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1 Introduction

E¢ ciency gains have put a limit to fuel consumption growth in the past. Thus,
according to Geller et al. [4], �nal energy use in major OECD countries would
have been 49% higher in 1998 if intensities (i.e., energy use per unit of activity)
of the di¤erent sub-sectors and end-uses had remained at their 1973 levels.
This trend did not start in 1973, and it is not merely a response adopted by
industrialized countries in the wake of the 1970s oil crises. Energy e¢ ciency
improvements since 1990 have met 52% of new energy service demands in the
world, while new energy supplies have contributed 48% (UNF[14]).
In addition to energy savings, these improvements have another basic im-

pact, namely the avoiding of greenhouse gas (GHG) emissions that go hand
in hand with fossil fuel combustion. To the extent that there is a price for
these emissions, avoiding them has economic value for �rms that operate in an
emissions-constrained environment. This holds also where no such price exists
currently but there is a chance that climate restrictions will be imposed in the

1



future. When investment in long-lived energy assets is assessed, this second
impact clearly cannot be overlooked.
There is a broad consensus (IPCC [9], IEA [6]) that energy e¢ ciency can play

a signi�cant role in curbing GHG emissions while paying for itself. However, in-
vestments that at �rst glance seem worthwhile usually are not undertaken. This
situation traces in part to the challenge of attracting su¢ cient interest from the
investment community. Mills et al. [11] point out that energy-e¢ ciency ex-
perts (as scientists and engineers) and investment decision-makers simply do
not speak the same language. Fortunately, though, energy-e¢ ciency invest-
ments lend themselves to �nancial analysis. The aim of this paper is to further
contribute to bridging this gap.
Typically, �nancing of these investments will be based on the creditworthi-

ness of the energy user. Therefore, we analyze investments in e¢ ciency (and
savings in energy) from the viewpoint of a �rm or individual that behaves ra-
tionally, i.e., in her best economic interest. The investment or project is valued
like a (real) option that is only exercised at the optimal time and is irreversible
(the �rm cannot disinvest should market conditions turn). The return on this
investment is highly uncertain; this fact, in turn, would lead naturally to a high
discount rate for the cash �ows from the project. Uncertainty emanates from
energy prices and emission allowance prices, but regulatory uncertainty may
come on top of them. Indeed, any action that contributes to lower uncertainty
enhances the opportunity to invest in e¢ ciency gains and energy savings. We
aim to determine the optimal time to invest or, in other words, to learn the
conditions under which the investment should be undertaken.
Note, though, that the current economic downturn does not promote invest-

ments in energy e¢ ciency. At one level, a weaker industrial activity induces
lower carbon emissions. This is already evident in energy markets and car-
bon markets; opportunistic selling by cash-strapped industrial �rms with spare
emission allowances has also played a role. On the other hand, a more cautious
credit market bodes ill for these investments if they are perceived as entail-
ing greater doses of risk than conventional ones. At least for now, funding costs
could include a higher credit-risk premium. In this chapter we deal with the cost
that these investments should involve, given their energy savings and emissions
reductions, for their immediate undertaking to be optimal. This cost must be
interpreted as a total amount, i.e., including whatever public subsidies or other
support measures are established.
Our theoretical model comprises two stochastic processes for fuel (say, nat-

ural gas) price, and emission (say, carbon) allowance price, respectively. With
regard to the carbon price, we consider a standard geometric Brownian mo-
tion (GBM) in two di¤erent scenarios: within a given commitment period (e.g.,
2008-2012), and between two succeeding periods (i.e., the current one and the
immediate post-Kyoto period), presumably separated by a change in climate
regulation with an ensuing jump in carbon prices. In both cases, we are inter-
ested on the value of the emissions avoided yearly over a certain time horizon
(thanks to an investment in energy e¢ ciency). With this goal in mind we derive
the value of a contract that �ts well for our purposes, namely an annuity; if the
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underlying variable follows a GBM this is relatively easy. As for the gas price, we
assume a mean-reverting process in which the long-term equilibrium level grows
deterministically over time. This process is not as general as others available in
the literature (e.g., Schwartz & Smith [12]). However, it has the advantage that
an analytic solution for the value of an annuity can be derived. Thus, the value
of future savings in natural gas consumption (due to an investment in energy
e¢ ciency) over a given time horizon can be computed directly. The key un-
derlying parameters in these processes are estimated from actual market prices.
We can then assess energy-e¢ ciency investments in a fairly realistic setting.
The paper is organized as follows. Section 2 presents the analytical frame-

work. In particular, the stochastic processes for the price of carbon dioxide
and natural gas are speci�ed. Section 3 brie�y introduces some features of the
markets involved. This sets the ground for Section 4, where the underlying
parameters of the carbon price process are estimated, followed by those of the
natural gas price (a detailed description can be found in the Appendix). Section
5 �rst addresses investments that lead to lower carbon emissions. Initially the
deterministic case is considered. We show that, even in this deterministic world,
it may be optimal to postpone investment if pro�t margins are going to increase
in the future. Then we turn to in�nite-lived investments either with constant
costs or increasing costs. Later on, we focus on �nite-lived investments with-
out and with jumps in carbon prices. At a second stage, this section addresses
investments that bring about savings in natural gas both when its equilibrium
price is a constant and grows steadily. Section 6 deals with a case study, namely
a potential investment in either one of two di¤erent gas-�red power stations
that di¤er in their e¢ ciency levels. In particular, we derive the total return to
an increase of a percentage point in the thermal e¢ ciency as a function of the
plant�s production factor (i.e., the time that the plant operates on average over
the year). Section 7 concludes.

2 Stochastic price models

We assume that the emission allowance price follows a non-stationary process
(much like a common stock). Natural gas price, instead, is assumed to be
governed by a stationary process; in particular, there is an anchor value which
may be somehow related to the marginal cost of extraction or the price of a
substitute fuel.

2.1 The emission allowance price

We distinguish two di¤erent settings. In the �rst one the total cap on emission
allowances remains �xed; in other words, the relevant variables fall within a
given emissions trading period (e.g., the current commitment period 2008-2012
of the Kyoto Protocol). In the second, the total cap is tightened and a jump in
the allowance price ensues. This may well be the relevant setting for investments
that have a useful life spanning many years or decades.
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2.1.1 Within a given commitment period

We adopt a GBM process. The allowance price C (say, in e/tCO2) is thus
assumed to evolve along the following path in a risk-neutral world over a given
commitment period:1

dCt = �
�Ctdt+ �CCtdW

C
t ; (1)

where �� � ���C is the expected growth rate of carbon price, which equals the
instantaneous growth rate in the physical world (�) less the risk premium asso-
ciated to uncertainty on carbon prices (�C).2 Besides, �C is the instantaneous
volatility of carbon price changes, and WC

t is a standard Wiener process.
Let Xt � ln(Ct); by Ito�s Lemma:

dXt = (�
� � 1

2
�2C)dt+ �CdW

C
t : (2)

The solution to this di¤erential equation is:

Xt = X0 + (�
� � 1

2
�2C)t+ �C

Z t

0

dWC
s : (3)

It may be shown that changes in Xt are normally distributed with �nite mean
and standard deviation:

Xt �X0 � ln(Ct)� ln(C0) � N((�� �
1

2
�2C)t; �C

p
t): (4)

The time-0 mathematical expectation and the variance are:

E0(Xt) = X0 + (�
� � 1

2
�2C)t; (5)

V ar(Xt) = �
2
Ct: (6)

Now the properties of the log-normal distribution imply that:

E(Ct) = e[E(Xt)+
V ar(Xt)

2 ] = e[X0+�
�t] = C0e

��t; (7)

V ar(Ct) = C20e
2��t(e�

2
Ct � 1): (8)

On the other hand, the time-0 futures price for delivery at time t equals the
expected spot price at that time, E(Ct), in a risk-neutral world:

F (t; 0) = C0e
��t � F (C0; t; 0): (9)

1Thus, all investors are assumed to be risk-neutral, i.e. the only inputs to their decisions
are average values or expected returns; any consideration about risk is dismissed. Risk-neutral
valuation, and the contexts suitable for it, are explained in Dixit and Pindyck [3], Trigeorgis
[13], among others.

2 In the actual or physical world, investors�preferences are sensitive to risk, so risk matters.
This is why -in this world- the emission allowance is expected to command a higher return,
� = �� + �C , to reward investors for the risk they bear.
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For a futures contract with maturity at time T we have: F (T; 0) = C0e
��T .

From this formula and applying Ito�s Lemma we can derive the di¤erential
equation that the futures price satis�es:

dF

dC0
= e�

�T ;
d2F

dC20
= 0;

dF

dT
= ��C0e

��T = ��F:

Hence:

dFt = �CFtdW
C
t : (10)

This means that the time-t expected value of the futures contract maturing at
T is exactly the same as it had at time 0. And so it must be, since the contract
involves no payment at the outset.
Let Yt � ln(Ft). Hence, by Ito�s Lemma:

dYt = �
1

2
�2Cdt+ �CdW

C
t : (11)

Therefore, we have two alternative procedures to simulate F (T; t) by Monte
Carlo:
a) one is to simulate the allowance price C in the risk-neutral world. Once

we have a simulated price at t, the futures price for delivery at T would be:
F (T; t) = C0e

��(T�t).
b) the other one is to directly simulate the futures price at time t for delivery

at T by means of equation (11).
The solution to equation (10) is:

F (T; t) = F (T; 0)e[�
1
2�

2
Ct+bWt]: (12)

This implies that it is not necessary to set a step-by-step path for some valu-
ations. By equation (11), the change in Y from 0 to t is normally distributed
with mean � 1

2�
2
Ct and variance �

2
Ct:

Yt � Y0 � ln(F (T; t))� ln(F (T; 0)) � N(�
1

2
�2Ct; �C

p
t) (13)

In the valuation of a European call option (on a futures contract) with expiration
at t, the former result in equation (13) can be directly applied.
Last, the expected value of an annuity from time �1 to �2 is:

V�1;�2 =

Z �2

�1

e�rtE(Ct)dt = C0

Z �2

�1

e�rte�
�tdt =

e(�
��r)�2 � e(���r)�1

�� � r C0:

(14)
This result will prove useful when we try to compute the value of 1 tCO2 avoided
yearly between two given dates.
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2.1.2 Between two succeeding periods

When one emissions trading period expires, if there is a drop in the number
of allowances for the next one, then presumably the carbon price will jump.
The size of the jump in a risk-neutral world can be inferred from the quotes on
futures markets. For two consecutive periods, we could assume the following
two equations:

dC1t = �
�
1C

1
t dt+ �C1C

1
t dW

C1
t ; for 0 0 t < �; (15)

dC2t = �
�
2C

2
t dt+ �C2C

2
t dW

C2
t ; for � 0 t; (16)

where � denotes the time when one commitment period expires and the next one
starts (there is no uncertainty regarding this time). In this setting C2� = J

�C1� ,
where J� = J��J stands for the percentage jump; J would be the jump in the
physical world whereas �J would be the risk premium associated to jump size
uncertainty. Note that the two commitment periods do not overlap in time, so
that the di¤erentials to the Wiener processes dWC1

t and dWC2
t are unrelated.

By Ito�s Lemma,

dX1
t = (�

�
1 �

1

2
�2C1)dt+ �C1dW

C1
t ; (17)

dX2
t = (�

�
2 �

1

2
�2C2)dt+ �C2dW

C2
t : (18)

The solution to the di¤erential equation (17) at time � when the �rst period
expires is:

ln(C1� ) � X1
� = X

1
0 + (�

�
1 �

1

2
�2C1)� + �C1

Z �

0

dWC1
s : (19)

Therefore,

E0(X
1
� ) = X

1
0 + (�

�
1 �

1

2
�2C1)� ; (20)

V ar(X1
� ) = �

2
C1� : (21)

If now we let Lt � ln(C2t ) = ln(J�C1t ), then we have for time � when change
happens:

L� � ln(J�C1� ) = lnJ� +X1
0 + (�

�
1 �

1

2
�2C1)� + �C1

Z �

0

dWC1
s � X2

� : (22)

The solution to the di¤erential equation (18) is:

X2
t = X

2
� + (�

�
2 �

1

2
�2C2)(t� �) + �C2

Z t

�

dWC2
s : (23)
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Substituting the right-hand side of (22) into (23) we get:

X2
t = ln J

�+X1
0+(�

�
1�
1

2
�2C1)�+�C1

Z �

0

dWC1
s +(��2�

1

2
�2C2)(t��)+�C2

Z t

�

dWC2
s :

(24)
The time-0 mathematical expectation is:3

E0(X
2
t ) = lnJ

� +X1
0 + (�

�
1 �

1

2
�2C1)� + (�

�
2 �

1

2
�2C2)(t� �): (25)

The variance is:

V ar(X2
t ) = �

2
C1

Z �

0

ds+ �2C2

Z t

�

ds = �2C1� + �
2
C2(t� �); (26)

thus, the standard deviation equals:q
�2C1� + �

2
C2(t� �): (27)

The futures price at time 0 for delivery at t � � is therefore:

F (t; 0) = e[E(Xt)+
V ar(Xt)

2 ] = e[ln(J
�)+X1

0+�
�
1�+�

�
2(t��)] = J�C10e

[��1�+�
�
2(t��)]:

(28)
Or, equivalently,

ln(F (t; 0)) = ln(J�) + ln(C10 ) + �
�
1� + �

�
2(t� �): (29)

The expected value of an annuity enjoyed from �1 to �2 when we go from
one commitment period to the next one (�1 � � < �2) is:

V�1;�2 = C10

Z �

�1

e(�
�
1�r)t dt+

Z �2

�

e�rtJ�C10e
[��1�+�

�
2(t��)]dt = (30)

= C10
e(�

�
1�r)� � e(��1�r)�1

��1 � r
+ J�C10e

(��1��
�
2)�

Z �2

�

e(�
�
2�r)tdt = (31)

= C10
e(�

�
1�r)� � e(��1�r)�1

��1 � r
+ J�C10e

(��1��
�
2)�
e(�

�
2�r)�2 � e(��2�r)�

��2 � r
:(32)

Thus, the higher the initial allowance price on the spot market, C10 , the size
of the jump, J�, and the drift rates ��1 and �

�
2, the higher will be the value of

avoiding the yearly emission of one tonne of carbon dioxide between �1 and �2.4

3Note that, in the particular case in which no jump takes place, i.e., J� = 1, and ��1 =
��2 = �� and �C1 = �C2 = �C , it follows that: E0(X2

t ) = X1
0 + (�

� � 1
2
�2C)t, which closely

matches equation (5).

4Note that, in the particular case in which J� = 1, ��1 = ��2 = ��, and �C1 = �C2 = �C ,

it follows that: V�1;�2 = C
1
0
e(�

��r)�2�e(�
��r)�1

���r , which closely resembles equation (14).
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2.2 The price of natural gas

We assume a mean-reverting process for gas price G (say, in e/MWh) in which
the long-run equilibrium level (Gm(t)) grows deterministically over time at a
rate � from its initial value Gm(0). One advantage of this process is that, unlike
others available in the literature (for instance, Schwartz and Smith [12]), it is
possible to derive an analytic solution for the value of an annuity between two
certain dates. Speci�cally, in a risk-neutral world:

dGt = kG(G
�
m(t)�Gt)dt+ �GGtdWG

t = (33)

= kG(Gm(t)�
�G
kG

�Gt)dt+ �GGtdWG
t ; (34)

where G�m(t) � Gm(t) � �G=kG = Gm(0)e
�t � �G=kG. In this expression kG

denotes the speed of reversion towards the equilibrium level, and �G stands
for the risk premium related to gas price uncertainty. �G is the instantaneous
volatility of gas price changes, and WG

t is a standard Wiener process.
The expected value satis�es:

E(dGt)

dt
= kGGm(0)e

�t � �G � kGE(Gt); (35)

so we know that:

E(dGt)

dt
ekGt + kGE(Gt)e

kGt = kGGm(0)e
(�+kG)t � �GekGt: (36)

After integration:

E(Gt)e
kGt =

kGGm(0)e
(�+kG)t

� + kG
� �Ge

kGt

kG
+K: (37)

At time t = 0 :

K = G0 �
kGGm(0)

� + kG
+
�G
kG

(38)

Therefore,

E(Gt) = G0e
�kGt +

kGGm(0)(e
�t � e�kGt)

� + kG
+
�G
kG
(e�kGt � 1): (39)

As a consequence, the present value of an annuity from �1to �2 would be:5

5 It would not be the value of a futures contract for delivery between �1 and �2. Rather, it
would be the present value of such a contract.
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V�1;�2 =

Z �2

�1

e�rtE(Gt)dt = (40)

e�(kG+r)�1 � e�(kG+r)�2
kG + r

[G0 +
�G
kG

� kGGm(0)
� + kG

] + (41)

+
kGGm(0)

� + kG

e�(r��)�1 � e�(r��)�2
r � � � �G

kG

e�r�1 � e�r�2
r

: (42)

Now, let Yt � ln(Gt); then:

dYt = kG(
G�m(t)

Gt
� 1� 1

2
�2G)dt+ �GdW

G
t : (43)

Consider the speci�c case when � = 0 (so Gm(t) = Gm 8t) and �2 = �1 + 1; we
would have:

E(Gt) = G0e
�kGt +Gm(1� e�kGt) +

�G
kG
(e�kGt � 1):

Hence,

E(G1) = Gm �
�G
kG

� G�m; with kG > 0:

Therefore, the value a futures contract for delivery in one year

F�1;�1+1 =

Z �1+1

�1

E(Gt)dt = G
�
m +

G�m �G0
kG

[e�kG(�1+1) � e�kG�1 ]: (44)

This would be the price of a contract for delivery of one unit of the underlying
commodity (natural gas) in one year. For instance, if the unit is meant to be
delivered every hour over a year, multiplying this amount by the number of
hours in a year (365 � 24 = 8,760) we would get the value of receiving hourly
the amount of gas equivalent to 1 MWh. Besides, if the reversion speed kG is
very high, then:

F�1;�1+1 t G�m � Gm �
�G
kG
; (45)

since in this case E(Gt) t Gm��G
kG
. And the model becomes quasi-deterministic.6

Last, when G�m = G0 we get an exact (as opposed to approximate) value:

F�1;�1+1 = G
�
m � (Gm �

�G
kG
):

6This is so becuase, in our model, there is no uncertainty on the long-term equilibrium
level Gm. In a model with such a source of risk, the solution would not be that simple, but
this is beyond the scope of our paper.
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Table 1 shows the value of the term in brackets [e�kG(�1+1) � e�kG�1 ] in
equation (44) as a function of kG and �1. For reversion speeds greater than 10,
in practice the value of the coe¢ cient is negligible.

Table 1. Value of the coe¢ cient in equation (44).
kG �1 = 0.5 �1 = 1 �1 = 2 �1 = 3 �1 = 4 �1 = 5 �1 = 10 �1 = 20
1 0.3834 0.2325 0.0855 0.0315 0.0116 0.0043 0.0000 0.0000
2.5 0.1052 0.0301 0.0025 0.0002 0.0000 0.0000 0.0000 0.0000
5 0.0163 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 Basics of the two markets involved

3.1 The EU carbon market

The EU Emissions Trading Scheme (ETS) is the world�s largest market in emis-
sions. It is a system whereby CO2 emission permits are traded. It covers
over 10,000 installations which are collectively responsible for some 45% of CO2
emissions.7 Thus, EU �rms now face a carbon-constrained reality in form of
legally binding emission targets.8 Operations started o¢ cially on January 1st
2005. The �rst phase went from 2005 to 2007 and was considered as a trial or
"warm-up" period aimed at getting the scheme "up and running". The second
allocation phase, 2008-2012, coincides with the Kyoto commitment period.
EU member states face a cap on annual emissions, namely the ETS total,

i.e. the quantity of allowances that are allocated to each country.9 Right now
EU member states�National Allocation Plans for the period 2008-2012 are be-
ing approved by the European Commission. Signi�cant uncertainty remains
concerning the emissions reductions targeted in them. Still greater uncertainty
surrounds the post-Kyoto scenario. The negotiations on the successor to KP are
scheduled to conclude in December 2009 (Copenhagen). In addition, a number
of institutional arrangements are being proposed elsewhere by di¤erent players
to cut their emissions. If and how these schemes will be ultimately linked to the
EU ETS is the subject of much debate.
These markets periodically face a restriction in supply, with prices jumping

accordingly at those times. However, the time of the jump is usually known in

7Currently the ETS covers four broad sectors: iron and steel, certain mineral industries,
energy production, and pulp and paper. Transport and households, among other sectors, are
not covered by the ETS.

8Firms whose emissions exceed the allowances they hold at the end of the accounting period
must pay a �ne (during the pilot period, e40 for each extra metric ton of CO2 emitted, and
e100 during the commitment period). Those �ned must also make up the de�cit by buying
the relevant volume of allowances (Convery and Redmond [2]).

9See Convery and Redmond [2] for a thorough description of the ETS including its insti-
tutional and legal framework.
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advance, and coincides with the end of a trading period in allowances.10 If the
latest EC proposal goes ahead, this framework is going to change. Thus, over
the third period, there will be a yearly jump as the total cap on the number of
allowances is reduced on a yearly basis.11 If we focus on the current commitment
period of the Kyoto Protocol (2008-2012), presumably the price would show an
increasing pro�le if demand grows while supply remains the same.
In anticipation of the establishment of the ETS, beginning in 2004, a futures

market in allowances developed. Contracts on emission allowances are traded on
di¤erent platforms (in addition to over-the-counter markets). Due to its volume
of operations and liquidity, the European Climate Exchange (ECX, London
UK) stands apart. The ICE ECX CFI futures contract is a deliverable contract
where each Clearing Member with a position open at cessation of trading for
a contract month is obliged to make or take delivery of emission allowances
to or from National Registries. Contract size is 1,000 metric ton of carbon
dioxide equivalent gas. Prices are quoted in euros/metric ton. As this paper
was developed, there were futures contracts for both the commitment period
(2008-2012) along with contracts maturing in December 2013 and December
2014. Therefore, when proposing a model for the behavior of permit prices, one
must allow for two possibilities: either only one period is involved because our
relevant period is devoid of allowance cuts (e.g., operations over 2008-2012), or
more than one period is involved (as in the May-2008 price of a futures contract
maturing in May-2013).

3.2 The EEX natural gas market

The European Energy Exchange AG (EEX) was established in 2002 as a result
of the merger of the two German power exchanges in Frankfurt and Leipzig. It
has established a leading trading market in European energy trading. Despite
being one and only one exchange, it operates several sub-markets: (a) EEX
spot market (Day ahead and intraday): power; (b) EEX spot market (Day
ahead): natural gas, emission allowances; (c) EEX derivatives market (futures
and options): power, natural gas, emission allowances, coal. Regarding natural
gas, in particular, EEX holds an interest in store-x GmbH (Storage Capacity
Exchange), an internet platform for secondary trading in storage capacities for
natural gas, and in trac-x GmbH (Transport Capacity Exchange GmbH), an
internet platform for natural gas transport capacities.

10There may be some uncertainty with regard to the size of the jump. Yet, once the National
Allocation Plans have been approved by the European Commission, little (if any) uncertainty
remains about when the jump will happen.
11 In a Poisson distribution jumps occur randomly. Thus, it does not seem to be adequate

for our purposes.
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4 Estimation of the price models

4.1 The GBM process for the allowance price

Figure 1 shows the time pro�le of the allowance price. We have plotted the
futures prices for maturities Dec-2008, Dec-2012, and Dec-2014. Thus there
are already contracts that fall within two succeeding periods. We have also
plotted a spot price series. The �rst part of it has been computed by means of
cubic splines; speci�cally, each day we draw a curve that passes through all the
points in the price/time space for which futures prices are available. This task
ceased to be necessary when a spot price became available (from BlueNext, in
the beginning of the commitment period).
[INSERT FIGURE 1 ABOUT HERE]

4.1.1 Within a given commitment period

If the initial spot price C0 is known, it is necessary to estimate only �� and �C
(see equation (5)). In general, it will not be possible to get a consistent estimate
of the drift rate in the actual world, �, since the estimator variance is going to
be very large. However, the parameter �� � ���C can be estimated from (the
natural log of) futures prices. Our sample consists of ICE ECX CFI futures
prices from May-1-2006 to December-23-2008. In our computations below we
use the estimate b�� = 0.039229.
[INSERT FIGURE 2 ABOUT HERE]
Allowance price volatility can be estimated in several ways from di¤erent

sources, among them the historical volatility from spot prices and futures prices;
see Figure 3. We choose the volatility of the spot price over the second semester
of 2008, which is �C = 0.4393. With these values of drift rate and volatility we
can evaluate investments that avoid carbon emissions within a given commit-
ment period only.
[INSERT FIGURE 3 ABOUT HERE]

4.1.2 Between two commitment periods

If the initial spot price C10 is known, it su¢ ces to estimate �
�
1, �

�
2, J

�, and
�C (= �C1 = �C2 by assumption), as can be seen in equation (25). We have
three parameters to estimate (plus volatility). We have run three regressions
with the whole sample (3,790 observations), the year 2008 (1,635 observations),
and the second half of 2008 (namely, 875 observations). Again, the sample
consists of ICE ECX CFI futures prices. Since the estimates of b��1 and b��2
derived from the last sub-samples are very similar, we run another regression
assuming they are the same. The results are: b��1 = b��2 = 0.039098, and [lnJ� =
0.035701. We are going to use these estimates for the valuation of investments
that enhance energy e¢ ciency over two carbon trading periods. As for volatility,
�C (= �C1 = �C2) is assumed to be the same as within a given commitment
period; thus �C = 0:4393. It is not obvious to us why or how it should di¤er
from it.
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4.2 The process for natural gas price

Figure 4 shows both the spot price and the Dec-12 futures price (source: EEX,
Leipzig). As shown in equation (39), we need estimates of Gm, kG, �G, �G; for
discounting purposes we will also need a value of r. We derive the parameters
sequentially. In particular, Gm, kG, and �G are estimated with data from the
physical world, whereas �G is derived from futures market data. We assume
throughout that � = 0; in the sections below we consider investments when gas
prices are expected to increase at a certain rate � 6= 0.
[INSERT FIGURE 4 ABOUT HERE]
Our sample consists of EEX natural gas contracts from October-1-2007 to

December-30-2008. From the whole sample with all the contracts we get an
average of b�G = �96:5439. This suggests that the futures price has been well
above the long-run equilibrium level Gm over the period considered. See Figure
5.
[INSERT FIGURE 5 ABOUT HERE]
In the sections below we use the estimates: Gm = 25.0146, kG = 20.0103,

�G = 13.97,�G = 0.6742, and r = 0.045. The value of �G corresponds to
12/30/2008, the last day of the series; also, the price of natural gas is 24.40
e/MWh (= G0 in our computations below). Last, regarding the risk-free rate,
r, we adopt an ad hoc value assumed to apply for the long term.

5 Valuation of projects to improve e¢ ciency

Many investment projects are not projects to be assessed on a now-or-never
basis. Therefore, bene�ts and costs arising from immediate investment are not
the only ones to be computed. In general, projects to enhance e¢ ciency can
be considered as American-style options. In principle, it would be possible to
decide when to undertake them depending on the economic pros and cons. Once
the decision is made, we will assume that certain investment costs are incurred;
if these are disbursed over time, their present value must be computed. Con-
versely, (market-valued) bene�ts will start only upon completion of the project.
From then on, they will be enjoyed over the whole useful life of the facility
where e¢ ciency is meant to be enhanced. We must also consider the e¤ect of
uncertainty on carbon and gas prices as shown below.

5.1 Investment in carbon-avoiding projects

5.1.1 Within a given commitment period: The deterministic case

Constant investment cost We assume that the process for the allowance
price is known and conforms exactly to the futures market curve. In this case,
the optimal time to invest T �must be determined. We have to asses whether it
is better to invest immediately or rather to wait.
Let I denote the disbursement that is necessary to avoid 1 tCO2 yearly.

We assume that, one year upon that outlay, the savings (or revenues) from
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spare allowances will accrue over the next 30 years. The present value of the
investment if it is undertaken at a future time T is:

[V (CT )� I]e�rT = aC0e(�
��r)T � Ie�rT ; (46)

where, from equation (14), we have a �
�
e31(�

��r) � e(���r)
�
=(�� � r) =

27:3881. Di¤erentiating with respect to T , the optimal time to invest happens
to be:

aC0(r � ��)e�
�T� = rI ) T � =

ln(rI)� ln[aC0(r � ��)]
��

: (47)

In particular, for immediate investment to be optimal (T � = 0), it must be
rI � aC0(r � ��); hence, I � aC0(r � ��)=r. If the current (time-0) spot price
is C0 = 15:23 e/tCO2, with a growth rate �� = 0:0392 and r = 0:045, we can
compute I = 53:4935 e/tCO2. This is signi�cantly lower than the threshold
derived when it is possible to invest only at time 0: I = aC0 = 417:12 e/tCO2.
In other words, when there is an option to delay investment in a carbon-

avoiding project, immediate investment (overlooking the option to wait) only
makes �nancial sense if it signi�cantly cheaper than in the future. Thus, the
possibility to choose the optimal time to invest is very relevant even in a deter-
ministic setting. This is mainly due to the lower present value of the investment,
I:

Increasing investment cost Assume that the initial outlay is determined
by IT = I0e�T , where � is the rate of growth. In this case, the present value of
the investment will be:

[V (CT )� IT ]e�rT = aC0e(�
��r)T � I0e(��r)T : (48)

Di¤erentiating with respect to T , the optimal time to invest can be derived

e(�
���)T� =

I0(r � �)
aC0(r � ��)

) T � =
ln(I0(r � �))� ln[aC0(r � ��)]

�� � � : (49)

If � = r , i.e., the investment cost grows at the risk-less interest rate, we
have:

[V (CT )� IT ]e�rT = aC0e(�
��r)T � I0: (50)

If �� � r < 0, then the optimal time to invest (assuming NPV>0) would be
T = 0. Therefore, at time 0 the investment cost should be equal to or less than
I = aC0 = 417:12 e/tCO2. And if �� � r > 0, then the optimal decision would
be to postpone investment as further into the future as possible.
For a growth rate 0 � � � r, we get values of I ranging between 53:4935

e/tCO2 and 417:12 e/tCO2. This attests to the importance of the expected
cost path for investing in e¢ ciency technologies, even in a deterministic case.
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5.1.2 Within a given commitment period: In�nite-lived American
options

It is hardly realistic to think that we have an option to undertake an investment
at any time whatever it stretches into the future. However, if the time to
maturity or possible exercise is long enough, the perpetual option (which has an
analytic solution) may be both a good approximation and a benchmark against
which we can assess the goodness or reliability of �nite-lived option values.

Constant investment cost Let H denote the value of a perpetual option
to invest in a project the value of which V depends in turn on the emission
allowance price C governed by a GBM. Then, H(C) satis�es the following dif-
ferential equation (Dixit and Pindyck [3]):

1

2
�2CC

2HCC + �
�CHC = rH;

Let the solution be H(C) = A1C1+A2C2 , where A1 and A2 are constants
to be determined, with 1 > 0 and 2 < 0. Since H(0) = 0 it must be A2 = 0;
therefore: H(C) = A1C1 . The �rst and second partial derivatives are: HC =
1A1C

1�1; HCC = 1(1 � 1)A1C1�2. So the di¤erential equation can be
rewritten as:

1

2
�2C1(1 � 1) + ��1 � r = 0: (51)

Hence, 1 is a function of �
�, �C , and r. With �� = 0:039229, �C = 0:4393 and

r = 0:045 we get 1 = 1:0413074.
The above solution is valid on the range of carbon prices for which it is

optimal to hold the option (as opposed to exercise it and invest in the project).
This range extends from zero to an investment threshold C�. Of course, C� is
itself an unknown, to be determined as a part of the solution along with A1.
We consider the behavior of H(C) at C�, i.e., the so-called value-matching and
smooth-pasting conditions. The value-matching condition states that the value
of the option must equal the net value obtained by exercising it:

Value-Matching : A1(C�)1 = V (C�)� I:

Again, we can interpret I as the investment required to avoid 1 tCO2 per year.
We assume that, starting one year upon this outlay, revenues are received over
30 years. Therefore:

V (C�) = C�
e31(�

��r) � e(���r)
�� � r = aC� = 27:3881C�;

where a =
�
e31(�

��r) � e(���r)
�
= (�� � r). The value-matching condition thus

reduces to:

A1(C
�)1 = aC� � I:
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The smooth-pasting condition states that the graphs of H(C) and V (C)� I
should meet tangentially at C�:

Smooth-Pasting : 1A1(C
�)1�1 = a:

Solving for A1 in both conditions and equalizing we get:

aC�(1� 1

1
) = I: (52)

If we were dealing with a certain project with a known investment cost, I,
from this expression we could derive the trigger carbon price, C�, above which
investment would be optimal. And the other way round; given a certain value
C�, investment will take place if its cost is less than or equal to I�:

I� = aC�(1� 1

1
) = 1:0864653C�:

It is possible to analyze how volatility �C a¤ects this result. See Table 2. In
the case of null volatility (�C = 0), we are back in the deterministic setting, case
with I�=aC� = 53.4935/417.12 = 0.1282. From equation (51), as �C increases
1 decreases, and therefore (1� 1=1) decreases. The greater is the uncertainty
on future carbon prices, the smaller is the wedge between I and V �, that is, the
lower is the investment threshold that the �rm will demand before it is willing
to undertake the investment.

Table 2. Sensitivity of investment threshold to carbon price volatility.
�C 0.00 0.10 0.20 0.30 0.40 0.4393 0.50

I�=aC� 0.1282 0.1140 0.0863 0.0621 0.0448 0.0397 0.0331

Increasing investment cost In this case we have dI = �Idt or, equiva-
lently, It = I0e�t. The value of the perpetual option H(C; I) must satisfy the
di¤erential equation:

1

2
�2CC

2HCC + �
�CHC + �IHI = rH; (53)

with boundary conditions:

H(C�; I) = V (C�)� I = aC� � I; (54)

HC(C
�; I) = a; (55)

HI(C
�; I) = �1: (56)

Following Dixit & Pindyck [3], if the current values of both C and I are
doubled, that will merely double the value of the project and also the cost of
investing. The optimal decision should therefore depend only on the ratio x �
C=I. Correspondingly, the value of the option H(C; I) should be homogeneous
of degree 1 in (C; I) enabling us to write:
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H(C; I) = Ih(
C

I
) = Ih(x); (57)

where h is now the function to be determined. The derivatives are:

HC = h
0(x); (58)

HCC =
1

I
h00(x); (59)

HI = h(x)� xh0(x): (60)

Substituting the partial derivatives in the di¤erential equation (53) we get:

1

2
�2Cx

2h00(x) + (�� � �)xh0(x) + (� � r)h(x) = 0: (61)

This is an ordinary di¤erential equation. Let the solution be h(x) = A1x1+
A2x

2 , with 1 > 0 and 2 < 0. If x ! 1 then A2 = 0. Therefore h(x) =
A1x

1 . In this case the value-matching and smooth-pasting conditions would
be:

H(C�; I) = V (C�)� I = aC� � I =) h(x�) = ax� � 1; (62)

h0(x�) = a: (63)

Hence, using h(x) = A1x1 , these conditions imply:

A1 = (ax� � 1)(x�)�1; (64)

A1 =
a

1
(x�)�1+1: (65)

Equating both equations:

x� � C�

I�
=

1
a(1 � 1)

: (66)

On the other hand, substituting h(x) in equation (61) we get:

1

2
�2C

2
1 + (�

� � � � 1
2
�2C)1 + (� � r) = 0; (67)

which allows to compute 1 as a function of �
�, �, �C , and r.

If � = r then we have:

1 =
+2� + �2C � 2��

�2C
:

With the same data as in the former case we compute 1 = 1:05980792. There-
fore x� � C�=I� = 1=a(1 � 1) = 0:6470 or, equivalently, I� = 1:5456C�.
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Table 3 shows how carbon price volatility �C in�uences this result. For
a volatility that approaches zero, we get the result of the deterministic case:
with � = r = 0.045, and �� = 0.039229, we have (�� � r) < 0 and immediate
investment would be optimal, so I = aC0, or I�=aC� = 1. A high volatility
translates into the requirement of a lower investment cost in comparison to
pro�ts (as measured by aC�).

Table 3. Sensitivity of investment threshold to carbon price volatility.
�C 0.00 0.01 0.10 0.20 0.30 0.40 0.4393 0.50

I�=aC� 1.000 0.9914 0.5358 0.2239 0.1137 0.0673 0.0564 0.0441

Comparing these �gures with those in Table 2 we can see that the wedge
between I and V � widens. Given that the investment cost is now assumed to
increase over time, waiting is less attractive than before, and the �rm is ready
to invest at higher investment thresholds.

5.1.3 Within a given commitment period: Finite-lived American op-
tions

Without jumps in carbon price Now we want to determine the value of
an option to invest in avoiding carbon and the optimal investment rule when
the option is available between time 0 and T. Again, the costs of the initial
disbursement increase over time: It = I0e�t, with 0 � t � T .
Consider the value of the opportunity to invest when the time to do it can

be chosen optimally. At the �nal moment t = T , there is no other option but
to invest right then or not to invest. The decision to undertake the investment
is made if the present value of revenues exceeds that of costs:

NPV = PV (Revenues)� PV (Expenditures) > 0:

A binomial lattice is arranged with the following values in the �nal nodes:

W = max(NPV; 0):

In previous moments, that is, when 0 � t < T , depending on the current
carbon price, we compute the present value of investing (NPV ) and compare
it with the value of waiting to invest (i.e., keeping the option alive). We choose
the maximum between them:

W =Max(NPV; e�r�t(puW
+ + pdW

�));

where pu stands for the probability that carbon price will move upwards (+) in
the next step, and pd � (1� pu) is the probability that it will move downwards
(�).
The lattice is solved backwards, which provides the time-0 value of the option

to invest. If we compare this value with that of an investment made at the outset
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(on a now-or-never basis), the di¤erence will be the value of the option to wait.
Obviously, this option�s value will always be nonnegative.
The lattice can be arranged so that the risk-neutral probabilities amount to

one:

pu + pd = 1; (68)

and the second non-centered moment satis�es:

E(�X2) = �X2 = (�� � �
2
C

2
)2�t2 + �2C�t; (69)

if we ignore the e¤ect of �t2 then:

�X = �C
p
�t: (70)

Similarly, for the average values:

E(�X) = (�� � �
2
C

2
)�t = pu�C

p
�t� pd�C

p
�t = �C

p
�t(2pu � 1); (71)

hence we get:

pu = 0:5 +
(�� � �2C

2 )
p
�t

2�C
: (72)

By changing the initial level of the emission allowance price it is possible to
determine the carbon price at which the option value switches from positive to
zero. This will be the optimal exercise price at t = 0, i.e., the �rst time that C
drops to this level the investment must be undertaken immediately. Similarly,
arranging a binomial lattice for the investment opportunity with maturity t <
T and changing the carbon price, the optimal exercise price for intermediate
moments is determined.
At the initial date with (C� =) C0 = 15:23 e/tCO2, investment is realized

only if NPV > 0. The optimal point to invest will be found by computing the
investment threshold I� for which NPV = 0. For an investment opportunity
with a time horizon of 20 years, and 120 steps per year, we get the values in
Table 4.12 Again, with �C = 0 we are in the deterministic case: I� = aC� =
417.12 e/tCO2 avoided. One carbon tonne worth 15.23e avoided yearly over
30 years implies gross (undiscounted) savings of 456.9e, so investing when the
cost is 417.12 e per tonne avoided looks sensible. The third column shows that
this amount falls steadily as volatility increases. Regarding the second column,
consider for example the case when �C = 0:10. With a constant investment
cost (� = 0) we get I� = 47.9353. Dividing it by aC� = 417.12 we get a ratio
of 0.1149, which is rather close to the amount of I�=aC� = 0.1140 that appears
in Table 2 for an in�nite-lived option to invest.
12The time period during which the oportunity to invest is available is assumed to be 20

years. This is not to be confused with the useful life of the project, i.e., the number of years
that it will save costs or bring revenues, which is 30 years (starting one year after completion).
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Table 4. Trigger investment cost I� (e/tCO2) with 20 years to invest.
�C � = 0 � = r = 0:045
0 53.4935 417.1213
0:01 53.5188 414.1991
0:05 52.0322 356.0297
0:10 47.9353 268.1841
0:15 43.0379 196.2400
0:20 38.2911 142.8354
0:25 33.8406 104.4757
0:30 29.6311 77.2141
0:35 25.7001 57.8435
0:40 22.1420 43.9916
0:4393 19.6494 35.8828
0:45 19.0178 34.0063
0:50 16.3390 26.7303

5.1.4 Between two trading periods: Jumps in carbon price

In this case we use the parameter estimates b��1 = b��2 = 0:039098 and [lnJ� =
0:035701, along with �C = 0:4393. We assume that the investment takes one
year to build so pro�ts do no start �owing until this period is over.
If investment takes place in the second period, or in the �rst one with less

than one year to its end, the value of revenues at the time the decision is made
is (see equation (14)):

V�1;�2 = C
2
0

e(�
��r)�2 � e(���r)�1

�� � r : (73)

However, if the decision is made in the �rst period a year or more before its
end, the value of revenues would be (see equation (30)):

V�1;�2 = C
1
0

e(�
�
1�r)� � e(��1�r)�1

��1 � r
+ J�C10e

(��1��
�
2)�
e(�

�
2�r)�2 � e(��2�r)�

��2 � r
:

At the time when the jump in carbon price happens, the value of the under-
lying asset increases, but the lattice for the option�s value recombines as before.
With the above parameter values we get the �gures in Table 5. The bold �gure
I� = 19:47 corresponds to the case with �C = 0:4393, � = 0, and a mild jump
J� = 1:0363. If, instead, we assume no jump (J� = 1), we get I� = 19:65,
the same amount (for �C = 0:4393 and � = 0) that appears in Table 4. In a
sense, the jump implies that the greatest savings from emissions avoided will
accrue later in time. Investing at the same time as before would mean that a
portion of the useful life of the investment is spent during years in which the
allowance price was relatively low. Therefore, investing will be justi�ed only if
it is comparatively cheaper than before (without jumps).
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Table 5. Trigger cost I� (e/tCO2) with �nite time.
�C I� � I� J� I�

0:05 48:76 0:000 19:47 1:00 19:65
0:10 45:95 0:005 20:57 1:01 19:66
0:15 41:81 0:010 21:82 1:02 19:60
0:20 37:44 0:015 23:22 1:03 19:53
0:25 33:22 0:020 24:79 1:0363 19:47
0:30 29:18 0:025 26:55 1:04 19:42
0:35 25:38 0:030 28:53 1:05 19:29
0:40 21:91 0:035 30:75 1:06 19:13
0:4393 19:47 0:040 33:21 1:07 18:94
0:45 18:85 0:045 35:95 1:08 18:71
0:50 16:21 0:050 38:98 1:09 18:45

The left side shows that greater uncertainty on carbon prices presses the �rm
to require lower investment costs in order to invest. The �gures here are lower
than in Table 4 because now we are assuming that there will be a jump J� =
1:0363; so investment will have to be cheaper than before. The central part,
instead, suggests that increasing investment costs translate into less stringent
requirements to invest. And the right hand suggests that the cost required falls
as the size of the (upward) jump gets larger.

5.2 Investment in natural gas-saving projects

5.2.1 Constant equilibrium price level

From equation (40), when � = 0, the value of an annuity from �1 = 1 to �2 = 31
is:

V�1;�2 =

Z �2

�1

e�rtE(Gt)dt = G0
e�(kG+r) � e�31(kG+r)

kG + r
+

+(Gm �
�G
kG
)[
e�r � e�31r

r
� e

�(kG+r) � e�31(kG+r)2
kG + r

]:

Adopting the values mentioned above, this annuity is worth 382.6677 e.13 This
amount is almost independent from the initial gas price G0, since the reversion
speed kG = 20:0102 is so high that it renders the coe¢ cient of G0 very small
for a thirty-year investment next year. Also, the value of kG allows to compute
the half-life of the price process, t1=2, i.e., the time that is necessary for the
expected value E(Gt1=2) to reach the average value between G0 and Gm:

E(Gt1=2) = Goe
�kGt1=2 +Gm(1� e�kGt1=2) = G0 �

G0 �Gm
2

:

13Note that the initial gas price times the useful life of the investment gives: 24:40�30 = 732
euros. Since the investment wold be working from year 1 to year 31, a gross discounting over
15.5 years at a rate r = 4.5% gives an amount of some 370 euros, which is close to the
computed annuity. Of course, the other parameters also play a role.
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Operating we have:

t1=2 =
ln(2)

kG
:

For a value kG = 20:0102 the half-life is t1=2 = 0:0346 years, so that it takes
just 12:6 days to bridge 50% of the gap (G0 �Gm).
This implies that the strongest e¤ect of any gap between natural gas current

price and the equilibrium price shows up during the �rst year. As it happens,
this period is not taken into account because this is the time lapse when the
investment would be under construction, so that it would not be working until
the �rst year is over. In other words, the gas price at the initial moment G0 has
almost no e¤ect on the value of an annuity that starts in one year�s time and
lasts for thirty years.14

In this model, a yearly saving of natural gas equivalent to 1 MWh would be
worth 382.66 e now or later. Since investing after �t would have a present value
382:66e�r�t , as opposed to 382.66 e if we invest today, immediate investment
would be optimal whenever the cost to aMWh saved yearly involves an amount
lower than 382:66 e.15

5.2.2 Equilibrium price level with drift

The situation is di¤erent if natural gas prices are assumed to show a positive
drift. As can be seen in Figure 6, gas prices, although volatile, have shown
an increasing pro�le over the last seven years. This trend could continue in the
future. Yet the exact amount is hard to predict and is not the aim of this paper.
[INSERT FIGURE 6 ABOUT HERE]
With a non-zero drift in gas prices, and given the negligible value of the

coe¢ cient of G0, at the initial moment we have (see equation (40)):

V1;31 =
kGGm(0)

� + kG

e�(r��) � e�31(r��)
r � � � �G

kG

e�r � e�31r
r

:

Table 6 shows the present value of an investment that saves the natural gas
equivalent to 1 MWh yearly as a function of the drift rate in gas prices �, all
else remaining constant. The value of the annuity (gas saved) increases as the
gas price has a higher drift rate.

Table 6. Investment value I (e/MWh) and growth rate in gas prices.
� -0.025 0.000 0.025 0.050 0.075 0.100
V1;31 281.76 382.66 541.46 800.68 1,238.44 2,000.52

14This holds true in our particular model. In a more complex setting, with uncertainty in
the equilibrium price Gm , things could be di¤erent depending on the speci�c modeling of
uncertainty. This issue falls beyond the scope of our paper.
15Note that this value 382:66 e has been derived taking into account the risk premium �G.

Therefore, it can be discounted at the risk-free rate r:
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If, instead, investment is undertaken at time T , the net present value (ac-
counting for the investment cost I that is required to save one MWh of natural
gas yearly, and given Gm(T ) = Gm(0)e�T ) would be:

[
kGGm(0)e

�T

� + kG

e�(r��) � e�31(r��)
r � � � �G

kG

e�r � e�31r
r

� I]e�rT :

This can be rewritten as:

[ae�T + b� I]e�rT ;
where:

a =
kGGm(0)

� + kG

e�(r��) � e�31(r��)
r � �

b = ��G
kG

e�r � e�31r
r

:

Di¤erentiating this expression with respect to T we derive the optimal time
to invest:

a(� � r)e(��r)T
�
+ r(I � b)e�rT

�
= 0:

Therefore, for investing in T � = 0 to be optimal, the investment cost must be
lower tan the value I implicit in the next equation:

a(� � r) + r(I � b) = 0:
Hence we have:

I 5 r(a+ b)� a�
r

:

And I 5 V1;31 must also apply, i.e., the NPV must be positive.
Obviously, if � = 0 then it must be I 5 a + b (= V1;31 in Table 6). For the

values of � considered in Table 6, the corresponding values appear in Table 7.

Table 7. Investment value I (e/MWh) under di¤erent scenarios.
� a b V1;31

r(a+b)�a�
r

-0.025 292.7565 -10.9868 281.7697 444.4122
0.000 393.6545 -10.9868 382.6677 382.6677
0.025 552.4504 -10.9868 541.4636 234.5467
0.050 811.6740 -10.9868 800.6872 -101.1728
0.075 1,249.4278 -10.9868 1,238.4410 -843.9387
0.100 2,011.51 -10.9868 2,000.5232 -2,469.5009

For a growth rate � = r(a+ b)=a, we compute � = 0:0443. With this �gure,
a non-positive investment cost I 5 0 would be necessary. As shown in the last
column, a higher expected growth in the price of natural gas leads to postponing
investments, unless their costs are lower.
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Increasing investment cost If the investment cost I grows over time at a
rate ', then the net present value of the investment at time T would be:

[ae�T + b� Ie'T ]e�rT :

Di¤erentiating and equating to zero, the optimal time to invest T � is:

a(� � r)e(��r)T
�
� rbe�rT

�
� ('� r)Ie('�r)T

�
= 0:

Investing at T � = 0 will be optimal depending on the investment cost I:

a(� � r)� rb� ('� r)I = 0:

It would we optimal provided that:

I 5 r(a+ b)� a�
r � ' :

Also in this case, investment will be undertaken at the initial moment if the
inequality I 5 V1;31 holds.
Take as a reference the case � = 0:025. Then we get the values in Table 8.

An increase in the expected growth rate of investment cost brings forward the
decision to undertake the investment. This could be the case, for instance, if
public subsidies are available currently but they are not expected to last forever,
so a rising cost at a rate ' for the future is envisioned. In any case, the cost I
must be interpreted as including any subsidies or �scal measures, and computed
as a present value.

Table 8. Investment value I (e/MWh).
' V1;31

r(a+b)�a�
r�'

0:000 541:4636 234:5467
0:005 541:4636 263:8651
0:010 541:4636 301:5601
0:015 541:4636 351:8201
0:020 541:4636 422:1841
0:025 541:4636 527:7301

6 Case study: two power technologies with dif-
ferent e¢ ciency rates

It is well known that successive energy conversions and losses require about
10 units of fuel to be fed into a conventional thermal power station in order
to deliver one unit of �ow in a pipe (Lovins [10]). The possibilities o¤ered
by higher e¢ ciency levels are therefore tremendous. Let us consider the choice
today between two competing technologies for generating electricity from a given
fuel (natural gas) in a power plant with a given total capacity (in MW ). The
�rst one allows the power station to operate at a certain e¢ ciency rate (say,
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55%). The second technology, though, allows to raise thermal e¢ ciency by one
percentage point (to 56%) in exchange for a certain amount of money. This
technology thus brings some savings in gas consumption and carbon allowances
relative to the �rst one. We further assume that the choice between them is
available only today. An increase in the demand for electricity is taken for sure
and, if the �rm refuses to build the power plant, a rival utility will seize the
chance. We adopt a typical construction period of 30 months and a useful life
of 25 years.
The variable costs to producing 1 MWh of electricity from natural gas in a

carbon-constrained environment (apart from other inputs), in e/MWh, amount
to:

PG
EG

+ PCO2
IG; (74)

where PG is the price of natural gas (e=MWh),16 EG is the net thermal e¢ -
ciency of the gas-�red plant, and PCO2

is the price of a EU emission allowance
(e=tCO2). Last, IG stands for the emission intensity of the plant (tCO2=MWh);
this in turn depends on the net thermal e¢ ciency of each gas-�red plant.
According to IPCC [8], a plant burning natural gas has an emissions factor

of 56.1 kgCO2=GJ .17 Since under 100% e¢ ciency conditions 3.6 GJ would be
consumed per megawatt-hour, we get

IG =
0:20196

EG

tCO2
MWh

: (75)

Thus the complete formula for variable costs is

1

EG
(PG + 0:20196� PCO2): (76)

With EG1 = 0:55 and EG2 = 0:56, the costs are:

(PG+0:20196�PCO2
)(

1

0:55
� 1

0:56
) = 0:032468�PG+0:006557�PCO2 : (77)

The power station is assumed to be designed as a base load plant. It is
expected to operate 80% of the time. Therefore, it will produce 7,008 MWh
yearly for each MW of capacity installed.
First, we address the savings from the carbon emissions avoided. Carbon

price evolves over time according to the values estimated above: b�� = 0:039098,
[lnJ� = 0:035701: Assuming that four years are left to the end of the Kyoto com-
mitment period (2012), with C10 = 15:23 e/tCO2 and r = 0:045, by equation
(30) the present value of savings (for each MWh/year) since completion until
closure is:
161 MWh = 3.412 mmBTU, and 1 mmBTU = 0.293083 MWh under 100% e¢ ciency.
17This corresponds to 15.311 kgC=GJ , since one ton of carbon is carried on 3.67 tons of

CO2.
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V2:5;27:5 = C
1
0

e4(�
��r) � e2:5(���r)
��1 � r

+ J�C10
e27:5(�

��r) � e4(���r)
��2 � r

= 360:67 e:

Following equation (77), this amount must be multiplied 0:006557. Also,
the station operates 7,008 hours/year. Thus, the total savings from emissions
avoided are 16,573 e (for each MW installed).18

Now let us turn to the savings from a lower consumption of natural gas to
generate the same amount of electricity. With the parameter values :Gm =
25.0146, kG = 20.0103, �G = 13.97, and � = 0:025 the value of an annuity (for
each MWh/year) is (see equation (40)):

V2:5;27:5 �
kGGm(0)

� + kG

e�2:5(r��) � e�27:5(r��)
r � � � �G

kG

e�2:5r � e�27:5r
r

= 458:15 e:

As shown in equation (77), this amount, multiplied by 0:032468 and 7,008 hours,
implies a present value of savings equal to 104,251 e.19

In sum, for each MW installed and a capacity factor of 80%, total savings
amount to 120,825 e. If the net present value of the project is positive, the more
e¢ cient technology would be chosen provided its incremental cost (in e/MW )
is lower than 120,825 e. Obviously, if the plant does not reach a usage of 80%,
there is less time to recover this extra cost. Table 9 shows the savings enjoyed
as a function of the production factor. As could be expected, more e¢ cient
technologies are harder to be adopted when they do not work as much time as
possible. In this respect, the current downturn does not seem to be the most
favorable scenario for cleaner technologies.

Table 9. Total savings (e/MW ) from 1% additional e¢ ciency.
Production factor (%) 80 70 60 50 40
Incremental Value 120,825 105,722 90,619 75,516 60,413

7 Conclusions

E¢ ciency improvements have brought about important savings to �rms and
households alike, particularly in periods of high fuel prices in energy markets.
Lower bills, in turn, have been re�ected in electricity prices and other output
prices. In addition, energy e¢ ciency measures could account for more than 65%
of energy-related emissions savings up to 2030 (under the IEA�s [5] Alternative
Policy Scenario). This is far more than the 22% saving expected from switching
to nuclear and renewable energy. If there is a price to be paid for these emissions
(or it is expected to be in the future), curbing them has economic value for �rms

18 If the plant size is 500 MW , this amount must be multiplied by 500. The present value
of savings is 8,286,500 e, which is a signi�cant �gure.
19For a capacity of 500 MW installed, savings would amount to 52,125,703 e.
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However, the goal of harnessing the enormous potential for energy savings
has proven elusive (IPCC [7]).The aim of this paper is to assess energy-e¢ ciency
investments in terms of well-established �nancial principles. We hope that this
will further contribute to attract the interest of the investment community.
We envisage an investment in energy e¢ ciency as a project that simulta-

neously saves fuel consumption and avoids carbon emissions. Investing in this
project is risky, not least because the prices of natural gas and emission al-
lowances vary stochastically over time. Besides, this investment is at least par-
tially irreversible, i.e., should market conditions turn, the �rm cannot "uninvest"
and recover the full expenditure. Further, usually the �rm has the opportunity
(not the obligation) to invest in this project over some pre-speci�ed period of
time. In sum, the �rm has to decide whether and when to invest.
We address these capital budgeting decisions following the so-called Real

Options approach. Options on �nancial assets have been trading for a long
while. This approach assesses opportunities to acquire real assets by stressing
the analogy with �nancial options. Accordingly, our starting point is a stochastic
process for the natural gas price and similarly for the emission allowance price.
We estimate the underlying parameters from actual market data, in particular,
from spot and futures markets for both commodities (carbon dioxide and natural
gas). One di¢ culty emerges from the fact that the EU carbon market is not
mature yet. Indeed, climate policy a¤ects both carbon prices and price volatility.
Therefore, changes in policy may give rise to sudden jumps in relevant variables.
We explicitly model this feature regarding allowance prices. Upon estimation
of the underlying parameters from actual market data, we are able to value
cash �ows emanating from fuel saved or emissions avoided over time. As a
�nal step, we assess the option to invest in a project and the optimal time to
invest. We proceed, somewhat pedagogically, from investments that only help
avoid carbon emissions to those that only save fuel consumption, to a case study
involving both e¤ects. This is ultimately intended as a rigorous framework to
make practical decisions.
A �rst lesson to be learned regards the value of waiting. At �rst glance,

one might expect that waiting makes sense only when doing so allows learning
something new about the future, i.e., in an uncertain context. We show that,
even in a deterministic setting, the option to wait has value. Note that we deal
with investments that are at least partially irreversible; in other words, upon
investment a portion of the costs is "sunk" or hardly recoverable at all should one
change her/his mind. Consequently, the requirement of a NPV merely greater
than zero is not enough for investing to be optimal. Speci�cally, the gross value
of the investment must surpass its cost by an amount equal to the value of the
option to wait (which is lost as soon as the investment expenditure takes place).
In our context, since investments in energy e¢ ciency are not mandatory, �rms
may �nd it quite reasonable (from a �nancial point of view) to delay them. If
sustainability is to be sought consistently, regulators should be aware of it.
Obviously, the former fact is even more pronounced under uncertainty (e.g.,

on the future value of the investment). We show that, within a given emissions
trading period, rational investments that avoid carbon emissions require an
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investment value several times as large as the investment cost. This is so both
when the option to invest is perpetual and �nite-lived. The high volatility
in carbon prices plays a major role in this result. In this sense, regulatory
uncertainty exacerbates the problem. If there is a change in climate policy,
prices may jump (presumably upwards) in the future. The natural response
would be to delay investments so as to match facilities�useful lives to the highest
carbon prices. In other words, early investments require even higher value-to-
cost ratios, or even lower costs.
As for projects that a¤ord fuel savings, we provide reasonable estimates of

the value of those savings for a generic facility with thirty years of life. That
value increases with the expected growth rate of natural gas price. A higher
drift rate, in turn, leads to postponing investments, unless their costs are lower.
This trend may be reversed, i.e., investments can be brought forward in time, if
their cost is expected to increase in the future, or public subsidies are available
but only for a limited period of time.
Last, our case study concerns two di¤erent power technologies based on �r-

ing natural gas with distinct e¢ ciency rates and covered by a cap-and-trade
emissions system. We �nd that one percentage point of additional e¢ ciency
can bring signi�cant savings to the electric utility. The amount of these sav-
ings, though, is a¤ected by the availability of the plants, i.e., the proportion
of time that they operate over the year. Generation technologies in general
have an important upside potential in e¢ ciency, and sustainability goals can be
served by e¢ ciency gains at lower (private and social) cost than other alternative
instruments.
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Figure 1: Futures and spot allowance prices.
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9 Appendix: Estimation of the price models

9.1 The GBM process for the allowance price

9.1.1 Within a given commitment period

If the initial spot price C0 is known, it is necessary to estimate only �� and �C
(see equation (5)). In general, it will not be possible to get a consistent estimate
of the drift rate in the actual world, �, since the estimator variance is going to
be very large. However, the parameter �� � ���C can be estimated from (the
natural log of) futures prices.
The futures market price F (t; 0) gives us the value of an emission allowance

at time t. Modeling this price requires the spot price C0 and the slope of the
curve of (log) futures prices.20 We also need the allowance volatility to model
futures prices and to value real options.
Drift. The EU ETS allows us to gauge the di¤erence �� � � � �C . From

equation (9) we compute:

lnF (C0;t2)� lnF (C0;t1) = (�� �C)(t2 � t1); t2 > t1: (78)

Thus, �� �C equals the di¤erence between the (log) futures prices of contracts
with December maturity when t2 � t1 = 1.21 The di¤erences between the (log)
futures prices are rather stable, for instance between the EUA Fut Dec-12 and
EUA Fut Dec-09;22 see Figure 2. It can also be seen that the slope �� has been
around 3% over 2007 and the �rst half of 2008. However, since then it seems to
�uctuate around 4%.
A cursory look at the market (see Figure 3) suggests that, if we use data

from late last year, our estimate must be very close to some 4%, and that this
slope has remained almost unchanged despite the abrupt falls in prices during
the last months of 2008.
Let T be the maturity date of the futures contract. In general we could

state:

ln (F (Ct; T; t)) = ln(Ct) + �
�(T � t) = Xt + ��(T � t):

Therefore we propose to estimate:

ln (F (T; t))�Xt = (�� �C)(T � t) + "t: (79)

Our sample consists of ICE ECX CFI futures prices fromMay-1-2006 to December-
23-2008. Table A1 shows our estimate of the slope �� by Ordinary Least Squares
(OLS) in three cases: (i) using all 3,418 observations in our sample, 23 (ii), using

20Remember that both the spot price and the futures contract�s maturity must fall within
a period over which there is no reduction in the number of allowances (e.g., 2008-2012).
21Obviously, since we have several futures prices, it is possible and convenient to aim at a

more precise estimation.
22This value would correspond to three times the slope.
23Each day we have 5 futures prices (for maturities Dec-08 to Dec-12), except for the last

days of Dec-08, when only four are available.
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only the 1,263 observations from the year 2008, and (iii) using only those 623
observations from the second semester of 2008.

Table A1. OLS estimation of the drift in carbon prices within a given period.b�� std. dev. t-statistic p-value
Whole sample 0.029843 0.000116 258.2 0.0000
2008 data 0.031852 0.000209 152.3 0.0000
III-IV 2008 data 0.039229 0.000168 233.0 0.0000

In our computations below we use the estimate b�� = 0:039229. As already
suggested, this is certainly close to 4%.
Volatility. Allowance price volatility can be estimated in several ways from

di¤erent sources, among them the historical volatility from spot prices and
futures prices; see Figure 3. The �rst step is to compute the natural loga-
rithm of spot prices, then the standard deviation of price changes, and �nally
multiply by

p
250, since: ln(Ct) � ln(C0) � N((��C � 1

2�
2
C)t; �C

p
t), where

t = 1=250. And similarly with futures prices, since: ln(F (T; t))� ln(F (T; 0)) �
N(� 1

2�
2
Ct; �C

p
t):

We choose the volatility of the spot price over the second semester of 2008,
which is �C = 0:4393. With these values of drift rate and volatility we can
evaluate investments that avoid carbon emissions within a given commitment
period only.

9.1.2 Between two commitment periods

If the initial spot price C10 is known, it su¢ ces to estimate �
�
1, �

�
2, J

�, and �C
(= �C1 = �C2 by assumption), as can be seen in equation (25). Similarly to
equation (79), we start from:

ln(F (T; t))�Xt = ��1T1 + d lnJ� + ��2T2 + "t;

where d is a dummy variable which takes on a value of 1 for contracts maturing
in the second period, and 0 for those maturing in the �rst period. T1 is the
term until maturity that falls within the �rst period. If the contract expires in
the �rst period T1 = T � t; if it expires in the second, then it is the di¤erence
between the end of this period � and time t. Last, T2 is the term corresponding
to the second period. If the contract expires in the �rst period T2 = 0; if it
expires in the second, then it is the di¤erence between the contract�s maturity
and the beginning of the second period, T � � .
We have three parameters to estimate (plus volatility). We have run three

regressions with the whole sample (3,790 observations), the year 2008 (1,635
observations), and the second half of 2008 (namely, 875 observations); see Table
A2. Again, the sample consists of ICE ECX CFI futures prices.
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Table A2. OLS estimation of parameters in carbon prices over two periods.
Whole sample Value stad. dev. t-statistic p-valueb��1 0.029783 0.000129 230.0 0.0000b��2 0.038272 0.002892 13.2 0.0000

[lnJ� 0.051484 0.004608 11.2 0.0000
2008 data Value stad. dev. t-statistic p-valueb��1 0.031581 0.000288 109.5 0.0000b��2 0.038277 0.003053 12.5 0.0000

[lnJ� 0.043676 0.004987 8.8 0.0000
III-IV 2008 data Value stad. dev. t-statistic p-valueb��1 0.039114 0.000312 125.4 0.0000b��2 0.038009 0.002607 14.6 0.0000

[lnJ� 0.037270 0.004328 8.6 0.0000

Since the estimates of b��1 and b��2 derived from the last sub-samples are very
similar, we run another regression assuming they are the same:

ln(F (T; t))�Xt = ��(T � t) + d lnJ� + "t:
The results are as shown in Table A3. We are going to use these estimates
for the valuation of investments that enhance energy e¢ ciency over two carbon
trading periods. As for volatility, �C (= �C1 = �C2) is assumed to be the same
as within a given commitment period; thus �C = 0:4393. It is not obvious to
us why or how it should di¤er from it.

Table A3. OLS estimation of parameters in carbon prices assuming equal drifts.
III-IV 2008 data Value std. dev. t-statistic p-valueb��1 = b��2 0.039098 0.000310 126.3 0.0000

[lnJ� 0.035701 0.002199 16.2 0.0000

9.2 The process for natural gas price

Figure 4 shows both the spot price and the Dec-12 futures price (source: EEX,
Leipzig). As shown in equation (39), we need estimates of Gm, kG, �G, �G; for
discounting purposes we will also need a value of r. We derive the parameters
sequentially. In particular, Gm, kG, and �G are estimated with data from the
physical world, whereas �G is derived from futures market data.
Physical world. The stochastic process in the actual world, assuming � = 0

and �G = 0, can be expressed as:

Gt+�t ' Gte
�kG�t +Gm(1� e�kG�t) + �G

p
�tGt�t , (80)

, Gt+�t
Gt

' e�kG�t + Gm
Gt
(1� e�kG�t) + �G

p
�t�t: (81)

Thus, the econometric model to estimate is:
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Zt = �1 + �2X2t + ut, where �1 = e
�kG�t, �2 = Gm(1� e�kG�t), X2t � 1=Gt:

(82)
Our sample consists of EEX natural gas contracts from October-1-2007 to

December-30-2008. The estimates appear in Table A4. Since we use daily data
we have �t = 1=250.

Table A4. OLS estimation of underlying parameters in gas price.
Coe¢ cient Estimate Std. dev. t-statistic p-valueb�1 0.9231 0.0202 45.7562 0.0000b�2 1.9242 0.4905 3.9226 0.0001

Therefore: kG = �ln(b�1)=�t = 20:01 and Gm = b�2=(1 � b�1) = 25:014.24

The estimate for volatility, as computed from the regression residuals, is �G =
0:6742.
Risk-neutral world. In the futures market, for contracts with delivery

over a year, from equation (44) we have (with � = 0):

F�1;�1+1 = G
�
m +

G�m �G0
kG

[e�kG(�1+1) � e�kG�1 ]: (83)

As shown above, with kG = 20:01 we have [e�kG(�1+1)�e�kG�1 ] ' 0. Therefore,

F�1;�1+1 ' G�m � (Gm �
�G
kG
);

which can be rewritten as:

�G ' kG(Gm � F�1;�1+1): (84)

The availability of several futures prices on every day allows, in principle, to
compute a daily average for each contract. From the whole sample with all the
contracts we get an average of b�G = �96:5439. This suggests that the futures
price has been well above the long-run equilibrium level Gm over the period
considered.25 See Figure 5.
This short-term behavior can be grasped from the evolution of spot prices,

whose average would be very close to Gm (as estimated from spot prices), and
the evolution of futures prices, for instance the contract deliverable in 2014.
In the sections below we use the estimates in Table A5. The value of �G

corresponds to 12/30/2008, the last day of the series; also, the price of natural
gas is 24.40 e/MWh (= G0 in our computations below). Last, regarding the
risk-free rate, r, we adopt an ad hoc value assumed to apply for the long term.

24The estimated value for Gm is very close to the sample average 24.83. This is to be
expected when, as in our case, the reversion speed is strong. In the physical world the long-
term value Gm must be very close to the sample average, and the other way round.
25On average b�G=bkG = �4:8247. Since this appears subtracting in equation (83) for the

futures price, it amounts to +4.8247.
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Table A5. Parameter values of the natural gas price.
Gm kG �G �G r
25.0146 20.0103 13.97 0.6742 0.045
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