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Abstract

In this paper, we investigate the environmental policy designed to reduce the emission
of a pollutant under uncertainty. We consider that an economic agent benefits from an eco-
nomic activity and suffers from the pollutant. So the agent implements the policy, which
is irreversible. The costs to implement the policy are divided into the fixed cost, the pro-
portional cost, and the quadratic adjustment cost. Further, we consider the agent has two
policy options. Then, the agent must decide that which policy he implements and when
he implements the policy in order to maximize his benefit. To solve the agent’s problem,
we formulate it as an optimal stopping problem{ Furthermore, We present the numerical
analysis and comparative-static analysis of the thresholds.
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1 Introduction

When we consider that the environmental problems like acid rain, global warming, we face many
uncertainties, for example, demographic change, economic development, technological progress,
and so on. Then, decision-makers consider uncertainties when they develop and implement the
environmental policies. Pindyck (2000, 2002) investigate a environmental policy designed to
reduce the emission of a pollutant under uncertainty. See also Barrieu and Chesney (2003),
Ohyama and Tsujimura (2006, 2008), Wirl (2006a,2006b), and Lin, Ko and Yeh (2007)

In this paper, we also investigate the environmental policy under uncertainty. We consider
that an economic agent benefits from an economic activity which emits a pollutant. Simul-
taneously the agent suffers from the pollutant. We assume that how much damage the agent
suffers from the pollutant is uncertain. The uncertainty is represented by a stochastic differ-
ential equation. We also assume that implementing the policy is irreversible. Since there are
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uncertainty and irreversibility on implementing the environmental policy, it is important to de-
cide the timing to implement the environmental policy. Furthermore, the agent has two policy
options. The environmental policies are respectively indexed by 1 and 2 and characterized by
the amount of emission reduction and theirs costs. The environmental policy 1 reduces less
emission than policy 2 and costs less than policy 2. The costs to implement the environmental
policy are assumed to be divided into the fixed cost, the proportional cost, and the quadratic
adjustment cost. Therefore, the agent must decide that which policy he implements and when
he implements the policy in order to maximize his benefit. To solve the agent’s problem, we
formulate it as an optimal stopping problem[]

While Pindyck (2000, 2002) investigate the environmental policy when the agent has just one
policy option, we investigate it when the agent has two policy options. We refer to the former
as the single environmental policy and the latter as the alternative environmental policies.

As related work, Décamps, Mariotti and Villeneuve (2006) explore the investment decision
problem of two alternative projects. Then, they show the value of flexibility that the agent can
choose between the alternative projects.

The rest of this paper is organized as follows. In the next section, we investigate the single
environmental policy under uncertainty. In Section 3, we investigate the alternative environ-
mental policies under uncertainty. Section 4 presents numerical analysis. Section 5 concludes
this paper.

2 Single Environmental Policy

Suppose that an economic agent benefits from an economic activity which emits a pollutant. At
the same time, the agent suffers from the pollutant. Then, the agent considers when it is optimal
to implement the environmental policy designed to reduce the emission of the pollutant. There
are two environmental policy 1 and 2. The environmental policy 1 reduces less emission than
policy 2 and costs less than policy 2. The agent considers that when it is optimal to implement
the policy. In this section, we assume that the agent have either policy 1 or 2 as policy options.
Pindyck (2000, 2002) also investigate the similar problems.

2.1 Agent’s Problem

Let Q¢ be the level of economic activity at time ¢ > 0. The dynamics of the process of @y,
Q = {Qt}1>0, is given by
th = aQtdta QO = {q, (21)

where a > 0 is the constant growth rate of economic activity. The agent benefit is assumed
to be given by pQy, where p is the parameter which converts the level of economic activity to
money amount. If (); represents amount of production, P; represents price of the product. Let
7°Q; be the emission flow of the pollutant when the agent has not implemented the policy. If
the agent has implemented the policy i (i = 1,2), it reduces the emission flow to v'Q; with
7% > 4! > 42 > 0. Then, the dynamics of the stock of the pollutant Y; is given by

where § € (0, 1) is the rate of natural decay of the stock of pollutant. Let X;Y;> be the damage
which it suffers from the stock of the pollutant. X; is a variable that stochastically shifts over



time to reflect damage due to the pollutant and is assumed to be governed by
dX; = pX;dt + o XedWy, Xy ==, (23)

where u > 0, 0 > 0, and W; is a standard Brownian motion given on a filtered probability
space (€2, F,P, {F: }1>0) satisfying the usual conditions'. Here F; is generated by W; in R, i.e.,
Fi = o(Ws,s <t). . The net benefit B(Qy, X¢,Y;) from economic activity is given by

BY(Qr, X1, Y)) = pQt — X:(Y/)%. (2.4)
Let K*(Q;) be the cost function of policy i and be given by
K'(Q1) = ko + k(7" = 41)Q + k2(v" —7')*Q%, (2.5)

where kg > 0 is the fixed cost, k&; > 0 is the proportional cost parameter, and ks > 0 is the
adjustment cost parameter. Since 7° > 4! > 42, we have K! < K?2. Then, the agent’s expected
total discounted benefit associated with policy ¢ is given by

JZ(Qa €,Y; TLZS') =K |:/ eirtBi(Qta Xta Y;Z)dt - eirTéKi(QTg) ) (26)
0

where 7 > 0 is a discount rate, 7 € 7 is the implementation time of the policy i, and 7 is the
set of all admissible implementation times. Furthermore, we assume the following condition:

]E[/ e " B(Qy, Xz, Y;)|dt| < oo. (AS.1)
0

Therefore, the agent’s problem is to choose the timing of implementing the policy ¢ to maximize
J:

Vi(q,z,y) = sup J(q,z,y;75) = J(q, z,y; 75, (2.7)
TéET

where V? is the value function of the agent’s problem and Tg* is an optimal timing to implement
the policy 1.

2.2 Optimal Environmental Policy

The agent’s problem (2.7) is formulated as an optimal stopping problem. As is well known,
optimal stopping problems are solved by the variational inequalities. See, for example, Hu and
Oksendal (1998), Dupuis and Wang (2002), Qksendal (2003).

To define the variational inequalities, we rewrite (2.6) as

(g, yi7h) = E [ [ et viar - e”%Ki(Qt)]
0

5 t R0 0

=E / e ""BY(Qy, Xy, Yy )dt
0
| N . | | (2.8)
+e7775 (/ e TS BY(Qy, Xy, Vi )dE — KZ(Qi))]
§

& i i '

—E /0 e BY(Qn, Xy, Y )dt +eTTEGH(Qpy, Xy YY) |

!See, for example, Karatzas and Shreve (1991).



where G*(Qy, X, Y}) is given by:

o0
GH(Q1, X1, Y]) = / e "I BY(Qy, Xy, Vi)ds — KH(Qy). (2.9)
¢
The region where the agent has not implemented the environmental policy 7 is defined by

Hi = {(z,y);Vi(g,2,y) > G'(g, 2,y)}. (2.10)

That is, Hfg is continuation region. It yields the timing of implementing the environmental
policy i, 74, is given by . .
¢ = inf{t > 0; (x,y) ¢ Hg}. (2.11)

We now define the variational inequalities of the agent’s problem (2.7).

Definition 2.1 (Variational Inequalities). The following relations are the variational inequalities
of the agent’s problem (2.7).

CVi(q,a:,y) + Bo(q,m,y) <0, (2.12)
Vi(g,z,y) > G'(q,2,y), (2.13)
LV (g, z,y) + B (g, 2, 9)][V' (¢, z,y) — G*(g,z,y)] =0, (2.14)

where L is the partial differential operator defined by

0? 0 i 0 0
== — — —0Yy) =— — —r 2.15
50 ¢ 53 T He s+ (7' y)8y+aqaq r (2.15)
(2.14) is the complementary condition and can be rewritten as follows. If (z,y) € Hfg, then
we have

LV (g, 2,y) + B*(¢,2,y) = 0. (2.16)
On the other hand, if (z,y) ¢ HY, then we have

Vi(g,z,y) — G*(g,,y) = 0. (2.17)

Let ¢'(q,z,y) be a candidate function of the value function V(q,z,y). We can now prove
that an environmental policy derived by the variational inequalities is optimal. The following
theorem is the well-known verification theorem. See, for example, Theorem 10.4.1 in @ksendal
(2003). The theorem also states if a candidate function satisfies the variational inequalities, the
candidate function is equal to the value function. See also Hu and @ksendal (1998), Dupuis and
Wang (2002).

Theorem 2.1. 1. Let ¢'(q,x,y) be a solution of the variational inequalities (2.12)-(2.14)
that satisfies the following:
The family {(bi(QTgerngTg)}rgeT is uniformly integrable with respect to P, where T' is
the set of all bounded stopping times. Then we obtain that

o (g, x,y) > Vi(g,z,y). (2.18)



2. When (z,y) € HY, we have (2.16). Furthermore, the timing of implementing the policy i,
7&, is given by (2.11). Then, the candidate function ¢* is equal to the value function V*:

¢'(q,2.y) = V(g 2,y). (2.19)
In addition, Tg s optimal.
Proof. Since the proof is similar to @Qksendal (2003, Theorem 10.4.1), we omit it. O

Next, we investigate whether the candidate function ¢(g, z,y) is a solution to the variational
inequalities or not. From the formulation of the agent’s problem (2.7), we conjecture the optimal
environmental policy as follows. For a given pollutant stock level y, if the process of X = {X;};>¢
reaches a threshold xfg(y), the agent implements the environmental policy ¢, and otherwise it
does not. Thus, the optimal timing of implementing the policy 4 is given by

ng = Tg(y) = inf{t > 0;z > wfg(y)} (2.20)

The variational inequalities implies that (2.16) holds for z < x%(y). We conjecture a solution
to (2.16) is

2 0 0y2 2
. . : pg wy 2zyy’q  22(7°)%¢q

g, z,y) = Ok (y)2® + Cly(y)z?? + —2— — =L — - , 2.21
¢ (g, 2,y) = Chy(v) () o, (221)

where C%, (y) and Cf,(y) are unknowns to be determined. p; =7 —p+238, po =r —p+6 — a,
and p3 =r — u — 2. By and Bs are the solutions to the following characteristic equation:

502805~ 1) + 4B —r =0, (2.22)

and are calculated as

1 T
== - e =
b 2 02+\/(02 2) Tt b
(2.23)
W W 1\? 2r

~L-(4-3) + 5 <o

If X; = 0, the agent does not suffer from the pollutant. Then, we obtain the following
boundary condition of the agent’s problem:

i pq
¢'(a,0,y) = —. (2.24)
It follows from (2.21) and (2.24) that we put C%,(y) = 0. Then, (2.21) becomes
2 0 0y2,2
- ; i pq xy®  2xyy'q 2z q
$ (g, 2,y) = Cly ()Pt 4+ 2L 2T 224 0)a” (2.25)
r—o P1 P1P2 P1P2P3

The first term of the right-hand side of (2.25) represents the value that the agent can choose
the timing of implementing the policy. From the second to fifth term represent the expected



discounted value of B in the case which the agent does not implement the environmental policy
1 forever. They are calculated as follows.

B[ [ enoa - X

00 00 0 0 2
= / e "pgedt —/ e "yett {eat (y — a7+q5> + eat—othqé} dt (2.26)
0 0

e wy® 2ey7°¢ 22(7%¢)?

-« P1 P1pP2 P1P203

The unknown C%, (y) and threshold 2% (y) are calculated by the following simultaneous equa-
tions:

o' (q,2%5(y),y) = G' (¢, 25(y),y), (2.27)
¢4 (q, 75 (y),y) = Golq, 25(y),y). (2.28)

Theses equations are well-known as the value-matching condition and smooth-pasting condition,
respectively. Then, we obtain that

- () ()
0= () (i) w0

where T = (0 —~%)q, T' = ((7°)? = (¥")?)¢%. In what follows, due to the tractability of notation,
CL, = C%(y). From 7% > 4! > 42, K' < K? and (2.30), the threshold of the environmental
policy 1 is smaller than the threshold of the environmental policy 2:

z5(y) < 2%(y). (2.31)

3 Alternative Environmental Policies

In this section, we consider that the agent has two environmental policy options. We assume
that the agent implements either the environmental policy 1 or 2. We follow the framework
of Décamps, Mariotti and Villeneuve (2006) which investigate the choice problem among two
alternative investment projects.

Let 74 be the implementation time of policy 1 or 2 and be given by

T4 = min [7’}1, Ti] , (3.1)

where 7% (i = 1,2) is the timing of implementing the policy i in the case that the agent has
two environmental policy options. Notice that these timings depend on the stock o pollutant y.
Due to the tractability of notations, we omit the dependency on y. Then, the agent’s expected



total discounted benefit J is

T}l/\Ti
J(qaxay;TA) :]E’|:/ eirtBO(QtaXtaYPtO)dt
0

oo

+ I{TASTi}e_rTi (/Tl e_r(t_Téll)Bl(Qta Xta Y;fl)dt - Kl(Qt))
A

+ I{T}‘Ni}e*”i (/ e "D B(Qy, Xy, Y)dE — KZ(Qt))]

2
A
T}l/\Ti
_ n«:[ / e BY(Qy, X, YY) dt
0
Tlren}e G Qn X, Y) F s 12y TG Qg X Y%)]'
(3.2)

Therefore, the agent’s problem is to choose the timing of implementing the policy to maximize
the agent’s expected total discounted benefit J:

V(q,m,y) = SH%J(anay;TA) = J(Q7x7y)7—2) (33)
TAE

From (2.10) the region where the agent implements neither the environmental policy 1 nor
the environmental policy 2 is defined by

Ha(y) = {(2,y);V(g,2,y) > max[G'(q,2,y), G*(q, 2, y)]}- (3.4)
That is, H4(y) is continuation region. Then, 74 is given by:
T4 =inf{t > 0;z ¢ Ha(y)}. (3.5)

As in Section 2, the agent’s problem is formulated as an optimal stopping problem and is
solved via the variational inequalities. The variational inequalities of the agent’s problem (3.3)
are as follows.

LV (g, 2,y) + B%(g,2,y) <0, (3.6)
V(g,z,y) > max[G' (¢, z,y), G* (¢, 2, )], (3.7)
£V (g, z,y) + B%(q,2,9)] [V(g,2,y) — max [G'(q,z,y),G* (¢, z,y)]] =0. (3.8)
Let & be value of the shift variable such that G'(¢,z,y) = G*(q,z,y). Then, & is calculated
as
7= (K2(q) — K" [M], 3.9
(K(0) = K (0) | 52020 (3.9

where T' = (7' —v%)q, T = ((v")? — (v?)?)q?. The value function V' smoothly pastes neither the

function G' nor the function G? at x = #. Then, we obtain the following result.

Proposition 3.1. When the shift variable is &, the agent implements neither the policy 1 nor
the policy 2.



Décamps, Mariotti and Villeneuve (2006) provide rigorous treatment in their Proposition
2.2. Furthermore, Décamps, Mariotti and Villeneuve (2006) obtain the following result in their
Theorem 2.1.

Theorem 3.1. Assume that

(psyT" + Y17 (payT? + %)
K'(g)—! K?(g)h—t

(3.10)

Let 2% (y) (i = 1,2) be the threshold of implementing the policy i when the agent has two policy
options 1 and 2. The timing of implementing the policy 1, 7'}1, s given by

T4 = inf{t > 0;z5(y) < X < wiy(y)}. (3.11)
On the other hand, the timing of implementing the policy 2, 7'31, s given by
5 = inf{t > 0; X; > 2% (y)}. (3.12)
The continuation region H 4(y) is redefined by

Haly) = {z;z < z5(y), vh(y) <z <z5(y)}- (3.13)

Let ¢(q,x,y) be a candidate function of the value function V' (¢, x,y). From the variational
inequalities (3.6)—(3.8), for x € H4 we have

1
502332(;31;1; + pxoy + (V¢ — dy)py + aqpy — ro + B =0. (3.14)

For z < mg, when x reaches x}g, the agent implements the environmental policy 1. Then, we have
¢! given by (2.25). For w}4 <zr< x124, when z reaches w}4 before x124, the agent implements the
environmental policy 1. On the other hand, when = reaches m?q before 951147 the agent implements
the environmental policy 2. Thus, the agent has two types of flexibility in this region. Then,
the candidate function is

2 2 0 2 02,2
o, 2,) = O™ + Cuga® ¢ PL_ W 229770 2007 )°q” (3.15)
r—a P1 P1P2 p1p2pP3

where Ca1 := C41(y) and Cyo := Ca2(y) are unknowns to be determined. The first term of the
right-hand side is the value of the flexibility that the agent chooses the timing of implementing
the environmental policy 1. The second term is the value of the flexibility for the environmental
policy 2. Then, ¢ is divided by the level of x into as follows:

1 P ay? 2970 _ 22(y%)%¢ 1
CSlwﬂl T e T o T o om0 z < xg(y),
Gl (q,z,y zg(y) <z <zli(y
Sy ={COT e s SWETERAW: g4
Cara®™ + Caga™ + 775 — L Tpip2 | pip2ps ? wy(y) <z <xi(y),
G2(Q7x7y)7 T Z fl;‘?q(y)

As in Section 2, we have to determine the unknowns: Cyq, C49 and the thresholds:wh(y),

7% (y). They are calculated by simultaneous equations:

d(q,z4(y),y) = G (g, 24 (), y). (3.17)



&(q,253(),y) = G*(q, 25 (1), y)- (3.18)
de(q, 24 (y),y) = GLlg, x4 (), v). (3.19)
de(q, 25 (y), y) = Galg, 24 (y), ). (3.20)

Unfortunately, they are not analytically derived. In the next section, we numerically calculate
them.

4 Numerical Analysis

In this section, we numerically calculate the thresholds: z}(y), z%(y), ! (y), and z%(y) and
investigate the effect of changes in parameters on the thresholds. The basic parameter values
are set out in Table 1.

The value function V' that the agent has two environmental policy options is illustrated
in Figure 1. The threshold values are calculated as w}s = 0.1494, w% = (0.2423, w}4 = 0.2176,
7% = 0.2793 in the base case. The indifference value of shift variable is & = 0.2476.

We show the results of the comparative-static analysis for the thresholds of the environmental
policies on 7, u, o, y, 7°, and ko in Figures 2-7. Figure 2 shows that the continuation region
H, is increasing in the discount rate r. Let I1(y) = {z;25(y) < = < zl(y)} be the region that
the environmental policy 1 is implemented. Let I>(y) = {z;z > z%(y)} be the region that the
environmental policy 2 is implemented. While the region I is increasing in r, the region Is is
decreasing in r.

Figure 3 shows that the continuation region is decreasing in the expected growth rate of the
shift variable, . While the region I; is decreasing in pu, the region I5 is increasing in y. When p
goes to 0.02075, the assumption (3.10) does not hold. Further, the thresholds of the alternative
environmental policies, x}q and x124, respectively equals to the thresholds w}s and w% of the single
environmental policy.

Figure 4 shows that the continuation region is increasing in the volatility of the shift variable,
o. The regions I; and Iy are decreasing in 0. As in u, when o goes to 0.27923, the assumption
(3.10) does not hold. Further, the thresholds x| and z% respectively equals to the thresholds
x}g and x%

Figure 5 shows the continuation region is decreasing in the stock of pollutant, y. While the
region [I; is decreasing in y, the region I, is increasing in y.

The continuation region H 4 is divided into two regions. The one region is defined by
Hai(y) = {z;2 < 2L(y)}. Hap is the continuation region when the agent has only the en-
vironmental policy 1. The other region is defined by Ha12(y) = {z;2)(y) < = < 2%(y)}. This
region comes from the flexibility that the agent can choose between the environmental policy 1
and 2. Figure 6 shows that the region H 4; is increasing in the emission conversion factor 7°. In
contrast, H 412 is decreasing in 7°. Combining these effects, H is increasing in 4°. While the
region I; is increasing in 7%, the region I, is decreasing in 7°.

Figure 7 shows that the continuation region is increasing in the fixed cost to implement the
environmental policy, ky. The regions I; and I» are decreasing in ky.



5 Conclusion

In this paper, we investigate the environmental policy under uncertainty. We consider that
an economic agent benefits from an economic activity and suffers from the pollutant. Since
the agent has two policy options, the agent must decide that which policy he implements and
when he implements the policy in order to maximize his benefit. To solve the agent’s problem,
we formulate it as an optimal stopping problem[] We first investigate the single environmental
policy and obtain the closed from of the threshold. Next we investigate the alternative envi-
ronmental policies. Unfortunately, the thresholds of policies do not be derived explicitly. So we
conduct numerical analysis and comparative-static analysis. As the representative result, the
continuation region increases in volatility, that is, uncertainty. The policy implementing regions
decreases in volatility. Further, the continuation region increases in the emission conversion
factor that the agent has implemented neither policy 1 nor 2. While the region of implementing
policy 1 increases in the conversion factor, the region of implementing policy 1 decreases in the
conversion factor.

To conclude the paper, we present a number of possible extensions for our model. First, we
leave to examine the effect of technological progress. It plays important role of environmental
policies. As in Second, in this paper, we assume that the dynamics of the economic activity
is deterministic. Since economic development also is uncertain in real world, the dynamics of
the economic activity or the price will be followed by stochastic differential equation. We leave
these topics for future research.
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Table 1: The base case values of parameters and variables

Variable Symbol Value
Parameters

Discount rate r 0.05
Growth rate of economic activity Q 0.01
Price P 10
Growth rate of shift variable 1 0.01
Volatility of shift variable o 0.2
Rate of natural decay 0 0.01
Emission conversion factor for policy 0 ~0 0.05
Emission conversion factor for policy 1 A1 0.03
Emission conversion factor for policy 2 72 0.02
Fixed cost ko )
Proportional cost k1 100
Adjustment cost ko 10000
Variables

Economic activity q )
Stock of pollutant Y 0.1

Policy 0 means that the agent has implemented neither the environmental policy
1 nor 2.
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Figure 1: Value function of two environmental policy options.
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Figure 3: Comparative statics of thresholds with respect to p.
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Figure 5: Comparative statics of thresholds with respect toy.

Figure 6: Comparative statics of thresholds with respect to 0.
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Figure 7: Comparative statics of thresholds with respect to ko.




