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Abstract

Using real options framework I analyze investment in base load coal fired power
plant. Analysis is done using real options framework and assuming option to invest
is a perpetual American option. I assume profitability of the power plant depends
upon the value of dark spread. The paper has two objectives. First, to determine the
most appropriate stochastic process to model evolution of dark spread prices. Second,
to asses how does the choice of stochastic processes affect investment decision within
the real options framework.

1 Introduction

Investment in electricity generation is characterized by large and sunk capital expendi-
tures and great deal of uncertainty such as price, production cost, demand and construc-
tion cost uncertainty, just to name a few. To value such investments, utilities rely on dis-
counted cash flow approach (DCF): a tool devised to value projects having predictable
cash flows. By construction, DCF is not capable of evaluating investment in electric-
ity generation characterized by large degree of uncertainty, managerial and operational
flexibility. An appropriate way to evaluate new investments in electricity sector is to use
real options (RO) approach. But, it was not until the late 1990s and early 2000s that we
saw proliferation of RO literature applied to electricity sector. A probable reason why
RO were applied to electricity sector so late lays in the fact that the sector was monop-
olized in most of the countries of the world. In the continental Europe it was not until
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early 1990s that countries embarked on the liberalization process, with Nordic countries
being among the first. Rest of the countries followed, but for many of them liberalization
did not occur in practice for many years. While operating in monopolized markets, util-
ities did not have an incentive to properly address the issue of new investment because
all the risk and costs could be passed on to the final consumers.

In the early years of RO, authors used geometric Brownian motion (GBM) to describe
the evolution of stochastic processes (e.g. McDonald and Siegel (1985), Brennan and
Schwartz (1985), Dixit (1989)). Major advantage of using GBM is its analytical tractabil-
ity: GBM allows authors to obtain closed form solution to an investment problem.

In most of the work on RO applied to electricity generation authors rarely go about
estimating the most appropriate stochastic process for evolution of state variables: gen-
erally they assume GBM. Nevertheless, it is questionable whether GBM or its variant,
arithmetic Brownian motion (ABM), can be used in real options analysis applied to in-
vestment in electricity generation. This is because electricity prices are mean reverting,
while Brownian motion is an unbounded process.

In this paper I evaluate investment in a base load coal fired power plant using dark
spread as a state variable. The paper has two objectives. First, to find a stochastic pro-
cess which is capable of generating data similar to those observed in actual dark spread
series. Quality of the process will be judged according to how closely do summary statis-
tics of postulated processes come to observed dark spread prices. More precisely, I will
run Monte Carlo (MC) simulations to determine distributional properties of simulated
prices and compare them to observed prices. Furthermore, I will compute in sample root
mean squared error (RMSE) as a second method to choose among different stochastic
processes. Second objective of the paper is to estimate the effect of postulated processes
on investment decision using RO. In other words, to asses how does the choice of differ-
ent stochastic processes affect investment decision in a coal fired plant. Results of the
paper are useful for practitioners who want to apply RO analysis to investment in coal
fired power plant.

To my knowledge no one has yet evaluated investment in coal fired power plant using
RO approach. Nevertheless, research has been done on investment within RO in other
technologies. Relevant papers include Takizawa et al. (2001) who analyze investment
in a nuclear power plant in Japan. Venetsanos et al. (2002) evaluate investment in
wind farm in Greek electricity market. Gollier et al. (2005) investigates the impact of
market liberalization on investment in large nuclear unit. Kjaerland (2007) and Bck-
man et al. (2008) evaluate investment in hydro power plant in Norway. Abadie and
Chamorro (2008) investigate the choice of investment between Natural Gas Combined
Cycle (NGCC) and Integrated Gasification Combined Cycle plant (IGCC).

The paper is organized as follows. Section 2 describes the investment problem and
gives optimal investment threshold using NPV approach. In section 3 I approach the
investment problem using RO based on different stochastic processes. Section 4 deals
with the selection of the appropriate stochastic process. Last section concludes.
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2 Investment details

2.1 Plant characteristics

I investigate optimal investment decision in a base load coal fired power plant under-
taken by a merchant producer. Unlike state owned utilities that can have different goals,
merchant producer has a single goal of profit maximization. I assume plant owner is not
faced with emission allowance risk but only with risk stemming from uncertainty re-
garding coal and electricity prices: they are introduced into the model via dark spread
prices. Dark spread is defined as a difference between price of electricity and price of
coal required to generate one unit of electricity. One can think of dark spread represent-
ing the profit flow for the power plant.

Purpose of this paper is not to create a detailed investment study but rather to asses the
impact of uncertainty on investment decision and to determine the difference in results
obtained using traditional capital budgeting technique (NPV) and RO analysis. Thus, I
use generic technical assumptions for the coal fired power plant. Plant characteristics
are presented in Table 1.

Parameter Value
Project life (T) 40 years
Capacity 500 MW
Capacity factor 85%
Annual production (q) 3,723,000 MWh
Investment cost per kW 1,500 e
Discount rate (r) 10%

Table 1: Investment parameters

Most of the technical assumptions are taken from International Energy Agency (IEA)
publication on production costs of electricity (IEA (2005)). The report is based upon
interviews / questionnaires with actual owners of power plants in the world. In the
study it was assumed that economic life of the coal fired plant (amortization period) is
40 years, even though technically coal power plants can operate for much longer. The
study also assumed capacity factor of 85% 1. This capacity factor translates into annual
production of 3,723,000 MWh of electricity.

Investment costs vary significantly and they are affected, among other, by demand for
coal plants, cost of steel and concrete, and location (MIT (2007)). IEA (2005) cites invest-
ment cost of approximately 1,500 US$ /kW, but this number seems too low. More recent
numbers on the cost of coal fired plants in the US, such as those revealed in an arti-
cle Power plant cost to top 1 billion USD (2008), estimate cost per kW to exceed 3,000
US$, which seems to be a bit on a high side. Therefore, I assume investment cost of
1,500 e/kW. Assuming 1.45 US$/e exchange rate this translates into 2,175 US$, which
seems a reasonable number. In terms of operation and maintenance costs (O&M), I in-
clude only fuel costs. Reason is that other O&M costs are relatively small and given that

1Capacity factor equals the ratio of actual output during certain period of time divided by the output
that would be produced if plant operated at maximum (rated) capacity during the same period.
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they can be predicted with reasonable accuracy, they equally affect investment decision
regardless of the approach used. Finally, for the discount rate I use 10%.

2.2 Price characteristics

Coal prices used in the analysis are obtained from McCloskey Co., and are published
weekly. Prices are given in e/GJ. In order to calculate how much coal is needed to
produce 1 MWh of electricity I use the following assumptions. It takes 3.6 GJ of coal to
produce 1 MWh of electricity. I assume energy efficiency of the coal fired power plant is
36%, thus total requirement for production of 1 MWh of electricity is 10 GJ of coal. I use
daily electricity prices obtained from the European Energy Exchange (EEX) in Leipzig,
Germany. Given that coal prices are on weekly basis, electricity prices are converted
to weekly basis also: I do this by generating an arithmetic average of daily electricity
prices. Both coal and electricity price series go from January 1, 2002 to November 13,
2009. Figure 1 shows graphs of electricity and coal prices for the observed period, while
plot of the dark spread prices is given in Figure 2. Summary statistics for electricity,
coal and dark spread prices are shown in Table 2.

Figure 1: Weekly electricity and coal prices
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Figure 2: Weekly dark spread prices

min. median mean max. se. skew. kurtosis
Electricity prices 10.70 35.52 40.07 135.69 17.51 1.34 5.39

Coal prices 6.60 14.40 16.05 44.10 7.27 1.72 6.23
Dark spread 1.09 20.27 24.01 121.39 14.07 1.93 9.86

Table 2: Summary statistics for electricity, coal and dark spread prices

2.3 NPV calculations

As a benchmark for investment analysis I calculate optimal investment threshold using
NPV, an industry standard. Figure 3 shows what are the most popular capital budget-
ing techniques among US companies. It is well known that NPV (and other discounted
cash flow methods such as IRR, payback period) underestimates critical values at which
one should invest because it assumes investments are reversible and it does not take
into account the opportunity cost of immediate action (option value) nor does it take
into account stochastic behavior of state variables. In other words, NPV does not ac-
count for uncertainty but rather assumes that investment is made in a perfectly certain
environment, which was the case in monopolized but not today’s liberalized electricity
markets.
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Figure 3: Popularity of different capital budgeting techniques (Graham and Harvey
(2001))

Value of the project is obtained using the following expression:

NPV =
40∑
t=1

E(pt · qt)
(1 + r)t

− I (1)

Where pt stands for dark spread price at year t, qt is annual production in MWh and I
is investment cost. According to the NPV calculations, it is optimal to invest in the coal
power plant if one believes price will be on average 20.6 e/MWh for each year during the
life of the project. Figure 4 shows values of NPV as a function of the underlying dark
spread price.

Figure 4: NPV - project value as a function of dark spread price
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3 Real Options analysis

Previous section highlighted some drawbacks common to all discounted cash flow meth-
ods. Most of all, NPV assumed constant price throughout the life of the project: a re-
alistic scenario in regulated but not in liberalized markets. Furthermore, it implicitly
assumed investment is reversible: if the investment turns out bad it could be somehow
undone. RO analysis can deal with these issues. In this section I look for an appropri-
ate stochastic process that can be used to describe the evolution of dark spread prices.
Following, for each stochastic process I will calculate investment threshold using RO.

In performing real options calculations one can take two approaches: contingent claims
(CC) or dynamic programming (DP). CC approach rests on the assumption that one
can use no arbitrage principle to derive optimal investment policy. Benefit of using CC
approach is ability to use risk free interest rate as a discount rate. DP approach on
the other hand relies on Bellman equation to determine the optimal investment timing
using arbitrary discount rate. Because electricity can not be stored, one can not use
CC approach 2. Thus in this paper I will use DP to solve for the optimal investment
threshold.

3.1 Arithmetic Brownian motion

One of the most simple stochastic processes which is commonly used in finance is Brow-
nian motion. Despite the fact that Brownian motion does not appear to be a good can-
didate to model dark spread prices I evaluate it for the following reason3. Brownian
motion is extremely simple process that has analytical solution. If by any chance Brow-
nian motion could give results comparable to the ones I obtain by using more realistic
processes, than in some cases it would be reasonable to sacrifice accuracy for the sake of
simplicity. Namely, Brownian motion could be used as a first approximation to valuing
more complex options.

Given that dark spread prices can become negative, I use arithmetic version of Brownian
motion (ABM) to describe their evolution. ABM process for dark spread prices (p) is
given by the following expression:

dpt = adt+ σdzt (2)

Equation 2 states that change in the value of dark spread (dp) consists of two parts:
a constant drift a ∈ [−∞,∞] and stochastic component driven by constant volatility
σ ∈ [0,∞] and i.i.d. random variable, i.e. dz = ε

√
dt where ε ∼ N(0, 1) and Cov(εt, εs) = 0

for t 6= s. Expected value and variance of dark spread following ABM are given by the
following two expressions:

E[pt] = p0 + at (3a)
V ar[pt] = σ2t (3b)

Equation 3a states that if dark spread follows ABM, its expected value will increase
linearly at rate a as time passes. Also, Equation 3b states that variance of the ABM
process increases with time as well.

2One potential way around this problem is to use futures contracts which can actually be stored. Un-
fortunately futures contracts on EEX have maturity of only a few years, and they are not very liquid,
which rules out this option as well.

3Brownian motion is an unbounded process meaning variable can reach extremely high or low levels.
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3.1.1 Parameter estimation

Given a vector of observed dark spread prices p, I estimate parameters a and σ which I
consider to be elements of parameter vector θ. For this I use maximum likelihood (ML)
approach. Given that variable following ABM is normally distributed, log likelihood
(lnL) function is given as follows:

lnL = (θ|p) = −(n− 1) · lnσ −
n∑
i=2

[
(pi − pi−1 − a)2

2σ2

]
(4)

Values of estimated parameters are given in Table 3. Value of a drift parameter is
positive and rather economically insignificant: when converted to annual values drift
equals 0.42 e per annum. On the other hand, volatility is very high and on annual
basis it equals 71.4 e4.

Weekly values
Drift (a) 0.0081

Volatility (σ) 9.9

Table 3: Estimated weekly parameters for dark spread prices following ABM process

After estimating the parameters I determine how well does the process fit the real data.
As a first measure of goodness of fit I run 10 000 simulations of ABM using estimated
parameters. To simulate the ABM I use the expression in Equation 5. Given that I use
weekly data to estimate the process and as I want to simulate weekly trajectories, for
the value of ∆t I put 1.

pt = p0 + a∆t+ σ ·
√

∆t ·N(0, 1) (5)

In performing the simulations I need to select initial dark spread price from where the
simulations will start. As the initial point for simulation I take the value of the first
observed dark spread price, i.e. 17.84 e/MWh. Summary statistics for simulated dark
spread prices together with statistics for observed dark spread prices are given in Table
4. Also, Figure 5 gives a histogram of simulated and observed prices.

Comparing the statistics of simulated to observed prices it appears ABM does a rela-
tively good job in capturing the mean and median of observed data. In regard to all
other statistics (minimum, maximum, standard error, kurtosis and skewness) simula-
tion of ABM yields values which are substantially different from observed data.

min. median mean max. se. skew. kurtosis
Simulations -819.66 18.64 19.48 830.51 142.37 -0.01 4.03

Observed prices 1.09 20.27 24.01 121.39 14.07 1.93 9.86

Table 4: Summary statistics for observed and 10 000 simulated price trajectories for
ABM process

4To obtain annual values of drift parameter I multiply weekly drift value by 52. To convert weekly
volatility to annual volatility, I multiply it by

√
52 (Hull (2005)).
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Figure 5: Histogram of observed and simulated prices for ABM process

Nevertheless, performance of ABM is even worse than it looks at first glance. Reason
why ABM captures relatively well the mean and the median of observed prices is due to
the selection of starting value for simulation. Starting value was 17.84 e/MWh which
is relatively close to the mean of observed data (24.01 e/MWh). Because drift term in
ABM is relatively small, one can expect that half of the time ABM will generate values
grater than starting value, and other half of the time generated values will be lower
than starting value. Thus, on average, mean of simulated prices should be around the
value used to start the simulation (17.84 e/MWh), or a bit above it due to a positive drift.
Therefore, if price at which the simulations are started is altered from 17.84 e/MWh to 0
e/MWh, values of descriptive statistics change and are given by Table 5. Now, it appears
that ABM does not capture any of the distributional properties of observed prices.

min. median mean max. se. skew. kurtosis
Simulations -837.50 0.81 1.64 812.67 142.37 -0.01 4.03

Observed prices 1.09 20.27 24.01 121.39 14.07 1.93 9.86

Table 5: Summary statistics for observed and 10 000 simulated price trajectories for
ABM process

Performing MC simulations shows ABM is not capable of matching distributional prop-
erties of dark spread prices. Furthermore, performance of ABM is greatly influenced by
the starting value used for simulations. As an illustration, Figure 6 shows 4 random
price realizations of ABM.
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Figure 6: Simulated trajectories of arithmetic Brownian motion

As a further measure of goodness of fit I use in sample RMSE: I calculate RMSE for
each of 10 000 sample paths. Table 6 reports mean value of RMSE together with the
standard error of the estimate.

mean se.
RMSE 126.07 67.68

Table 6: RMSE for in sample forecasts for ABM process

3.1.2 Optimal investment threshold

Because I have assumed no options once the power plant is in operation, value of the
project is a simple expected value of discounted future profits given by the following
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expression (where parameters have the same meaning as in Table 1):

V (p) =

∫ T

0

qE(pt)e
−rtdt = q

∫ T

0

(at+ p)e−rtdt (6a)

V (p) =
q(a+ pr − e−rT (a+ pr + arT ))

r2
(6b)

Following Dixit and Pindyck (1994), value of the option to invest (f ) is given by:

E[df ] = rfdt (7a)
1

2
fppσ

2 + afp − rf = 0 (7b)

Equation 7b is an ordinary differential equation which has the following general solu-
tion:

f(p) = Aeβ1p +Beβ2p (8)

Where A and B are constants of integration and β is given by:

β1 = − a

σ2
+

√
a2 + 2rσ2

σ2
> 0 (9)

β2 = − a

σ2
−
√
a2 + 2rσ2

σ2
< 0 (10)

Because β2 is negative, second part of Equation 8 (Beβ2p) implies that value of the option
to invest decreases as value of dark spread increases. Intuition tells us this is incorrect
and that value of the option to invest should increase with the increase in the value
of underlying variable as we are more likely to make the investment: option to invest
should be worth more the higher the value of dark spread. Thus, I can eliminate the
second part of Equation 8 from general solution by setting B = 0. Therefore, solution to
option value given in Equation 7b is given by Equation 11.

f(p) = Aeβ1p (11)

To find optimal investment threshold and to determine the value of constant A, I use
value matching and smooth pasting conditions (Dixit (1993), Dixit and Pindyck (1994)):

f(p) = V (p)− I (12a)
fp = Vp (12b)

From smooth pasting condition I find the value of constant A:

A =
qe−β1p(1− e−rT )

rβ1

(13)

By inserting the expression for A and V (p) into value matching condition in Equation
12a and solving for p, I obtain that price at which it becomes optimal to invest equals:

p =
q(β1a− β1ae

−rT − β1ae
−rTTr − r + re−rT )− r2β1I

rq(e−rT − 1)β1

(14)
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With the given parameters it becomes optimal to invest when dark spread price reaches
178.3 e/MWh. Critical price is extremely high and it has never been recorded in ob-
served data. Thus, if one assumes ABM, it is very unlikely a coal power plant would
be built. This is evidence showing that use of ABM in valuing investment in electricity
generation cannot serve as a proxy to a more realistic mean reverting processes. Plot of
the threshold price is given in Figure 7.

Figure 7: Optimal exercise price

Major culprit for such a high investment threshold is extremely large volatility of dark
spread. Figure 8 shows dependence of investment threshold price on the standard error
of the dark spread. As it can be seen from Figure 8, for lower values of standard error of
dark spread, investment threshold is also lower.

Figure 8: Threshold price as a function of standard error of dark spread
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3.2 Ornstein Uhlenbeck process

In Section 3.1 it is shown that ABM cannot properly describe the behavior of dark spread
prices. Economic logic suggests mean reverting processes seem best suited to model
development of dark spread. Basic idea behind mean reverting process is that prices
cannot stay away from some long run level for too long: soon after moving away, prices
are pulled back to their long run level.

First mean reverting process I analyze is Ornstein Uhlenbeck (OU) process. The process
is defined by the following stochastic differential equation:

dpt = k[µ− pt]dt+ σdzt (15)

In Equation 15, µ represents average, long run price level: it can be thought of as a
price level corresponding to average cost of production. k stands for speed of reversion
i.e. how quickly prices are pulled back when they move away from their long run level.
σ is volatility of price change, and pt and dzt represent price level and an increment of
Wiener process.

3.2.1 Parameter estimation

To get the explicit solution to Equation 15 I define a new function f(p, t) = pekt (Iacus
(2008)). Applying Ito lemma to it I get: ft = pkekt, fp = ekt and fpp = 0. Furthermore:

df = ftdt+ fpdp (16a)
df = pkektdt+ ektdp (16b)

Inserting expression for dp from Equation 15 into Equation 16b and integrating I get
the expression for dark spread following OU process:

pt = p0e
−kt + µ(1− e−kt) + σ

∫ t

0

ek(s−t)dzs (17)

Thus, mean and variance of OU process are given by the following expressions:

E[pt] = p0e
−kt + µ(1− e−kt) (18a)

V [pt] =
σ2

2k

(
1− e−2kt

)
(18b)

To estimate the values of parameters I use maximum likelihood approach where log
likelihood (lnL) function is given by:

lnL(θ|p) = −(n− 1) · lnζ −
n∑
i=2

[
(pt − (pt−1e

−k + µ(1− e−k)))2

2ζ2

]
(19)

Where I use ζ to denote standard error of dark spread prices, i.e.

ζ =
√
V ar[pt] = σ

√
1− e−2kt

2k

The values of estimated parameters are given in Table 7.

13



Weekly values
Mean reversion (k) 0.28
Long run price (µ) 24.05

Volatility (σ) 10.62
Standard error (ζ) 9.27

Table 7: Estimated weekly parameters for dark spread prices following OU process

To determine how well OU process fits the data I first simulate 10 000 trajectories using
the following discretization:

pt = p0e
−k∆t + µ(1− e−k∆t) + σ

√
1− e−2k∆t

2k
·N(0, 1) (20)

Values of estimated parameters for simulated and observed dark spread prices are given
in Table 8 while corresponding histograms are given in Figure 9. Table 8 shows that
first and second moment of simulated prices are very close to values in observed prices.
Due to the fact that OU process admits negative values which are not present in ob-
served prices, simulated and observed prices differ in terms of skewness. Observed
prices exhibit positive skew which is evident in histogram of prices shown in Figure 9.
Furthermore, OU process is not able to generate such high kurtosis as the one present
in observed data.

min. median mean max. se. skew. kurtosis
Simulations -44.40 23.95 23.99 102.42 14.05 0.01 3.01

Observed prices 1.09 20.27 24.01 121.39 14.07 1.93 9.86

Table 8: Summary statistics for observed and 10 000 simulated price trajectories for OU
process

Figure 9: Histogram of observed and simulated prices for OU process
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A sample trajectory of OU process is given in Figure 10. Taking into consideration
summary statistics from Table 8 and comparing them with those for ABM, it is apparent
that OU process is much better in describing evolution of dark spread prices.

Figure 10: A sample path of dark spread following OU process

For a second test of goodness of fit I compute RMSE which is given in Table 9. Comparing
it to the ABM, both mean and standard error are significantly improved.

mean se.
RMSE 19.82 1.22

Table 9: RMSE for in sample forecasts for OU process

3.2.2 Optimal investment threshold

Value of the project where dark spread follows OU process can be calculated analytically
and is given by:

V (p) =

∫ T

0

qE(pt)e
−rtdt (21a)

V (p) = q

[
p0(1− e−(k+r)T )

k + r
+
m(1− e−rT )

r
+
m(e−(k+r)T − 1)

k + r

]
(21b)

Where I use a definition of E(pt) from Equation 18a. Value of the option to invest is
given by:

1

2
pppσ

2 + fpk(m− p)− rf = 0 (22)

Unfortunately, Equation 22 does not have an analytical solution, therefore, I have to
resort to numerical procedures and implicit finite difference scheme (details are given
in the Appendix).
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For the parameters shown in Table 1 and estimated parameters for OU process, and
using price increment of dp = 0.2 with pmin = −70 and pmax = 200 and time increment
of dt = 1/8760 I obtain that optimal exercise price is 39 e/MWh. Plot of the exercise
boundary as a function of time to maturity is given in Figure 11.

Figure 11: Exercise boundary for Orstein Uhlenbeck process as a function of option life

Threshold price obtained under OU is about twice as large as the one obtained under
NPV analysis. This higher threshold is a consequence of stochastic behavior of dark
spread price and irreversible nature of investment: factors that traditional capital bud-
geting analysis does not take into account. Nevertheless, threshold price is significantly
lower than the one obtained when one assumes ABM for the evolution of dark spread
prices. This is because project whose state variable follows OU process as opposed to
ABM is less risky: price always reverts back to long run average.

3.3 Cox Ross Ingersoll model

Cox et al. (1985) introduced a model to describe the evolution of interest rates which
can also be used to model dark spread prices (hence forth referred to as CIR process).
Stochastic differential equation governing the process is given by the following expres-
sion:

dpt = k(m− pt)dt+ σ
√
pdzt (23)

Main difference between CIR and OU process is in the volatility of the process which
depends on the square root of price: this feature makes it very interesting for modeling
dark spread prices as it implies non constant volatility. Another difference between
the two processes is in the distribution of prices. Unlike OU process where prices are
normally distributed, Cox et al. (1985) show that probability density function of the
value of dark spread at time t, given the initial value at t0 is given by the following
expression:

f(pt|pt0) = ce−u−v
(v
u

)q/2
Iq(2(uv)1/2) (24)
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Where:

c =
2k

σ2(1− e−k(t−t0))
(25a)

u = crt0e
−k(t−t0) (25b)

v = crt (25c)

q =
2kθ

σ2
− 1 (25d)

Iq modified Bessel function of the first kind of order q (25e)

Expected value and variance of variable p following CIR process are given by the follow-
ing two equations.

E[pt] = p0e
−kt + µ(1− e−kt) (26a)

V ar(pt) = pt−1
σ2

k
(e−kt − e−2kt) + µ

σ2

2k
(1− e−kt)2 (26b)

Looking at the above equations, we see that expected value of CIR process is the same
as in the case of OU process while standard error of the process is non constant and
depends upon the square root of p. A useful property is that a variable following CIR
process cannot become negative. More formally, if 2km/σ2 > 1 the process never reaches
zeros; if 0 < 2km/σ2 < 1, zero serves as a reflecting barrier; and if 2km = 0 zero is an
absorbing barrier and it is reached surely in finite time (Overbeck and Ryden (1997)).

3.3.1 Parameter estimation

To estimate the parameters I use ML approach. Log likelihood function is given by:

lnL(θ|p) = (n− 1)lnc+
n∑
i=2

{
−u− v + 0.5qln

(v
u

)
+ ln{Iq(2

√
uv)}

}
(27)

Using the above log likelihood function I estimate the following parameters:

Weekly values
Mean reversion (k) 0.29
Long run price (µ) 24.05

Volatility (σ) 1.94

Table 10: Estimated weekly parameters for dark spread prices following CIR process

In order to test the goodness of fit of the model I simulate the price trajectories using
estimated parameters. To simulate the trajectories it is not possible to use Euler dis-
cretization such as in the case of ABM or OU processes because of possibility of obtain-
ing negative values for p. Formally, the following expression will not guarantee positive
values of p, in which case value under the square root will be undefined:

pt+1 = pt + k(m− pt)dt+ σ
√
ptdzt+1 (28)
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Nevertheless, the transition density for pt is known (Glasserman (2003)) and it can be
used to simulate the price trajectories following CIR process. The transition density is
given by the following expression:

pt =
σ2(1− e−k(t−s))

4k
χ2
d

(
4ke−k(t−s)

σ2(1− e−k(t−s))
ps

)
t > s (29)

Where

d =
4mk

σ2
(30)

Equation 29 says that given ps, pt is distributed as σ2(1− e−k(t−s))/4k times a non central
chi square random variable with d degrees of freedom and non centrality parameter λ
given by:

λ =
4ke−k(t−s)

σ2(1− e−k(t−s))
ps (31)

Using Equation 29 I run 10 000 simulations and obtain the summary statistics which I
report in Table 11.

min. median mean max. se. skew. kurtosis
Simulations 0.15 21.85 24.01 153.73 12.52 1.05 4.69

Observed prices 1.09 20.27 24.01 121.39 14.07 1.93 9.86

Table 11: Summary statistics for observed and simulated prices for CIR process

Histogram of observed versus simulated prices is given in Figure 12.

Figure 12: Histogram of observed and simulated prices for CIR process

Table 11 shows that simulated data comes very close to observed data in terms of mean
and standard error, as was the case with OU process. Unlike OU process, CIR comes
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significantly closer to observed data in terms of skewness. A most likely reason for this
improvement lays in the fact that CIR does not admit negative values, unlike OU. In
terms of kurtosis, CIR also gives much better results compared with OU process, i.e. it
is capable of generating larger price ’spikes’. Though, CIR is not able to come very close
to the kurtosis in observed prices.

For an illustration, a plot of a simulated trajectory versus observed prices is given in
Figure 13: one can see that a random CIR trajectory resembles the observed one rather
well.

Figure 13: A sample path of simulated CIR process

Further, I test the goodness of fit using RMSE calculated from in sample forecast: values
are reported in Table 12.

mean se.
RNSE 18.76 1.28

Table 12: RMSE for in sample forecasts for CIR process

3.3.2 Optimal investment threshold

Given that expected value of dark spread is the same as in OU case, project value (V (p))
is also the same as in the OU case, and is given by:

V (p) = q

[
p0(1− e−(k+r)T )

k + r
+
m(1− e−rT )

r
+
m(e−(k+r)T − 1)

k + r

]
(32)

To get the value of the option I need to solve the following differential equation:

1

2
fppσ

2p+ fpk(m− p)− rf = 0 (33)
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Unlike OU process, it is possible to obtain analytical solution to the investment problem.
Following Ewald and Wang (2010), I first divide Equation 33 by k. Then I define:

f(p) = w(z) (34a)

z =
2kp

σ2
(34b)

fp = wz
2k

σ2
(34c)

fpp = wzz
4k2

σ4
(34d)

Using the above equations, Equation 33 becomes:

zwzz + wz(b− z)− aw = 0 (35)

Where I define: a = r
k

and b = 2km
σ2 . Solution to the Equation 35 is Kummer’s M and U

functions given by:

f(p) = A1KummerM

(
r

k
,
2km

σ2
,
2kp

σ2

)
+ A2KummerU

(
r

k
,
2km

σ2
,
2kp

σ2

)
(36)

Because limp→0 f(p) << ∞ I can eliminate KummerU function by assuming A2 to be
zero. Thus the solution is:

f(p) = A1KummerM

(
r

k
,
2km

σ2
,
2kp

σ2

)
(37)

To determine threshold price at which the investment should be made I use value match-
ing and smooth pasting conditions, namely:

f(p) = V (p)− I (38a)
fp = Vp (38b)

Smooth pasting conditions gives value of the constant A1 equal to:

A1 =

(
1− e(−k−r)T ) kmq

r(k + r)KummerM
(
1 + r

k
, 1 + 2km

σ2 ,
2kp
σ2

) (39)

Using the expression for A1 and value matching condition, I determine optimal invest-
ment threshold. Investment threshold is not given in analytical form but rather has
to be found numerically. Value at which the investment should be undertake is 38.3
e/MWh which is lower than in the case of OU process. An explanation for lower thresh-
old price when compared to OU process is that CIR process admits only positive values,
which makes this process less risky than OU process. Plot of the option value and project
value is given in Figure 14.

20



Figure 14: Optimal exercise price

3.4 Schwartz one factor model

Schwartz (1997) introduced a one factor mean reverting model for valuing commodities
which is given by:

dpt = k(a− lnpt)pdt+ σpdzt (40)

The symbols have the same meaning as in case of CIR or OU process. This model also
has non constant volatility which depends on price level. As a first step I transform the
model into logarithm by defining x = lnp and using Ito lemma I obtain the following
expression (where m = a− σ2

2k
):

dxt = k(m− xt)dt+ σdzt (41)

To estimate the parameters I use log of price given in Equation 41, plot of which is given
in Figure 15.

Figure 15: Logarithm of dark spread
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Logarithm of dark spread given in Equation 41 is normally distributed. Expected value
and variance of xt are given by the following two expressions:

E[xt] = µx = x0e
−kt +m(1− e−kt) (42a)

V [xt] =
σ2

2k

(
1− e−2kt

)
(42b)

3.4.1 Parameter estimation

To estimate the parameters of log of dark spread I use ML approach. Log likelihood
function is given by the following expression:

lnL(θ|x) = −(n− 1) · lnζ −
n∑
i=2

[
(xt − (xt−1e

−kt +m(1− e−kt)))2

2ζ2

]
(43)

Where I use the following short hand notation:

ζ =
√
V ar[xt] = σ

√
1− e−2kt

2k
(44)

The values of estimated parameters are given in Table 13.

Weekly values
Mean reversion (k) 0.367
Long run price (a) 3.348
Standard error (ζ) 0.407

Volatility (σ) 0.484

Table 13: Estimated parameters for log of dark spread

To asses goodness of fit I use the expression from Equation 45 to simulate 10 000 tra-
jectories of logarithm of prices following Schwartz model. Once the simulation has been
performed, I take the exponential of simulated log prices to obtain level prices following
Schwartz one factor model. Summary statistics are given in Table 14 and histograms of
observed and simulated data are shown in Figure 16.

xt = x0e
−k∆t + (a− σ2

2k
)(1− e−k∆t) + σ

√
1− e−2k∆t

2k
·N(0, 1) (45)

What can be noticed is that Schwartz model comes close to the observed data in terms
of first three moments of distribution based on 10 000 simulations. On the other hand,
unlike CIR process, Schwartz process overestimates the kurtosis.

min. median mean max. se. skew. kurtosis
Simulations 1.26 20.61 24.21 465.07 14.86 2.10 11.97

Observed prices 1.09 20.27 24.01 121.39 14.07 1.93 9.86

Table 14: Summary statistics for observed and simulated prices following Schwartz one
factor model
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Figure 16: Histogram of simulated and observed data for Schwartz one factor model

As an example, Figure 17 shows a sample trajectory of Schwartz one factor model.

Figure 17: A sample path of simulated Schwartz one factor process

Next, to further asses goodness of fit I perform in sample forecasts and calculate RMSE.
Value of RMSE is given in Table 15.

mean se.
RMSE 20.38 1.69

Table 15: RMSE for in sample forecasts for Schwartz model
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3.4.2 Optimal investment threshold

Value of the project under Schwartz one factor process is given by:

V (p) = q ·
∫ T

0

E(pt)e
−rtdt (46)

To calculate the value of the project I need an expression for expected dark spread price.
According to Schwartz (1997), level of dark spread is log normally distributed. Thus, if
x is a logarithm of dark spread having mean and variance given by equations 42a and
42b, expected value of level of dark spread is given by (Aitchison and Brown (1957)):

E[pt] = exp[µx +
1

2
V arx] (47a)

E[pt] = exp[x0e
−kt +m(1− e−kt) +

σ2
p

4k
(1− e−2kt)] (47b)

Therefore, value of the project is given by:

V (p) = q ·
∫ T

0

exp

[
x0e
−kt +m(1− e−kt)− rt+

σ2
p

4k
(1− e−2kt)

]
(48)

Nevertheless, integral in Equation 48 can only be calculated numerically. To determine
the value of the option I need to solve the following equation:

1

2
fppσ

2p2 + fpk(a− lnp)p+ ft − rf = 0 (49)

Just like in the case of OU process, the equation cannot be solved analytically, therefore,
I resort to numerical procedures and use implicit finite difference scheme. Thus, using
implicit finite difference method and the same approach as in OU case, I calculate that
the optimal exercise price equals 41.4 e/MWh, which is higher value than what I got
with CIR (38.3 e/MWh) or OU model (39 e/MWh). Plot of the exercise boundary is
shown in Figure 18.

Figure 18: Exercise boundary for Schwartz one factor model as a function of time
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4 Selection of appropriate stochastic process

In previous sections I estimated parameters of stochastic processes and determined opti-
mal investment threshold for each stochastic process. The question I still have to answer
is which process is the most appropriate for use in real options analysis. It should be
the one that comes closest to the observe data. To gauge how close each process comes
to observed data I use distributional statistics and RMSE.

In terms of distributional statistics it is apparent that mean reverting processes perform
better than ABM process. The difference between each individual mean reverting pro-
cess is not very significant, but Schwartz comes the closest to the observed data and is
followed by CIR and OU process. This can be seen from Table 16 which shows absolute
difference for each process and for each statistic from observed data5.

min. median mean max. se. skew. kurtosis
ABM 820.75 1.63 4.53 709.12 128.3 1.94 5.83

OU 45.49 3.68 0.02 18.97 0.02 1.92 6.85
CIR 0.94 1.58 0 32.34 1.55 0.88 5.17

Schwartz 0.17 0.34 0.2 343.68 0.79 0.17 2.11

Table 16: Absolute difference between simulated and observed data

Using distributional statistics, even though common in literature (e.g. Geman and Ron-
coroni (2006) and Seifert and Uhrig-Homburg (2007)), is not an exact measure. As a
second measure of goodness of fit I use RMSE. Using this statistic it appears CIR pro-
cess performs the best, while ABM performs the worst. On the other hand, performance
of OU and Schwartz one factor process is rather comparable. The results are show in
Table 17.

mean se.
ABM 126.07 67.68

OU 19.82 1.22
CIR 18.76 1.28

Schwartz 20.38 1.69

Table 17: RMSE for all stochastic processes

The question, though, is whether the differences in RMSE among stochastic processes
are statistically significant. Diebold and Mariano (1995) develop a test for comparing
prediction accuracy of two different models. Denote by yt+1 actual time series at time t+1
and by ŷA,t+1|t and ŷB,t+1|t two different forecasts of the actual series. Error associated
with each forecast is given by:

eA,t+1 = ŷA,t+1|t − yt+1 (50a)
eB,t+1 = ŷB,t+1|t − yt+1 (50b)

5Absolute values are computed according to the following expression: |ȳp,i − yi|: ȳp,i represents value
of a statistic i (minimum and maximum value, median, mean, standard error, skewness and kurtosis)
for stochastic process p (ABM, OU, CIR and Schwartz) and yi represents value of statistic i for observed
prices.
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The goal is to determine time t + 1 loss associated with each forecast. To calculate the
loss, I define a loss function g which is a direct function of forecast error, i.e. g = g(ei,t+1)
where i = A,B. I choose a quadratic loss function, g = e2

i,t+1 Then, one can state a null
hypothesis of equal forecast accuracy for both models against the alternative that their
forecasts differ:

H0 : E[e2
A,t+1] = E[e2

B,t+1] (51a)
H1 : E[e2

A,t+1] 6= E[e2
B,t+1] (51b)

If one defines dt = e2
A,t+1 − e2

B,t+1, the null and the alternative hypothesis can be stated
as:

H0 : E[dt] = 0 (52a)
H1 : E[dt] 6= 0 (52b)

Diebold Mariano (DM) test statistic is given by the following expression:

DM =
d̄

V ar(d)
(53)

Where:

d̄ = T−1

T∑
i=1

di (54a)

V ar(d) = T−1

[
γ0 + 2

h−1∑
k=1

γk

]
(54b)

And γk is kth auto covariance that can be estimated by Equation 55.

γk = T−1

T∑
t=k+1

(dt − d̄)(dt−k − d̄) (55)

To calculate DM statistic one can use Newey West robust standard error. As DM test
statistic is a pairwise test, I report results for various combinations of stochastic pro-
cesses. As each simulation of stochastic process is different from the previous one, I
report results of DM test for all 10 000 simulations (calculation details for DM statistic
are given in the Appendix).

4.1 ABM versus OU process

Both distributional properties and RMSE showed that ABM is the worst performing of
all stochastic processes. Here, using DM statistic, I try to formalize this result by testing
the null hypothesis of equal forecast accuracy between ABM and OU process against the
alternative of ABM having worse forecast accuracy:

H0 : E[e2
ABM,t] = E[e2

OU,t] (56a)
H1 : E[e2

ABM,t] > E[e2
OU,t] (56b)
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To perform hypothesis testing I use standard normal distribution, as it is suggested in
Diebold and Mariano (1995). Therefore, for a one sided test where the alternative is
that ABM gives worse forecast than OU process, critical value at 5% significance level
is 1.65. Therefore, if the value of DM statistic is greater than critical value, I reject the
null in favor of the alternative hypothesis.

In 75.1% of sample trajectories OU process has statistically lower forecast error, i.e. it
performs better than ABM process. Therefore, I confirm that OU process is superior
to ABM in generating data which resemble the observed prices. Figure 19 shows a
histogram of computed DM statistics.

Figure 19: Histogram of computed values for DM test

4.2 ABM versus CIR process

I test the null hypothesis of equal forecast accuracy between ABM and CIR process
against an alternative hypothesis that CIR has better forecast accuracy:

H0 : E[e2
ABM,t] = E[e2

CIR,t] (57a)
H1 : E[e2

ABM,t] > E[e2
CIR,t] (57b)

Results are very similar to the ones I get when comparing ABM and OU process. In
this case I reject the null in 78.9% of sample trajectories, confirming that CIR process is
statistically superior to ABM in terms of in sample forecast. Figure 20 gives a histogram
of computed DM statistics.
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Figure 20: Histogram of computed values for DM test

4.3 ABM versus Schwartz process

Finally, I test ABM against Schwartz one factor model using the same null and alterna-
tive hypothesis as in the previous case:

H0 : E[e2
ABM,t] = E[e2

Sch,t] (58a)
H1 : E[e2

ABM,t] > E[e2
Sch,t] (58b)

Results are as expected and close to what I obtained when comparing ABM to OU and
CIR process. For 72.6% of sample trajectories, Schwartz process results in statistically
more accurate in sample forecasts. Histogram of computed values of DM statistic is
given in Figure 21.
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Figure 21: Histogram of computed values for DM test

4.4 OU versus CIR process

Next I test mean reverting processes against each other. First I test whether OU and
CIR process have the same forecast accuracy against the two sided alternative that their
forecasts differ. At 5% significance level, critical value is 1.95 and I reject the null if DM
statistic in absolute value is greater than 1.95. For the given data, I reject the null in
13.9% of all sample paths.

H0 : E[e2
OU,t] = E[e2

CIR,t] (59a)
H1 : E[e2

OU,t] 6= E[e2
CIR,t] (59b)

I also test whether OU and CIR have the same forecast accuracy against the alternative
that CIR has better forecast accuracy, i.e. lower forecast error. For a 5% significance
level, one sided critical value is 1.65, and I reject the null if value of DM test exceeds
1.65. I reject the null in 20.3% of all sample paths.

H0 : E[e2
OU,t] = E[e2

CIR,t] (60a)
H1 : E[e2

OU,t] > E[e2
CIR,t] (60b)

I also try a different alternative hypothesis where forecast error of CIR model exceeds
forecast error of OU model. Here again I use one sided alternative with 5% significance
level: I reject the null if value of DM statistic is smaller than −1.65. In this case I reject
the null in only 1.4% of all trajectories.

H0 : E[e2
OU,t] = E[e2

CIR,t] (61a)
H1 : E[e2

OU,t] < E[e2
CIR,t] (61b)

Therefore, CIR and OU process give forecasts of comparable accuracy. Nevertheless, it
is possible that CIR process does perform better than OU process while the converse is
not very likely. Histogram of computed values for DM statistic is given in Figure 22.
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Figure 22: Histogram of computed values for DM test

4.5 OU versus Schwartz process

I test whether OU and Schwartz models generate forecasts of equal accuracy. At 5%
significance level I reject the null in 6.5% of all trajectories.

H0 : E[e2
OU,t] = E[e2

Sch,t] (62a)
H1 : E[e2

OU,t] 6= E[e2
Sch,t] (62b)

I also evaluate the possibility that Schwartz model has lower forecast error. In this case
I reject the null in only 4.7% of sample paths.

H0 : E[e2
OU,t] = E[e2

Sch,t] (63a)
H1 : E[e2

OU,t] > E[e2
Sch,t] (63b)

Furthermore, I evaluate the alternative possibility that OU performs better. Assuming
this alternative, I reject the null in 8.6% of all sample paths.

H0 : E[e2
OU,t] = E[e2

Sch,t] (64a)
H1 : E[e2

OU,t] < E[e2
Sch,t] (64b)

Therefore, I conclude that OU and Schwartz model give forecasts that have statisti-
cally similar accuracy: it does not matter much which model is chosen. Histogram of
computed values of DM statistic is given in Figure 23.

30



Figure 23: Histogram of computed values for DM test

4.6 CIR versus Schwartz process

First, I test an alternative that Schwartz and CIR model generate forecasts of different
accuracy. I reject the null in favor of the alternative in 13% of sample paths.

H0 : E[e2
CIR,t] = E[e2

Sch,t] (65a)
H1 : E[e2

CIR,t] 6= E[e2
Sch,t] (65b)

Now I test whether CIR model performs better than Schwartz one factor model. I obtain
this is the case in 20.5% of all trajectories.

H0 : E[e2
CIR,t] = E[e2

Sch,t] (66a)
H1 : E[e2

CIR,t] < E[e2
Sch,t] (66b)

Following I test whether CIR process performs worse than Schwartz process, i.e. whether
CIR process has higher forecast error. This is the case in 1.4% of all trajectories.

H0 : E[e2
CIR,t] = E[e2

Sch,t] (67a)
H1 : E[e2

CIR,t] > E[e2
Sch,t] (67b)

I conclude that these processes result in either equal or forecasts where CIR process
performs better. Therefore, CIR appears to be a better candidate to be used for model-
ing dark spread prices than Schwartz one factor model. Figure 24 gives histogram of
computed DM statistics.
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Figure 24: Histogram of computed values for DM test

5 Conclusion

First goal of the paper was to find an appropriate stochastic process to fit observed dark
spread prices. I used four different processes: ABM, OU, CIR and Schwartz one factor
model. After estimating the parameters I simulated 10 000 sample paths for each pro-
cess and tried to determine how close are simulated trajectories to observed data. To
gauge the difference I first used an informal, yet common procedure of computing dis-
tributional properties of simulated prices. According to distributional properties, ABM
process was the worst in terms of replicating the observed data. Mean reverting pro-
cesses performed rather well, with Schwartz one factor model performing best, followed
by CIR and OU process.

Following I used RMSE, as a more formal measure to gauge the difference between se-
lected models. Here again, ABM process performed the worst. On the other hand, per-
formance of mean reverting processes changed. According to RMSE calculations, CIR
process performed the best, while OU and Schwartz one factor model performed equally
well. Finally I addressed the issue of whether RMSE difference between stochastic pro-
cesses is statistically different. I used Diebold and Mariano (1995) test statistic and per-
formed pairwise tests. As expected, ABM is statistically the worst performing process.
Statistically, difference between mean reverting processes is not so dramatic. OU and
Schwartz one factor model perform equally well, thus due to its simplicity, one should
favor OU over Schwartz model. CIR process performed equally well as OU and Schwartz
process or slightly better. At 5% significance level and in 20.3% of sample paths, I reject
the null that CIR performs equally well as OU process in favor of the alternative that it
performs better than OU process. Moreover, at the same significance level and in 20.5%
of sample paths, I also reject the null that CIR performs equally well as Schwartz model
in favor of the alternative that it performs better. Therefore, I conclude that all mean
reverting processes equally well resemble observed data, while slight advantage should
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be given to CIR process.

Second goal of the paper was to asses to what degree does investment threshold depend
upon the selected stochastic process. Of the four stochastic processes, ABM turns out to
be the least useful - it is predicting that investment should be undertaken at extreme
prices, which are very unlikely to ever occur. Other three processes are all mean re-
verting and prior to the analysis one would expect that OU process gives the highest
investment threshold while CIR and Schwartz model give lower and perhaps rather
comparable investment thresholds. Reason for this conjecture lays in the fact that OU
process admits negative prices, therefore, one would require higher threshold price at
which to invest.

Actual calculations do not completely confirm this conjecture. Investment threshold
is the highest under Schwartz process and equals 41.4 e/MWh. Use of OU process
results in second highest threshold of 39 e/MWh, while CIR process results in lowest
investment threshold of 38.3 e/MWh. A possible explanation to why Schwartz process
results in higher investment threshold lays in the fact that I work with logarithm of
prices to estimate the parameters. Summary of threshold prices for all four processes is
given in Table 18.

Process Value (e/MWh)
NPV 20.6
ABM 178.3
OU 39
CIR 38.3
Schwartz 41.4

Table 18: Threshold prices for different stochastic processes

Given threshold values from Table 18 it seems that choice of mean reverting process does
not play such a crucial role in making the investment decision. Reason why investment
threshold does not vary significantly with mean reverting processes is due to the fact
that they revert to long run price level soon after they move away from it. Table 19
shows values of half life for three mean reverting stochastic processes. As it can be seen,
it takes approximately around two weeks for prices to revert half way back to the long
run level from the starting price if there are no stochastic disturbances.

Process half-life
OU 17 days
CIR 16.9 days
Schwartz 13.2 days

Table 19: Half life for mean reverting processes

Having regard for distribution properties and RMSE it would be most appropriate to
use CIR process in valuing investment in base load coal fired power plant.

33



Appendices

A Implicit finite difference scheme

To calculate optimal investment threshold I first add time dimension (derivative ft) to
Equation 22 and then use implicit finite difference scheme (Wilmott (2006)). Derivatives
in Equation 22 are approximated in the following way:

ft =
fi,j+1 − fi,j

dt
fpp =

fi+1,j − 2fi,j + fi−1,j

dp2
fp =

fi+1,j − fi−1,j

2dp
(68)

Inserting derivative approximations from Equation 68 into Equation 22 I obtain the
following expression for the value of the option:

1

2

fi+1,j − 2fi,j + fi−1,j

dp2
σ2 +

fi+1,j − fi−1,j

2dp
k(m− pi) +

fi,j+1 − fi,j
dt

− rfi,j = 0 (69)

After some manipulation Equation 69 can be written more compactly as:

fi,j+1 = Aifi−1,j +Bifi,j + Cifi+1,j (70)

Where A, B, and C are defined as:

Ai =
dt

2dp2

(
(m− pi)dpk − σ2

)
B =

1

dp2

(
dtσ2 + dp2(1 + dtr)

)
Ci =

dt

2dp2

(
(pi −m)dpk − σ2

) (71)

For the boundary conditions I assume Dirichlet boundary conditions, i.e. that for each
time step j, value of the option remains constant at pmin and pmax and equals option
value at expiration (T ), i.e.:

f(pmin, j) = f(pmin, T ) f(pmax,j) = f(pmax, T ) (72)

At expiration, the following terminal condition holds:

f(idp, T ) = max[f(idp, T )− I, 0] (73)

Where I denotes investment cost. Now I solve the following set of simultaneous equa-
tions for each time step:

f2,j+1 = A2f1,j +B2f2,j + C2f3,j

f3,j+1 = A3f2,j +B3f3,j + C3f4,j

. . .

fn−1,j+1 = An−1fn−2,j +Bn−1fn−1,j + Cn−1f5,j

(74)
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Equations 74 can be written in matrix form as:


f2,j+1

f3,j+1

. . .
fn−1,j+1

 =


B2 C2 . . . . . .
A3 B3 C3 . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . An−1 Bn−1

 ·


f2,j

f3,j

. . . . .
fn−1,j

+


f1,j · A2

. . .

. . .
fn,j · Cn−1

 (75)

Finally, starting at terminal condition (j + 1), and moving backwards in time, I solve for
the option value at time j:

f2,j

f3,j

. . .
fn−1,j

 =


B2 C2 . . . . . .
A3 B3 C3 . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . An−1 Bn−1


−1

·




f2,j+1

f3,j+1

. . .
fn−1,j+1

−


f1,j · A2

. . .

. . .
fn,j · Cn−1


 (76)

To approximate perpetual American option I evaluate impact of option maturity on op-
timal exercise price. Basically I let time increase and observe what happens to optimal
exercise price at the start of the option life. By making the option life sufficiently long I
try to mimic perpetual option.

It turns out I need to make option life only be couple of years, as with increasing matu-
rity optimal exercise price does not change. Optimal investment threshold is found at
the point where:

f(p) = V (p)− I

Reason to how can option of such short time to maturity be used to approximate per-
petual option lays in the fact that OU is mean reverting process implying that if the
price deviates from the long run average, it will be pulled back. The stronger the mean
reversion factor the shorter one has to make the option life to mimic perpetual option.

B Calculation of Diebold-Mariano statistic

Steps in calculation of Diebold Mariano statistic are as follows:

1. Calculate error associated with each model (A and B):

eA,t+1 = ŷA,t+1|t − yt+1 (77a)
eB,t+1 = ŷB,t+1|t − yt+1 (77b)

2. Define a variable dt such that: dt = e2
A,t+1 − e2

B,t+1.

3. To determine the variance of d (V ar(d)) I regress dt on a constant and compute
Newey West robust standard error of the constant. This standard error is then
used in calculating the V ar(d).

4. For each simulated sample path, test the following hypothesis:

H0 : E[dt] = 0 (78a)
H1 : E[dt] 6= 0 or H1 : E[dt] > 0 or H1 : E[dt] < 0 (78b)
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5. Determine the paths for which the DM statistic is above the critical value.

6. Report the percentage of sample paths for which I can reject the null in favor of
the alternative hypothesis.
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