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Abstract 
The municipal water and wastewater sector is considered to be the most capital 
intensive industrial sector. Naturally, any methodology that has the potential to improve 
capital allocation decision making, has the potential to make a positive financial 
contribution to this sector. Most managers are aware of the power of calculating the Net 
Present Value (NPV) of an investment decision using Discounted Cash Flows (DCF). 
The problem with DCF based NPV analysis is that the inherent value of future project 
options is not modeled. In this study, we consider a small resort-based municipality 
faced the question of how big to make their new wastewater treatment facility to meet 
the expanding demand of 10% growth in the number of new residential connections to 
the wastewater treatment infrastructure. Since a significant number of new dwellings are 
second “weekend” homes, the planners felt strongly that growth rates were tied to the 
strength of the market index. Here we set the model framework for considering optimal 
plant size based on correlation assumptions of municipal growth to the market index. 
The model takes on the form of an Asian option. The results show that the greater the 
(assumed) correlation, the smaller the required plant size. Penalty costs associated with 
not building a large enough plant are hedged in the market. This paper sets that basis 
for future analysis of staged plant expansion analysis. 
 

Introduction 
The municipal water and wastewater industrial sector is considered to be one of the 
most capital intensive industrial sectors and unfortunately the American Society of Civil 
Engineers (2005) rated the condition of the drinking water and wastewater infrastructure 
systems as poor, citing specifically a lack of investment in capital assets over a 
prolonged period of time. Clearly, methods based on sound financial principles that 
enhance capital asset allocation strategies can add significant value to municipal 
decision makers. It is recognized that projects face future uncertainties. The ability of 
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project managers to react to these uncertainties at a future time adds intrinsic value to 
the project, and this value is not captured by standard discounted cash flow (DCF) / net 
present value (NPV) methods. To adequately account for the uncertainty and its impact 
on the project value, financial engineering methods applied in the financial markets can 
be utilized in “real” capital investment projects. Trigeorgis (1996) provides a thorough 
introduction and review of real option theory and how it can be utilized to enhance an 
entity’s strategy in resource allocation. 
 
While capital asset and project valuation using real options has seen a significant 
research focus over the last 15 years (see, for example Jacoby and Laughton (1992), 
Ingersoll and Ross (1992), Emhiellen and Alaouze (2003), and van Putten and 
MacMillan (2004)), real options theory has seen limited application in the municipal 
infrastructure sector. Of note, Schubert and Barenbaum (2007) discuss how public 
managers can employ real options technique to better value their capital budgeting 
opportunities and improve the efficacy of capital budgeting decisions. 
 
Other studies, Ho and Liu (2002), Garvin and Cheah (2004), consider the application of 
real options to value public infrastructure projects under private management 
arrangements. Arboleda and Abraham (2006) propose a method using real option 
analysis to evaluate capital investments in public infrastructure projects managed by 
private operators. The proposed methodology develops a valuation based on 
deterioration curves of infrastructure and the associated value of flexibility to invest at 
optimal states within the model. 
 
In this study, real option valuation is used to determine the optimal size for a wastewater 
plant expansion required for a small municipality undergoing significant residential 
growth. Specifically, the community is located in a resort area and has experienced 
increases in the growth rates of approximately 10% over the last 15 years. Since a 
significant number of new dwellings are second “weekend” homes, the planners felt 
strongly that growth rates were tied to the strength of the market index1. Assumptions 
based on the strength of the correlation will be examined. 
 

Cost Description 
The municipality charges a fixed fee (currently set at $5000) per new connection. As 
well, customers are charged a fixed and variable rate per usage (an average value per 
customer is assumed in this analysis). The premise of the pricing structure for the 
municipality is that only new customers should pay for the capital cost burden of a plant 
expansion. Thus, a pre-specified margin % of the revenues from connections and 
operations from new customers are dedicated to plant expansion. 

                                            
1 Analysis of the data showed some correlation to the general stock index, but due to the limited amount 
of total connections, confidence intervals on the correlations were very broad. It is likely that a lag exists 
between the market index and the rate of connectivity and analysis of the data showed a lag of 
approximately 9 months. For the analysis presented here the lag was ignored. 
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Gillot et al. (1999) provide a detailed methodology to optimize a wastewater plant based 
on cost. For simplicity, the capital cost to build / expand a plant in this study is assumed 
to have a fixed and variable component only, as follows 
 = α + φplant plant plantC (K) K  (1) 
where Cplant is the present value of the capital cost to build the plant (including any 
salvage value component), K is the design size of the new plant based on number of 
(new) customers, αplant is the fixed cost and Фplant is the variable cost. 

Model Development 
The market index St is assumed to follow a Geometric Brownian Motion (GBM):  
 t S t S t tdS S dt S dW= μ + σ  (2) 
Here, μS and σS are constants representing the rate of growth and volatility of the index, 
respectively, and Wt is a standard Brownian motion (or Wiener process) representing 
the fluctuations.  
 
Similarly, GBM is assumed as an appropriate model for the wastewater connection rate 
Xt – i.e. the number of connections per unit of time, 
 X

t X t X t tdX X dt X dW= μ + σ  (3) 
μX and σX are assumed to be constant, and Wt

X is a second, correlated, Weiner 
process. The correlation between the growth of the connection rate and the market 
index is captured by the correlation coefficient ρ. It is often convenient to decompose 
the correlationed Brownian motions into two independent motions as follows 

 X 2
t t tdW dW 1 dW⊥= ρ + − ρ  (4) 

where W┴
t is a Weiner process independent of Wt. Under the risk-neutral measure, the 

risk-adjusted process 

 S
t t

S

rdW dt dWμ −
≡ +

σ
 (5) 

is a standard Browian motion. Here r is the risk-free rate. Assuming that the market 
price of risk associated with fluctuations uncorrelated to the market is zero (since they 
are not hedgible), we do not risk-adjust the perpendicular component W┴

t . In this case, 
the connection rate becomes 

 ( ) ( )2X
t X S t X t t t

S
dX r X dt X dW 1 dW⊥⎛ ⎞ρσ

= μ − μ − + σ ρ + − ρ⎜ ⎟σ⎝ ⎠
 (6) 

or 

 ( )2
t t X t t tdX rX dt X dW 1 dW⊥= + σ ρ + − ρ . (7) 

Here ( )X
X S

S
r rρσ
≡ μ − μ −

σ
. 

 
Defining Nt as the total number of connections to the plant, then 
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t

t 0 u0
N N X du= + ∫ . (8) 

The rate of income generation from connections is given by 
 ( ) cpi

0 0

r t
t 0 P t 0 Op tI P m X Op m N e= +  (9) 

where P0 is the price to connect at time t = 0, Op0 is the operating price charged per 
customer per unit time at time t = 0, mP0 and mOp0 are the margin % associated with 
income dedicated to the new plant capital requirements from the revenue generated 
from connections and operation, respectively, and rcpi is the rate at which prices 
increase (i.e. the rate of inflation as measured e.g. by the consumer price index). 
 
The present value of the generated income from time t1 to time T is 

 cpi
1 0 01 1

T T u(r r )uPV ru
t ,T u 0 P u 0 Op 0 st t 0
I e I du e P m X Op m N X ds du− −− ⎛ ⎞⎛ ⎞= = + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∫ ∫ ∫ . (10) 

Note that N0 denotes the number of existing customers whose mOp0 fraction of operating 
revenues is dedicated to the new plant expansion. As discussed above, if the number of 
connections exceeds plant capacity, the municipality will face extra costs associated 
with wastewater removal. The cost per each extra connection over capacity is cpir t

0PC e  
and thus the penalty cost (rate) is 
 ( )= − ⋅ cpir t

t t 0PC max 0,(N K) PC e  (11) 

where K is the number of connections at capacity. Assuming the plant expansion will be 
completed by t2, the present value of the penalty cost associated with the plant 
expansion is2 

 ( )− −
+= ⋅ −∫ cpi

2 2

T (r r )uPV
t ,T 0 ut

PC PC e N K du . (12) 

 
Using equations (10) and (12), the net present value of project is  
 

1 2
PV PV
t ,T t ,T plantPV I PC C= − −  (13) 

and the expected value of the NPV under the risk-neutral measure becomes 
 [ ]

1 2
PV PV
t ,T t ,T plantE PV E I E PC C⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦ . (14) 

It should be emphasized that the maximum capacity K is the variable of optimization 
and since the income I is independent of K, the optimization exercise amounts to 
minimizing 

2
PV
t ,T plantE PC C⎡ ⎤ +⎣ ⎦ . 

 
The first term on the right hand side of equation (14) is calculated in a straight forward 
manner, i.e. 

                                            
2 It is assumed that the size of the plant expansion does not impact the construction time. Clearly, penalty 
costs incurred before the plant expansion have no bearing on the optimization. 
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 (15) 

 
where X0 is the initial connection rate. The second right hand side term of equation (14) 
can be written as 

 
( )− −

+

− −

+

⎡ ⎤ ⎡ ⎤= ⋅ −⎣ ⎦⎣ ⎦

⎡ ⎤⎛ ⎞= ⋅ + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫

∫ ∫

cpi
2 2

cpi

2

T (r r )uPV
t ,T 0 ut

T u(r r )u
0 0 st 0

E PC PC e E N K du

PC e E N X ds K du.
 (16) 

The term 
+

⎡ ⎤⎛ ⎞+ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫

u
0 s0

E N X ds K  takes on the form of an Asian option’s payoff. Defining 

 
+

⎡ ⎤⎛ ⎞≡ + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫

T
t t t s tt

v(t,X ,N ) E N X ds K F , (17) 

the solution to v(t,x,y), where Xt and Nt are replaced by the dummy variables x and y, is 
given by the following partial differential equation (PDE) 

 
2

2 21
X2 2

v v v vrx x x 0
t x y x

∂ ∂ ∂ ∂
+ + + σ =

∂ ∂ ∂ ∂
. (18) 

The boundary conditions are determined as follows. For x = 0, v will only depend on the 
total connections, thus 
 ( )+= − ≤ ≤v(t,0,y) y K , 0 t T . (19) 
and similarly at the terminal time, t = T, v is determined by 
 ( )+= −v(T,x,y) y K . (20) 
As per Shreve (2004), there is no mathematical reason to restrict y to positive values 
and by allowing the computational domain to include values of y < 0, the boundary 
condition for y → −∞  gives 
 

y
lim v(t,x,y) 0, 0 t T
→−∞

= ≤ ≤ . (21) 

 

Note that 2

2 1 1
sy y x ds

τ
τ τ τ

= + ∫ , and since x >0 then 
2 1t ty y≥  for τ2 > τ1. Define 

1 maxy yτ ≡  

with ymax > K, then 
2

yτ  will always be in the money and 
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max u t t max

u t t max

u
max s t t maxt

u
max s tt

v(t,x,y ) E y K X x,y y

E y X x,y y K

E y X ds X x,y y K

y K E X X x ds.

⎡ ⎤= − = =⎣ ⎦
⎡ ⎤= = = −⎣ ⎦
⎡ ⎤= + = = −⎢ ⎥⎣ ⎦

⎡ ⎤= − + =⎣ ⎦

∫

∫

 (22) 

From equation (6), 
 ( )r u t

s tE X X x xe −⎡ ⎤= =⎣ ⎦  (23) 
and so equation (22) gives 

 ( )( )r u t
max max

xv(t,x,y ) y K e 1
r

−= − + − . (24) 

Finally, for large x values, set x = xmax, a constant. Thus 

 
( )

+

+

⎡ ⎤⎛ ⎞= + − = =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
+ − −

∫
u

max s t max tt

max

v(t, x ,y) E y X ds K X x ,y y

~ y (u t)x K .
 (25) 

 
The finite difference method was used to solve equation (18). Here, an approximate 
solution to the Asian option is introduced. 
 

Hedging Strategy 
Clearly for values of ρ different from zero, the optimal new plant size will be reduced 
and the costs “extra” penalty costs associated with building a smaller plant can be 
hedged. In this section, the hedging strategy is developed. 
 
Defining the expected present value of the penalty cost at time t, including the (known) 
incurred penalty to t, as 

 
( )

( ) ( )

cpi

t ,T

cpi cpi

t (r r )uPV
t t 0 u0

T t(r r )u (r r )u
0 t t 0 ut 0

G E PC PC e N K du

PC e v t,X , N du PC e N K du

− −

+

− − − −

+

⎡ ⎤≡ + ⋅ −⎣ ⎦

= ⋅ + ⋅ −

∫
∫ ∫

F
 (26) 

then 

 

( )( )cpi cpi

cpi cpi cpi

cpi cpi

T(r r )t (r r )u
t 0 t t

2 2T T T(r r )u (r r )u (r r )u2X
t t t 2t t t

T T(r r )u (r r )u2
X t X tt t

vdG PC e N K v e du
t

v v vrX e du X e du X e du dt
x y 2 x

v vX e du dW 1 X e du dW .
x x

− − − −

+

− − − − − −

− − − − ⊥

⎡ ∂⎛= − − +⎜⎢ ∂⎝⎣
⎞∂ ∂ σ ∂

+ + + ⎟∂ ∂ ∂ ⎠
∂ ∂ ⎤+ρσ + − ρ σ ⎥∂ ∂ ⎦

∫

∫ ∫ ∫

∫ ∫

 (27) 
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The hedge portfolio will consist of the market index and a money market account, such 
that the value of the portfolio is 
 t t t ta S MΠ = +  (28) 
and (in order for the hedge to be self-financing) 
 t t t t t S td a rS dt rM dt a S dWΠ = + + σ . (29) 
Since we aim to hedge away all tradable risks, the appropriate hedge requires equating 
the dW  coefficients resulting in 

 cpi
T (r r )uX t

t 0 t
S t

X va PC e du
S x

− −ρσ ∂
=

σ ∂∫ . (30) 

Clearly, the dollar volatility of this strategy will be cpi
T (r r )u2

0 X t t

vPC 1 X e du
x

− − ∂
− ρ σ

∂∫  - the 

last term in equation (27) which cannot be hedged away. 

Results 
As mentioned above, the municipality in this study is located in a resort area and has 
seen its growth rate increasing at approximately 10% (i.e. μX = 0.1) over a 15 year time 
span. The volatility in the growth rate was approximately 0.16 during this period. For the 
last year, the connection rate, N0, was 81. Current plant capacity is estimated to have 
the ability to accommodate another approximately 200 new connections. The penalty 
cost rate was estimated to be $5000 per connection not served per year3. Construction 
for the wastewater capacity expansion project is estimated to be 3 years. For simplicity 
of analysis, the plant is assumed to have a 20 year lifespan4. Feasibility studies 
conducted by consulting engineers provided estimates of the capital cost for plant 
expansion (and salvage) and for the type and size of plant considered here, αplant was 
estimated to be $3,500,000 and ϕplant to be $860 per connection served (c.f. equation 
(1)). 
 
In this study, the risk-free rate, r, was take as 5% and the inflation rate, rcpi, as 3%. 
Market index parameters were determined to be μS = 0.08 and σS = 0.1. As previously 
noted, due to the sparseness of the data, the correlation between the growth rates of 
the market index and connection rates, ρ, was not determinable with statistical 
significance, but values in the 0.1 to 0.5 range were observed using a number of 
standard methods. 
 
Figure 1 plots the present value of capital cost versus new plant size and the risk-
neutral expected present value of the penalty costs versus new plant size for varying ρ. 
The optimal plant size, i.e. ( )2

PV
plant t ,Tmin C PC+ , is plotted in Figure 2. As expected, the 

                                            
3 It is assumed that if not enough capacity is installed, extra sewage entering the treatment facility will 
need to be hauled to other locations, thus bearing significant yearly costs associated with under design. 
4 The analysis presented here assumes a 23 year time horizon (3 years for construction plus 20 years for 
the life of the plant). Penalty costs after 23 years are ignored – it is assumed that future plant construction 
/ expansion will negate future penalty costs. 
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higher the correlation of the connection rate growth to market growth, the smaller the 
optimal plant size.  

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2

4

6

8

10

12

14

16

18
x 10

7

Size of New Plant

C
ap

ita
l /

 P
en

al
ty

 C
os

t 
($

)

 

 
Capital Cost

Penalty Cost with ρ =0.0

Penalty Cost with ρ =0.2

Penalty Cost with ρ =0.4

Penalty Cost with ρ =0.6

Penalty Cost with ρ =0.8

Penalty Cost with ρ =1.0

 
Figure 1. Present value of capital and risk-neutral expected penalty costs versus size of 
the new plant. 
 
To test the effectiveness of the delta-hedging strategy, simulations were run with ρ = 1.0 
and ρ = 0.5. For ρ = 1.0, the optimal plant size was determined be approximately 3200 
and for ρ = 0.5, 5500. For the results presented here, 1000 sample paths were 
simulated, and the delta hedge was re-adjusted once per week. A sample of 10 paths of 
X, N and S are presented in Figure 3 for ρ = 1.0 and K = 3200 and ρ = 0.5 and K = 
5500.The corresponding delta hedge, value of the money market and the penalty cost 
paths are given in Figure 4. It should be noted that the “money market”, when negative, 
represents the cost associated with paying for the hedge and the penalty. The 
histograms of the accumulated negative of the penalty cost (this amount is equal to -

2

rT PV
t ,Te PC ) and the final money market value are given in Figure 5. Clearly, the hedging 

strategy is not perfect, but increasing the trading frequency and applying a gamma 
hedge would improve it. 
 
The total present value of the “savings” for applying the hedging strategy is given by 
 

2 2

rT PV PV
plant plant T t ,T t ,TSavings C (7400) C (K) M e PC (7400) PC (K)−= − + + −  (31) 
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and the associated histogram is given in Figure 6. For both ρ = 1.0 and ρ = 0.5, the 
municipality has effectively hedged its penalty cost risk in the market, such that if the 
savings associated with building a smaller plant are considered, the municipality comes 
out significantly ahead (approximately $3.5 million for ρ = 1.0 and $1.7 million for ρ = 
0.5). 
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Figure 2. Optimal new plant size versus correlation, ρ. 
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Figure 3. Sample Paths for Xt, Nt and St. 

 
 

0 5 10 15 20 25
0

1

2
x 10

9

Time (y)

a t

Sample Path for Delta Hedge (at) with ρ =  1.0

0 5 10 15 20 25
-10

-5

0
x 10

9

Time (y)

M
t

Sample Path for Money Market Amount (Mt) with ρ =  1.0

0 5 10 15 20 25
0

2

4
x 10

6

Time (y)

PC
t

Sample Path for Penalty Cost (PCt) with ρ =  1.0

 

0 5 10 15 20 25
0

2

4
x 10

8

Time (y)

a t
Sample Path for Delta Hedge (at) with ρ =  0.5

0 5 10 15 20 25
-1

0

1
x 10

9

Time (y)

M
t

Sample Path for Money Market Amount (Mt) with ρ =  0.5

0 5 10 15 20 25
0

1

2
x 10

6

Time (y)

PC
t

Sample Path for Penalty Cost (PCt) with ρ =  0.5

 
Figure 4. Sample Paths for the Delta Hedge, at, Money Market Value, Mt, and Penalty 
Cost, PCt. 
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Figure 5. Histogram of (the Negative of) the Accumulated Penalty Cost, Final Money 
Market Value and (the Negative of) the Accumulated Penalty Cost for Full Plant Size. 
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Figure 6. Histogram of the Present Value of Total Savings. 

Discussion and Conclusions 
It is not likely that many municipalities will now build smaller wastewater treatment 
plants and try to hedge away their potential penalty costs in the stock market. However, 
the methodology developed here provides an initial framework for helping municipal 
planners improve their capital expenditures and an alternative to the current practice of 
extrapolating the growth and building for extreme events forecasted far into the future. 
Shorter term hedging strategies may be applicable with local real estate market indices 
to ward off massive capital requirements in the shorter term. Real hedges can be 
introduced through development / real estate taxes, user fees, or even strategic 
agreements with neighbouring municipalities with respect to load and fees sharing. 
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More importantly, however, the model developed here can now be easily expanded to 
consider staged investment of the facilities. 
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