Markov perfect equilibrium in investment strategies. The thresholds X∗F and
X∗P are such that the following statements hold.

(i) X∗F solves the system

rF −DF = 0, (18a)

F
∣∣
x=X∗

F

= W
∣∣
x=X∗

F

, (18b)

Fx
∣∣
x=X∗

F

= Wx

∣∣
x=X∗

F

, (18c)

lim
x→0

F (x) = 0. (18d)

(ii) X∗P solves the system

rL−DL = 0, (19a)

L
∣∣
x=X∗

P

= W
∣∣
x=X∗

P

, (19b)

L (X∗P ) = F (X∗P ) , (19c)

lim
x→0

L(x) = 0. (19d)

Proof. See Appendix II.

The equilibrium strategy described in Proposition 6 is interpreted as follows. In the period prior

to the preemption time τ∗P there is no incentive for either firm to invest, so both firms stay out

(αit = αjt = 0). In the period immediately after the preemption time τ∗P , one firm in the industry

will invest first. At the optimal preemption time τ∗P , each firm is indifferent between being the leader

and being the follower (i.e., L(X∗P ) = F(X∗P )) and the probability of investment for each firm at the

optimal preemption time τ∗p is given by αiτ∗
P

= αjτ∗
P

= 0. For t greater than the follower’s optimal

time of investment, both firms will operate in the marketplace with the second entrant “following
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suit”. The only possible equilibrium is characterized by a sequence in which one of the firms invests

at time τ∗P and the other at a later time τ∗F > τ∗P . The probability of being the leader in the duopoly

market is exactly one half. Proposition 7 summarizes these two properties.

Proposition 7. The Markov perfect equilibrium established in Proposition 6 has the following prop-
erties.

(i) Investment takes place in sequence:

X∗P < X∗F or τ∗P < τ∗F .

(ii) Each (symmetric) firm has a one-half probability of being the leader in the duopoly market —
that is, of entering at time τ∗P .

Proof. See Appendix III.

The discussion so far has concerned a Markov perfect equilibrium in the case of a duopoly. Bouis

et al. (2009) consider a similar problem in the case of a larger number of symmetric oligopolistic

firms. The authors consider a multiplicative shock that follows the geometric Brownian motion in

the context of reduced-form (deterministic) profits π(n) that decrease in the number of incumbent

firms n. An equilibrium arises where all firms invest sequentially.21 The investment trigger of market

entrants (except for the last one) is determined by “rent equalization”.22 Therefore, the inclusion

of more option-holding firms does not critically affect the sequencial occurrence of investments.

4. Social Optimality of Myopic Market-Entry Sequencing

We have seen that oligopolist firms invest in sequence. Next we examine whether the entry

decisions taken by firms acting in their own interest may lead to some form of social optimality. To

set a benchmark, we consider the investment timing decisions that a central planner would impose

on (decentralized) firms.

21Bouis et al. (2009) formalize explicitly the three-firm case and provide numerical analysis for larger oligopolies.
The authors show that simultaneous investments may also occur if the starting value of the process is large. In our
model, Assumption 1 ensures that such an equilibrium does not arise.

22The authors also demonstrate the existence of an additional effect that they call the accordion effect. In the
three-firm case, if the threshold of the third entrant X∗

3 rises, then the second investor has an incentive to invest
earlier and thus enjoy duopoly rents longer, thereby setting a lower threshold X∗

2 . The first investor then faces earlier
entry by the second entrant and so enjoys monopoly profits for a shorter time period; its entry threshold is thus
increased. The opposite directions of the change in the “wedges” between X∗

1 and between X∗
2 and X∗

2 and X∗
3 is at

the core of the accordion effect.
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Assume the existence of a given investment threshold choice X = (X1, . . . , Xn) in the social

planner’s admissible strategy set Rn. Then the expected social surplus is given by

S(X) = E0

[∫ ∞
0

e−rsΠ (Xs,ms) ds−
n∑
i=1

e−rτiI

]
, (20)

where Π (·, ·) ≡ R (·, ·)−C (·, ·) is the flow of social operating surplus. We haveR (·,ms) =
∑ms

i=0 r(·, i)

for the flow of consumer surplus (revenues) and C (·,ms) =
∑ms

i=0 c(·, i) for the flow of total produc-

tion costs. The relationship between the (net) social benefit and firms’ profits is

Π(·,ms) =

ms∑
i=0

[r(·, i)− c(·, i)] =

ms∑
i=0

π(·, i) =

n∑
i=0

aisπ(·, i) . (21)

The social planner would choose investment thresholds to maximize the expected social surplus

S(X). Thus, the social planner is faced with a (stochastic) control problem of the form

S(X∗) ≡ sup
X∈Rn

S (X) .

We consider three cases: (1) oligopoly, (2) duopoly, and (3) large oligopoly.

4.1. Oligopoly

Proposition 8 asserts that myopic firms — such as those pursuing open-loop investment policies

— would invest at the time(s) expected by a social planner. Leahy (1993) uses instantaneous (rather

than impulse) control to establish an equivalent result in the context of (infinitely divisible) capacity

investment. Here we extend that result to binary (lumpy) market-entry decisions.

Proposition 8. A Nash equilibrium in investment policies (as obtained in Proposition 4) is socially
optimal. That is, S(X∗) =

∑n
i=1 v

i
0(X∗i ).23

Proof. See Appendix IV.

4.2. Duopoly

Following the analysis in Section 3.2, we show that a social loss arises when investment options are

available to a small number of firms. Proposition 9 establishes that both firms receive lower payoffs

under the Markov perfect equilibrium than under the equivalent Nash equilibrium in investment

23Whether the sequence of entry is optimal for society as a whole (i.e., both firms and consumers) or for firms
considered jointly is a question that cannot be answered unequivocally here. The answer depends partly on how
the revenue function R(·,mt) is determined. If the optimal choice of revenue is made by a social planner who is
looking out for the interest of all market participants, then the investment sequence would benefit society as a whole.
However, if the planner is concerned solely with the interest of firms, the resulting Pareto optimality might actually
be suboptimal from a social-welfare perspective.
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policies for two players.24 Proposition 10 then asserts that the first market entry takes place too

early to be socially optimal.

Proposition 9. In terms of expectations, no firm is better-off in the region [X∗P , X
∗
F ] because the

expected value of each firm (including the actual leader) is equal to the value of the follower. In other
words, rents are dissipated (on average).

Proof. See Appendix V.

If firms cannot commit to sticking to their market-entry strategies, then identical firms receive

equal expected values (in equilibrium); this result is some form of “rent dissipation”. The intuition

behind this result is based on the rent-equalization principle determining the preemption point: If

one firm planned to enter as leader at a time t in order to receive a greater value than the follower,

then the follower could increase its value by preempting and investing just before t, at t− ε for small

ε. This strategic interplay would be repeated inducing firms to preempt all the way down to the

point X∗P , beyond which there is no advantage to be gained from preempting.25

Proposition 10. The optimal investment times arising from the MPE are ranked as follows,

τ∗P < τ∗L < τ∗F ,

where τ∗L = inf {t ≥ 0 | Xt ≥ X∗L} for X∗L ≡ arg maxXL∈R L0(XL, X
∗
F ). The first entrant in the

(duopoly) MPE enters earlier, at time τ∗P , and faces riskier returns and a higher probability of going
bankrupt than is socially optimal.

Proof. The second inequality follows from Proposition 3 in the two-firm case. To derive the first
inequality, suppose by way of contradiction that τ∗P ≥ τ∗L. The rent-equalization principle implies
that L(X∗P ) = F (X∗P ). Since the follower’s value is nondecreasing in the shock, we have F (X∗P ) ≥
F (X∗L). Since F (x) > L(x) for x ∈ (−∞, X∗P ], it follows that F (X∗L) > L(X∗L). Therefore, L(X∗P ) >
L(X∗L), which contradicts the definition of X∗L. The uniqueness of arg maxXL∈R L(XL, X

∗
F ) was

established in Proposition 3.

In short, because myopic investment policies lead to social optimality (Proposition 8), more

knowledge of the competition (closed-loop approach) results in social loss.

5. Conclusion

The choice of an appropriate solution approach (open-loop versus closed-loop) is critical to de-

termining equilibria in real options models that involve competition under uncertainty. When firms

24The two-player Nash equilibrium in investment policies described by Joaquin and Butler (2000) is derived in a
setting where the exchange-rate process is a multiplicative shock and evolves as a geometric Brownian motion, the
investment cost is constant over time, and profit functions are obtained in Cournot quantity competition.

25The difference here from the deterministic model in which this rent dissipation was first developed (cf. Fudenberg
and Tirole, 1985) is that deviation from the expected market development scenario could lead to positive rents earned
by the leader in favorable states and to losses if market development falls short of expectations. This is because entry
decisions are now based on expected market development scenarios.
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can observe and react to rivals’ actions, the appropriate solution involves closed-loop strategies and

a Markov perfect equilibrium. However, deriving the MPE in closed-loop strategies is usually more

involved than deriving the Nash equilibrium for the case of open-loop strategies.

If there are no entry barriers and if a large number of firms can enter a growing market (ignoring

rivals’ moves), then the sequence of investments is Pareto optimal (an open-loop equilibrium). A

similar result was shown previously (e.g., Leahy 1993; Baldursson 1998) in a context where firms

could invest incrementally in capital stock but without due reference to the assumed information

structure. We have shown that this outcome applies to lumpy market-entry investments as well.

When only a few firms are protected from new market entry, the sequence of investment is not

necessarily Pareto optimal (closed-loop). In this case, Markov perfection implies investment at an

earlier time than the timing a social planner would impose on the firms.

For sufficiently large oligopolistic industries, the optimal market-entry strategy can be determined

while ignoring potential rivals. The value obtained, however, represents the effect of competition

via an additional (negative) competitive erosion term, as proved in Proposition 1. In the case of a

duopoly, firms that jointly share an investment option are subject to adverse effects that alter their

incentive to erect entry barriers. Restricted availability of the investment option leads to preemption

and rent dissipation (on average). Once both duopoly firms enter, the knowledge that no other firm

can arrive ensures fairly high rents in the marketplace (with no competitive erosion term). This

trade-off calls for concurrent consideration of both the preemption risk that arises in industries with

only a few firms and of the endogenous erection of entry barriers to deter further competitive arrivals.

Our modeling approach has proved useful for explaining dynamic market entry timing decisions

and strategic interactions in the case of stochastically growing markets characterized by lumpy

investments under uncertainty. We have adopted a fairly general approach that covers a large

number of stochastic (Itô) processes and many reduced-form profit functions.
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Appendices

Appendix I: Proof of Proposition 4

We first deal with part (i). From Proposition 3, we know that player i has no incentive to select

a threshold in
(
X∗i−1, X

∗
i+1

)
other than the X∗i characterized in Proposition 2. Suppose now that

firm i selects an alternative Xi ∈
[
X∗k−1, X

∗
k

]
, k ≤ i, while seeking profitable deviations from the

hypothesized Nash equilibrium. Let τi ≡ inf {t ≥ 0 | Xt ≥ Xi}. We have

V i0
(
Xi, X

∗
−i
)

= E0

[ ∫ τ∗
k

τi

e−rsπ(Xs, i) ds+

i−2∑
m=k

∫ τ∗
m+1

τ∗
m

e−rsπ(Xs,m) ds

+

∫ τ∗
i+1

τ∗
i−1

e−rsπ(Xs, i) ds+

n−1∑
m=i+1

∫ τ∗
m+1

τ∗
m

e−rsπ (Xs,m) ds

− e−rτiI
]
.

Selecting Xi to maximize this expression leads to solving the system of equations (8a)–(8d). This

corresponds to the previous definition of X∗i . Hence, the value function V0
(
·, X∗−i

)
increases mono-

tonically on the interval
[
X∗k−1, X

∗
k

]
and reaches a maximum at X∗k .

Similarly, suppose that firm i deviates and selects Xi ∈
[
X∗k , X

∗
k+1

]
for k ≥ i. Then

V i0
(
Xi, X

∗
−i
)

= E0

[ ∫ τ∗
k+1

τi

e−rsπ (Xs, k) ds

+

n−1∑
m=k+1

∫ τ∗
m+1

τ∗
m

e−rsπ (Xs,m) ds− e−rτiI
]
.

Maximizing this program yields the system of equations (8a)–(8d), so X∗i = X∗k . For Xi > X∗i ,

we have that V i0
(
·, X∗−i

)
is strictly decreasing on each interval of the form

[
X∗k , X

∗
k+1

]
and reaches

a maximum at the left boundary τ∗k , k = 1, . . . , n. Because the value function is continuous at

X∗i (owing to the value-matching conditions), X∗i is the unique maximum. For part (ii), observe

that any Nash equilibrium implies a weak sequencing of market entries. Hence, X∗ and the other

permutations of firm labels in X∗ = (X∗1 , . . . , X
∗
n) are the only Nash equilibria in market-entry

thresholds (n! permutations).

Appendix II: Proof of Proposition 6

We need to show that no firm has an incentive to deviate from the hypothesized MPE of Propo-

sition 6. We shall consider several cases in turn.
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Invest Wait

Invest
Cjt (·)

Ci(·)
F j(·)

Li(·)

Wait
Ljt (.)

F i(·)
V j(·)

V i(·)

Figure 1: Strategic-Form Representation of the Possible Coordination Problem in
(
X∗

P , X
∗
F

)
Case 1: x < X∗P . Here L (x) < F (x), so investing is a strictly dominated strategy.

Case 2: x ∈ [X∗P , X
∗
F ]. In this case, a coordination problem may arise. The characterization of αi

as the limit (as the time interval approaches zero) of discrete-time mixed action facilitates depiction

of the problem in strategic form, as shown in Figure 1. The value of pursuing the mixed action

αit = αi(x) (while the rival invests with probability αjt = αj(x)) is

V i
(
αi, αj

)
= αiαjCi +

(
1− αi

)
αjF i + αi

(
1− αi

)
Li

+
(
1− αi

) (
1− αj

)
V i
(
αi, αj

)
,

resulting in

V i
(
αi, αj

)
=
αiαjCi +

(
1− αi

)
αjF i + αi

(
1− αj

)
Li

αi + αj − αiαj

for αi, αj 6= 0. Since this expression is concave in αit (i.e.,
∂2V i

t

∂αi2
t

(
αit, α

j
t

)
< 0), the following first-order

condition is both sufficient and necessary for an optimal mixed action to obtain:

∂V i

∂αi
(
αi, αj

)
= 0 ⇐⇒ αi(x) = φi(x) ,

where

φi(·) =
Lj(·)− F j(·)
Lj(·)− Cj(·)

.

For identical firms following symmetric behavioral strategies (αit = αjt = αt), the preceding equality

simplifies to

φi(·) =
L(·)− F (·)
L(·)− C(·)

.

It then follows from equations (15) and (16) that
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C (Xt) = Et
[∫ ∞

t

e−r(s−t)π(Xs, 2) ds− I
]

≤ sup
XF∈R

Et
[∫ ∞

τF

e−r(s−t)π(Xs, 2) ds− e−r(τF−t)I)

]
≤ F (Xt) .

Case 3: x ≥ X∗F . Here the firm has a dominant strategy to invest immediately and receive C(x). For

symmetric firms, the value of the leader and of the follower are equal(ized) for process values higher

than X∗F : L(x) = C(x) = F (x).26 Firm i can do no better than to pursue the prescribed strategy.

Firm i is faced with a decision-theoretic problem. Its optimal entry time is jointly determined by

the HJB equation (18a), the “smooth pasting” condition (18c), and equation (18d). In this case,

the strategy formulated in Proposition 3 is dominant.

Together these results indicate that the strategy profile given in Proposition 6 is a Markov perfect

equilibrium whose uniqueness is shown by Fudenberg and Tirole (1985, Apx. A) in the deterministic

context.

Appendix III: Proof of Proposition 7

We suppose the contrary and then derive a contradiction. So let X∗P ≥ X∗F . For X∗P > X∗F ,

since F (X∗P , ·) is nondecreasing in XF it follows that F (X∗P , X
∗
P ) ≥ F (X∗P , X

∗
F ), which means that

F (X∗P , ·) is maximized for two distinct trigger values, X∗F and X∗P . This contradicts the uniqueness

of the threshold as established by conditions (8a)–(8d). If X∗P = X∗F , then both firms enter at time

τ∗P and receive C(X∗P ). Hence there is an investment trigger Xi ∈ (−∞, X∗P ) such that L(Xi, X
∗
P ) >

C(X∗P , X
∗
P ) as π(Xs, 1) > π(Xs, 2). Since firms are identical, C (X∗P , X

∗
P ) = F (X∗P , X

∗
P ). As a

result, there is an incentive to invest before the preemption point X∗P but this contradicts the

rent-equalization principle of equation (19c). Thus we have established part (i) of the proposition.

For part (ii), observe that the probability that one of the firms ends up being the leader the

first time Xt is in (X∗P , X
∗
F ) is given by piL = αit

(
1− αjt

)
+
(
1− αit

) (
1− αjt

)
piL; therefore, piL =

αi
t(1−α

j
t)

αi
t+α

j
t−αi

tα
j
t

for αit, α
j
t 6= 0. Then, in the symmetric case, we have

pL = piL = pjL =
1− αt
2− αt

, (22)

26In new-market models, L(x) = F (x) = C(x) for all x ≥ X∗
F .
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which admits a right limit at αt = 0. Part (ii) now follows from equations (17) and (19c).

Appendix IV: Proof of Proposition 8

By equation (21) we have

n∑
i=0

∫ ∞
τi

e−rsπ (·,ms) ds =

n∑
i=0

∫ ∞
0

e−rsaisπ(·,ms) ds

=

∫ ∞
0

e−rs

[
n∑
i=0

aisπ (·,ms)

]
ds

=

∫ ∞
0

e−rsΠ (·,ms) ds (23)

because Π (·, 0) = 0. It now follows from Fubini’s theorem and equations (20), (23), and (5) that

S0 (X) = E0

[∫ ∞
0

e−rsΠ (Xs,ms) ds−
n∑
i=0

e−rτiI

]

=

n∑
i=0

E0

[∫ ∞
τi

e−rsπ (Xs,ms) ds− e−rτiI
]

=

n∑
i=0

vi0 (Xi) .

The proposition is obtained by taking the supremum X∗ over Rn.

Appendix V: Proof of Proposition 9

The proof proceeds in two steps: first we derive the probability of certain scenarios; then we

calculate the firm’s expected value in the considered region as the weighted average of values obtained

in each scenario. Here we examine the symmetric case.

The probability that a firm becomes the leader in the region [X∗P , X
∗
F ] was obtained in (22) as

pL = 1−αt

2−αt
. The probability of simultaneous investment, should the process X be located for the

first time in the preemption region [X∗P , X
∗
F ], is equal to pC =

αi
t

2−αi
t
. Hence, the value in this region

is

V i
(
αi∗, αj∗

)
= pL (L+ F ) + pCC

=
L+ (1− α∗)F − α∗t (L− C)

2− α∗

=
L+ (1− α∗)F − L+ F

2− α∗
= F,

where the second equality follows from the probabilities just described and the third equality from

equation (17).
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