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Abstract
This paper examines strategic investment games between two firms

that compete for optimal entry in a project that generates uncertain
revenue flows. Under asymmetry on both the sunk cost of investment
and revenue flows of the two competing firms, we investigate the value
of real investment options and strategic interaction of investment de-
cisions. Compared to earlier models that only allow asymmetry on
sunk cost, our model demonstrates a richer set of strategic interac-
tions of entry decisions. We provide a complete characterization of
pre-emptive, dominant and simultaneous equilibriums by analyzing
the relative value of leader’s and follower’s optimal investment thresh-
olds. In a duopoly market with negative externalities, a firm may
reduce loss of real options value by selecting appropriate pre-emptive
entry. When one firm has a dominant advantage over its competitor,
both the dominant firm and dominated firm enter at their respec-
tive leader’s and follower’s optimal thresholds. When the pre-emptive
thresholds of both firms happen to coincide, the two firms enter simul-
taneously, albeit at sub-optimal conditions of entry. Under positive
externalities, firms do not compete to lead.
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1 Introduction

The real world of investment is characterized by strategic competition among
rival firms, where each firm makes assessment on its own strategic competi-
tiveness among competing parties. Market conditions such as current prod-
uct value and volatility of revenue flows, and firm specific factors such as
sunk cost and market share in monopoly and duopoly states directly affect
the outcomes of strategic competition. Also, externalities can induce quite
different entry decisions between two competing firms. Positive externalities
mean returns in duopoly state exceed that in monopoly state, and vice versa
for negative externalities. A possible cause of positive externalities could be
mutual learning gain, which leads to product improvement and consumption
growth. Under positive externalities, firms do not compete to lead. Neg-
ative externalities are more common in practice, as firms always undercut
one another with new entry. Negative externalities combined with asym-
metric firms allow for a richer set of strategic interaction of entry decisions.
The pre-emptive decision made by any competing firms should be in consis-
tence with game equilibrium. In any strategic investment models, individual
firm’s optimal entry thresholds are determined with reference to strategic
competitiveness of the firm. In this paper, we attempt to quantify strate-
gic competitiveness and explore the nature of various types of competitive
equilibriums.

Traditionally, investment decisions are analyzed based on the net present
value (NPV) model. The NPV of an investment is calculated from its dis-
counted cash flow of future earnings, which are taken to be known at the
current moment. The deterministic nature of NPV fails to accommodate
market uncertainty, irreversibility of investment and ability to delay entry.
All of the above factors constitute a value of waiting. The real options ap-
proach incorporates this value of waiting when determining an optimal entry
point. Specifically, the real option analysis exploits the analogy between a
firm’s investment opportunity and a financial call option (Dixit and Pindyck,
1994).

The analysis of strategic investment decisions under the joint framework
of real options and game theoretic setting has been the subject of intense re-
search interests. A recent survey of real options and strategic competition is
presented by Boyer et al . (2004). Fudenberg and Tirole (1985) presents the
first strategic investment model that analyzes the effects of pre-emption in
games of timing in the adoption of a new technology by two competing firms.
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Though their model assumes zero market uncertainty, their technique of re-
lating the threat of pre-emption to rent equalization forms the cornerstone of
analysis of strategic investment model. Rent equalization is a state equilib-
rium at which the benefit of being the leader equals that of the follower. In
a subsequent work, Grenadier (1996) seeks to explain the property market’s
boom and bust cycle using competition between symmetric firms. He uses an
equilibrium framework for strategic option exercise games to model the tim-
ing of real estate development. His model predicts that markets with a longer
time-to-build will display a greater propensity towards building booms in the
face of declining demand and property values. Empirical evidence on over-
building at the end of a property boom underlines the risk of pre-emption.
The fear of being pre-empted forces firms to invest non-optimally and subse-
quently depresses their combined returns. Grenadier’s paper also points out
the dual characteristics of volatility in real options. On one hand, increas-
ing volatility tends to postpone investment. And on the other hand, rising
volatility may make it likely that substantial increase in demand is achieved
sooner.

Mason and Weeds (2005) show that when two identical firms compete
non-cooperatively, a firm must pre-empt at lower than optimal entry point
to guarantee leadership. They also find that pre-emptive threshold may
drop in the face of increasing uncertainty (volatility). In a duopoly market
involving symmetric firms, a firm’s entry point is influenced by two opposite
forces: the desire to wait for optimal entry and the urge to pre-empt. Their
paper examines how investment decisions are dictated by uncertain returns,
pre-emption threat and a range of positive and negative externalities. They
show that pre-emption threat can totally erase the option value of waiting
imparted by irreversibility and uncertainty. In addition, they discuss the
various investment inefficiencies caused by externalities.

A firm’s competitive advantage is modeled in Joaquin and Butler (1999)
through a deterministic cost-revenue asymmetry. When the state variable,
which embodies market uncertainty, is initialized at a sub-optimal level, the
low-cost firm always leads due to its dominant competitive advantage. Their
paper also considers the scenario when the initial market conditions are above
the entry thresholds. In this case, immediate entry for both firms is justified.
There can be three possible equilibriums: low-cost firm leads, high-cost firm
leads and simultaneous entry of both firms.

In an attempt to explain the undeveloped market boom marked by simul-
taneous entry, Huisman et al . (2003) and Pawlina and Kort (2002) examine
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the effect of first mover advantage in combination with cost asymmetry. They
find that when asymmetry is relatively small and first-mover advantage is not
significant, simultaneous entry may be favored. Their results demonstrate
how cost asymmetry may induce keen competition. When the firms do not
face adverse negative externalities (that is, subsequent entry of the second
mover does not cause great reduction in the revenue flow of the first entrant),
introducing a small amount of cost asymmetry may induce simultaneous en-
try. When the first mover premium is large, like that in the technology sector,
their model shows that simultaneous entry will not commence.

Huisman (2001) presents detailed studies of a dynamic duopoly market
where two asymmetric firms compete in the adoption of new technology.
Three types of equilibriums can be identified. The first type is sequential
equilibrium, which occurs when cost asymmetry is high so that the low-cost
firm has dominant competitive advantage. In this case, the leader acts like
a monopolist and will enter at its optimal leader threshold. The rival firm is
restrained from pre-emption due to its high cost to entry. The second type
is pre-emptive equilibrium, which occurs when cost asymmetry is not sub-
stantial. In this case, both firms have the incentive to pre-empt. In order to
secure the first mover advantage, the first entrant must enter at a non-optimal
point. The last type is simultaneous investment equilibrium. When the two
firms have asymmetry in cost only, the simultaneous equilibrium exists only
if the leader value functions of both firms are below their corresponding value
functions of simultaneous entry. In this case, both parties rush to enter.

Pawlina (2003) compares consumer welfare across different outcomes of
strategic competition and examines how to design suitable policies so as
to maximize consumer welfare. In his paper, consumer welfare is gauged by
weighing consumer surplus against loss in firm value due to early investment.
If overall cost of investment to both firms is small, then the loss of firm value
is viewed as a fair sacrifice for higher consumer surplus since this will bring
better quality product to consumer earlier at a small cost to the firms. In
this way, any policy that favors pre-emptive or sequential equilibriums will
benefit consumers. If overall cost of investment to both firms is high, the
gain in consumer surplus will never fully compensate for the cost of an early
investment. Therefore, narrowing of cost asymmetry to induce simultaneous
entry is preferred. In other words, competitive advantage of one firm over its
rival should be minimized in a high investment cost environment.

In this paper, we analyze the entry decisions of competing firms in a
duopoly real option game on an irreversible investment project that gen-
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erates uncertain revenue returns. We extend the earlier duopoly models by
allowing asymmetry in both sunk cost of investment and revenue flows. With
asymmetry on sunk cost alone, the lower-cost firm will always lead. Given
that both firms are receiving the same revenue flow, it is not surprising that
the low-cost firm always enjoys competitive advantage over its high-cost ri-
val. Simultaneous entry is ruled out completely if the initial value of the
state variable renders both leader value functions below the corresponding
follower value functions. With asymmetry on both cost and revenue, simul-
taneous entry or pre-emption by the high-cost firm is now possible, assuming
the same initial conditions above. In particular, simultaneous entry occurs
when the pre-emptive thresholds of the two firms coincide. Firms do pursue
such a lose-lose strategy, and this phenomenon is coined “non-zero prob-
ability of mistake” in real options literature. Our analysis indicates that
the combination of firm’s competitiveness relative to the states (duopoly or
monoploy) and to its rival is crucial to determining the strategic equilibriums
in a lose-lose competition.

The structure of this paper is organized as follows. In the next section,
we present the formulation of the two-firm strategic investment model under
sunk cost and revenue asymmetry. The important parameters in the model
are the firm costs normalized by the revenue flows in the respective monopoly
and duopoly states. All optimal investment threshold values in our real game
option model are seen to be multiple of these parameter values. In Section
3, we derive the value functions and entry thresholds under three scenarios,
where the firm may serve as the follower, pre-emptive leader or dominant
leader. In Section 4, we establish analytic results for the existence of pre-
emptive thresholds and the relative magnitude of the pre-emptive thresholds.
We show that under positive enternalities, pre-emptive threshold never ex-
ists while pre-emptive incentive of at least one firms exists under negative
externalities. When the pre-emptive thresholds of both firms exist, we per-
form theoretical analysis on the characterization of the relative magnitude
of the two thresholds. In Section 5, we consider strategic equilibriums under
both negative and positive externalities and the strategic investment deci-
sions of the two firms under various forms of strategic equilibriums, which
include the sequential equilibrium, pre-emptive equilibrium and simultane-
ous equilibrium. Summary and conclusive remarks are presented in the last
section.
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2 Two-firm strategic investment model

We consider two firms that compete in an investment project to gain entry
into a product market. Both firms have the option to wait for their optimal
entry into the market. Further, we make the assumption of perpetuality such
that the investment opportunity lasts forever, that is, the investors can choose
to wait for optimal entry indefinitely. The investment decision is irreversible
and the sunk cost of investment are asymmetric between the two firms. There
are no future variable costs of production after investment. The two firms
are assumed to be value maximizing and each firm can choose to lead, follow
or enter simultaneously in timing its investment entry. The market is said to
be in monopoly state or duopoly state, according to whether one firm or two
firms are operating, respectively. The revenue flows after entry depend on
the number of operating firms in the market (monopoly or duopoly) and the
identity of the firm. The stochastic nature of the revenue flows are modeled
by assuming that they take the form of a constant multiple of the Geometric
Brownian process θt, t ≥ 0, where

dθt = µθt dt + σθt dZt. (2.1)

Here, the state variable θt may be considered as the impact of stochastic
aggregate economic factors on the revenue and Zt is the standard Brownian
process. The volatility σ and drift rate µ are assumed to be constant. To
ensure finite valuation of perpetual stream of revenue flows, it is necessary to
impose the condition: µ < r, where r is the riskless interest rate. Let m and
d denote the monopoly and duopoly state, respectively. The instantaneous
revenue flow for firm i at state j is given by

πij
t = Dijθt, (2.2)

where Dij is a constant multiplier, i ∈ {1, 2} and j ∈ {m, d}. The firms are
said to face negative externalities when

0 < Did < Dim, i = 1, 2. (2.3a)

or positive externalities when

0 < Dim < Did, i = 1, 2. (2.3b)

Negative (positive) externalities mean lower (higher) revenue flows when both
firms are operating in the same product market. It will be shown later that
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the case of negative externalities may induce keen competition between the
two firms. In particular, when there is no clear advantage of one firm over
the other as the leader, the two firms would be both worse off by rushing to
pre-empt in the so-called lose-lose competition. In our analysis, we assume
the current value of the stochastic state variable θ0 to be sufficiently low (θ0

is below all optimal investment thresholds for both firms) so that both firms
have to wait before making their investment entries. Our two-firm model
assumes asymmetry both in sunk cost of investment and revenue flows. We
let Ki to denote the sunk cost of Firm i, i ∈ {1, 2}, and define the revenue

adjusted cost K̃ij by

K̃ij = Ki/Dij, i ∈ {1, 2}, j ∈ {m, d}. (2.4)

It will be shown later that the optimal investment threshold values in our real
options model and the Marshallian threshold values under the “net present
value” rule are constant multiples of K̃ij. Compared to earlier models [Huis-
man (2001), Kijima and Shibata (2002), Pawlina (2003), Mason and Weeds
(2005)], our model has a higher level of generality under the assumption of
asymmetry in both cost and revenue, thus generates a richer set of strategic
equilibriums.

Taking Firm 1 as an example, there are three possible choices of invest-
ment timing. It may serve as the leader which invests before its competitor
(Firm 2) or as the follower, or it enters into the product market simultane-
ously with Firm 2. In the solution procedure, which is typical of dynamic
games, the problem is solved backward. We first solve for the follower value
function and the corresponding investment threshold, then followed by so-
lution of the value function and investment threshold of the leader. When
both firms invest simultaneously, their value functions are simply given by
the respective follower functions.

3 Value functions and investment thresholds

In this section, we employ the standard Bellman’s optimality argument to
derive the value functions and investment thresholds of Firm i, i = 1, 2. We
denote the rival firm as Firm i′ so that i′ = 2 when i = 1 and vice versa.
We consider the value functions under three scenarios, namely, the follower
value function, the pre-emptive leader’s value function and the leader value
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function under non-competitive status. We also derive the optimal invest-
ment threshold at which the firm may follow, pre-empt or dominate. These
threshold values play the key role in determining whether the firms should
take pre-emptive action, dominate or simultaneously enter into the product
market. The value functions have different functional representations over
different ranges of θ, depending on the investment status of the firm itself
and its competitor.

Under the uncertain revenue processes, the optimal time of investment is
random. Let (Ω,F , P ) denote the relevant probability space of our pricing
model, where the filtration {Ft}t≥0 represents the information resolved over
time that is known to both firms. Since the optimal decision of investment
is based on the current information Ft, the optimal investment time is Ft-
measurable so that it is a stopping time. The value function is obtained by
maximizing the expected revenue flow over all possible strategies (or stopping
times). Further, the firms are assumed to be risk neutral or the risk factor
has zero correlation with the market risk so that discount on value can be
taken at the riskless interest rate.

3.1 Follower value function

We consider the optimal investment strategy of Firm i which invests strictly
later than its competitor Firm i′. The follower value function Fi(θ) consists

of two parts, F
(1)
i (θ) when Firm i is still waiting for optimal entry and F

(2)
i (θ)

when Firm i has invested. Let θ∗if denote the investment threshold for optimal
entry as a follower for Firm i and t∗if denote the optimal time of investment
(stopping time). The optimal stopping time is given by the infimum of the
time that θ reaches θ∗if . When θ < θ∗if , the follower still holds an option to
invest and revenue flow is received only after t∗if . The value function is given
by

F
(1)
i (θ) = max

t∗if
Et

[∫ ∞

t∗if

e−r(u−t)Didθu du− e−r(t∗if−t)Ki

]
, θ < θ∗if , (3.1)

where Et denotes the expectation conditional on information available at
time t and θt = θ. The optimal time of investment entry t∗if is chosen within
the set of stopping times. When θ ≥ θ∗if , the follower invests immediately so
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that its value function is given by

F
(2)
i (θ) = Et

[∫ ∞

t

e−r(u−t)Didθu du−Ki

]
, θ ≥ θ∗if . (3.2)

The closed form solution to F
(1)
i and F

(2)
i are known to be (Huisman, 2001)

Fi(θ) =

{
F

(1)
i (θ), θ < θ∗if

F
(2)
i (θ), θ ≥ θ∗if

=

{ Ki

β−1

(
θ

θ∗if

)β

, θ < θ∗if

Did

r − µ
θ −Ki, θ ≥ θ∗if ,

(3.3)

where the threshold of optimal entry as a follower is given by

θ∗if =
β

β − 1
(r − µ) K̃id

with the parameter β defined by

β =
1

2


1− 2µ

σ2
+

√(
1− 2µ

σ2

)2

+
8r

σ2


 , β > 1.

When σ → 0+, β → ∞ so that θ∗if → (r − µ)K̃id. Let M∗
if denote the

Marshallian threshold value corresponding to the “net present value” rule.
We observe that the limiting value of θ∗if at vanishing volatility is simply
M∗

if . This is expected since the Marshallian model corresponds to the zero
volatility case. These threshold values are related by

θ∗if =
β

β − 1
M∗

if =
β

β − 1
(r − µ)K̃id. (3.4)

3.2 Leader value functions

Let θ∗i` be the investment threshold for optimal entry as a leader for Firm

i. Depending on the cost-to-revenue ratio K̃ij in the duopoly and monopoly
states of the two competing firms, one firm may or may not have comparative
advantage over the other firm as the leader. When the competition is keen
(whose detailed quantification is presented in Section 5), one of the two firms
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may choose pre-emptive entry. The pre-empting firm is called the pre-emptive
leader . On the other hand, one of the two firms may be seen to be always
better off by serving as the follower, its competitor can wait until the leader
threshold is reached for optimal entry as a leader. In this case, the leader is
called the dominant leader . We would like to derive the corresponding leader
value function under both cases. The two leader value functions are equal
when θ > θ∗i` since Firm i would invest immediately.

Pre-emptive leader value function

When Firm i is the pre-emptive leader, we are only interested to find the
leader value function at the moment tip at which Firm i takes the pre-emptive
action. Note that the revenue flow after entry assumes the value Dimθt or
Didθt, for Firm i as the first or second entrant, respectively. As a result, the
pre-emptive leader value function L

(p)
i (θ) takes different functional represen-

tations over the following two ranges, namely, θ < θ∗i′f and θ ≥ θ∗i′f . Here,

θ∗i′f =
β

β − 1
(r−µ)K̃i′d is the investment threshold of Firm i′ which serves as

the follower. Conditional on θtip = θ and assuming θ < θ∗i′f , the pre-emptive
leader value function at the pre-emptive moment tip is given by

L
(p)
i (θ) = Etip

[∫ t∗
i′f

tip

e−r(u−tip)Dimθu du

+

∫ ∞

t∗
i′f

e
−r(u−t∗

i′f )
Didθu du−Ki

]
. (3.5)

When θ ≥ θ∗i′f , L
(p)
i (θ) can be obtained in a similar manner as F

(2)
i (θ) [see

Eq. (3.2)]. The pre-emptive leader value function at tip over the whole range

of θ is found to be

L
(p)
i (θ) =





Did−Dim

r−µ
θ∗i′f

(
θ

θ∗i′f

)β

+
Dim

r − µ
θ −Ki, θ < θ∗i′f ,

Did

r−µ
θ −Ki, θ ≥ θ∗i′f .

(3.6)

One may be puzzled by the possibility of negative value taken by L
(p)
i (θ)

when θ assumes sufficiently low value. It will be shown later that pre-emptive
action only occurs when the pre-emptive leader value function may rise above
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the follower value function. Strictly speaking, L
(p)
i (θ) is defined only for those

values of θ such that L
(p)
i (θ) > Fi(θ). Since Fi(θ) is always positive, so L

(p)
i (θ)

is guaranteed to be positive.

Dominant leader value function

Suppose Firm i is the dominant leader so that he can wait until θt reaches
the threshold θ∗il for optimal entry. The maximization procedure also takes
into account the optimal entry made by the follower. Let t∗il be the stopping

time for optimal investment entry of the dominant leader and L
(d)
i (θ) denote

the dominant leader value function. Since Firm i as the leader is supposed
to invest earlier than the follower Firm i′, so t∗i` < t∗i′f . For t∗i` < t∗i′f and

θ < θ∗il, the value function L
(d)
i (θ) is given by

L
(d)
i (θ) = max

t∗il
Et

[∫ t∗
i′f

t∗il

e−r(u−t)Dimθu du− e−r(t∗il−t)Ki

+

∫ ∞

t∗
i′f

e−r(u−t)Didθu du

]

=
Ki

β − 1

(
θ

θ∗il

)β

+
Did −Dim

r − µ
θ∗i′f

(
θ

θ∗i′f

)β

, θ < θ∗i`. (3.7)

Here, the leader’s entry threshold of Firm i is given by

θ∗il =
β

β − 1
(r − µ)K̃im. (3.8)

It is observed that

t∗i` < t∗i′f ⇔ θ∗i` < θ∗i′f ⇔ K̃im < K̃i′d.

When θ ≥ θ∗il, Firm i should invest immediately and so the dominant leader
value function and its pre-emptive counterpart should have the same value.
For θ ≥ θ∗i`, L

(d)
i (θ) is related to L

(p)
i (θ) and F

(2)
i (θ) as follows:

L
(d)
i (θ) =

{
L

(p)
i (θ) θ∗i` ≤ θ < θ∗i′f

F
(2)
i (θ) θ ≥ θ∗i′f

. (3.9)
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4 Pre-emptive thresholds

In order for a firm to have the incentive to pre-empt its rival, its pre-emptive
leader value must be larger than the follower value for a range of θ, otherwise
it is better off as follower. In this paper, it is always assumed that we
start with sufficiently low value of θ so that both firms have to wait for
their respective entry conditions to be met. Pre-emptive action taken by
Firm i may occur only when the pre-emptive leader value function L

(p)
i (θ)

first surpasses the follower value function Fi(θ). We define the pre-emptive
threshold θ∗ip by

θ∗ip = inf{θ : L
(p)
i (θ) > Fi(θ)}. (4.1)

According to the above definition, θ∗ip does not exist when L
(p)
i (θ) ≤ Fi(θ)

for all values of θ. Since the two functions L
(p)
i (θ) and Fi(θ) are continuous,

it follows that L
(p)
i (θ∗ip) = Fi(θ

∗
ip). We call θ∗ip the pre-emptive threshold, at

which Firm i is indifferent between leading by pre-emption and following.
The pre-emptive incentive can be quantified as the excess of the pre-

emptive leader value over the follower value normalized by the sunk cost.
Accordingly, we define the function

φi(θ) =
L

(p)
i (θ)− Fi(θ)

Ki

, i = 1, 2, (4.2)

as a measurement of pre-emptive incentive of Firm i. As seen from Eq. (3.6),

L
(p)
i (θ) has different functional representations over the two domains [0, θ∗i′f )

and [θ∗i′f ,∞). Since pre-emption must occur before either firm’s follower
entry threshold is reached, we are only interested in φi(θ) over the domain
[0, min(θ∗if , θ

∗
i′f )). From the results in Eqs. (3.3) and (3.6), we obtain

φi(θ) = −aiθ
β + biθ − 1, θ < min(θ∗if , θ

∗
i′f ), i = 1, 2, (4.3)

where the coefficients are given by

ai =
1

β − 1


β

(
1

θ∗i`
− 1

θ∗if

) (
1

θ∗i′f

)β−1

+

(
1

θ∗if

)β

 (4.4a)

bi =
β

β − 1

1

θ∗i`
> 0. (4.4b)
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As a result, Eq. (4.1) is equivalent to

θ∗ip = inf{θ ∈ [0, min(θ∗if , θ
∗
i′f )] : φi(θ) > 0}.

By virture of continuity of φi, we have φi(θ
∗
ip) = 0 and indeed θ∗ip is the

smallest positive root of φi.
Furthermore, we define the following function that is relevant to our sub-

sequent discussion of strategic interaction:

q(x) =

(
1

β

xβ − 1

x− 1

) 1
β−1

. (4.5)

Under the scenario of positive externalities where revenue flows are higher
in duopoly state, firms should have no incentive be the leader. One would
expect that θ∗ip does not exist. The non-existence of θ∗ip under positive exter-

nalities can be established mathematically by showing L
(p)
i (θ) ≤ Fi(θ), for

all θ. The details are presented in Appendix A. In our subsequent analysis
of the mathematical properties of the pre-emptive thresholds, our discussion
is then confined to the scenario of negative externalities.

Under negative externalities, it is obvious that θ∗i` < θ∗if . Provided that
θ∗ip exists, it is relatively straightforward to establish θ∗ip < θ∗i`. We prove by
contradiction by supposing θ∗i` ≤ θ∗ip, then

L
(d)
i (θ∗i`) = L

(p)
i (θ∗i`) ≤ Fi(θ

∗
i`).

The last inequality is due to the property: L
(p)
i (θ) ≤ Fi(θ) for any θ ≤

θ∗ip, by virtue of definition (4.1). However, under negative externalities, the
dominant leader value must be strictly larger than the follower value at θ∗i` [for
details, see Huisman’s (2001) text, Sec. 4.2]. A contradiction is encountered,
and so θ∗ip < θ∗i`. Therefore, the pre-emptive threshold, leader’s and follower’s
entry thresholds observe the following order of relative magnitude.

θ∗ip < θ∗i` < θ∗if .

For Firm i, given its sunk cost and revenue flows in monopoly and duopoly
states, its follower threshold θ∗if and leader threshold θ∗i` can be determined.

Suppose we define Ri =
θ∗if
θ∗i`

=
K̃id

K̃im

, then Ri > 1 (< 1) under negative

(positive) externalities. The special case Ri = 1 is ruled out since we assume
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either Dim > Did or Dim < Did. The parameter Ri measures Firm i’s first
mover incentive, where lower Ri means higher incentive. The extent that
Firm i′ influences the strategic entry decision of Firm i would depend on

their follower threshold ratio Rif =
θ∗if
θ∗i′f

=
K̃id

K̃i′d
and leader threshold ratio

Ri` =
θ∗i`
θ∗i′`

=
K̃im

K̃i′m
. Taking Firm i as the reference firm, with known values

of K̃id and K̃im, Ri can be considered fixed. It will be shown later that Rif

and Ri` are the two key parameters in the characterization of various forms
of strategic equilibriums. In economic sense, Rif measures the competitive
advantage of Firm i as follower while Ri` quantifies its competitive advantage
as leader. The lower each ratio is, the greater its competitive advantage is
over its rival.

The analysis of strategic equilibriums under negative externalities depend
on the existence of the pre-emptive thresholds of the two rival firms and their
relative magnitude. These properties are summarized in the following two
propositions. In Figure 1, we plot φi(θ) against θ for varying values of Rif .
The existence of θ∗ip is seen to be related to the dependence of φi(θ) on the
parameter Rif . The precise conditions under which the pre-emptive thresh-
old exists are stated in Proposition 1. The second proposition determines
which firm has a lower pre-emptive threshold. The corresponding criteria
are derived from the analysis of the interaction of the two functions, φi(θ)
and φi′(θ).

Proposition 1
Under negative externalities, the pre-emptive threshold θ∗ip of Firm i exists

if and only if 0 < Rif < q(Ri), where q(Ri) > 1.

Corollaries

1. The pre-emptive thresholds of both firms exist if and only if

1

q(Ri′)
< Rif < q(Ri), (4.6)

where Ri′ = θ∗i′f/θ
∗
i′`.
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2. When Rif 6∈
(

1

q(Ri′)
, q(Ri)

)
, only one pre-emptive threshold exists.

Specifically, we have (i) for 0 < Rif ≤ 1

q(Ri′)
, θ∗ip exists but not θ∗i′p;

and (ii) for Rif ≥ q(Ri), θ∗i′p exists but not θ∗ip.

3. In the Rif -Ri` plane, the region where both pre-emptive thresholds

exist is bounded by the following inequalities: Rif < q(Ri), Ri` >
Rif

Ri

and Ri` >
Rif

Ri

q−1

(
1

Rif

)
.

The proofs of Proposition 1 and its corollaries are presented in Appendix
B. Corollary 1 gives the conditions for the existence of both pre-emptive
thresholds. Corollary 2 shows that at least one pre-emptive threshold exists
under negative externalities. Furthermore, we can deduce that when the
follower threshold of the rival firm is lower, the incentive for Firm i to pre-
empt the rival becomes smaller. From Corollary 2, part (ii), we deduce that
when the rival’s follower threshold θ∗i′f satisfies

θ∗i′f ≤ θ∗if

/
q

(
θ∗if
θ∗i`

)
, (4.7)

then Firm i would never choose to pre-empt at all.
Recall that the two parameters Rif and Ri` measure the competitive

advantage of Firm i as a follower and leader, respectively, where a lower
value of the ratio represents a stronger competitiveness of Firm i. The full
characterization of the existence properties of the pre-emptive thresholds can
be analyzed in the parameter space of Rif and Ri` (see Figure 2). Under the
assumption of negative externalities, the parameters Ri and Ri′ are both
greater than one. For a fixed value of the parameter Ri, the requirement of

Ri′ > 1 is equivalent to Ri` >
Rif

Ri

. Within the corresponding feasible region
{

(Rif , Ri`) : Ri` >
Rif

Ri

}
in the Rif -Ri` plane, Corollary 3 states that the

region where both pre-emptive thresholds exist is given by the intersection
of the region left of the vertical line: Rif = q(Ri) and the region above the

curve: Ri` =
Rif

Ri

q−1

(
1

Rif

)
. The latter curve intersects the oblique line:
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Ri` =
Rif

Ri

at the point

(
1,

1

Ri

)
.

When both θ∗ip and θ∗i′p exist, we are interested to determine their relative
magnitude. In Figure 2, the two regions in the Rif -Ri` plane

{(Rif , Ri`) : θ∗ip > θ∗i′p} and {(Rif , Ri`) : θ∗ip < θ∗i′p}

are separated by the curve: {(Rif , Ri`) : θ∗ip = θ∗i′p}. This separating curve
is seen to pass through the point (1, 1), which corresponds to the case of
symmetric firms. It also intersects tangentially the vertical boundary line:

Rif = q(Ri) and the boundary curve: Ri` =
Rif

Ri

q−1

(
1

Rif

)
.

Let us first consider the characterization of the separating curve in the
region {(Rif , Ri`) : Rif < 1 and Ri` > 1}. This corresponds to the scenario
of so-called “keen competition”, where Firm i has comparative advantage
only as a follower but not as a leader. When Rif < 1 and Ri` > 1, it can be
shown that the two functions φi(θ) and φi′(θ) is guaranteed to intersect at
unique point

θ̂ =

(
bi′ − bi

ai′ − ai

) 1
β−1

> 0. (4.8)

As shown in Proposition 2 below, the relative magnitude of the pre-emptive
thresholds depends on the sign behaviors of the following two quantities:

φi(θ̂) and
dφi′

dθ
(θ̂).

Proposition 2
Negative externalities and existence of both pre-emptive thresholds θ∗ip and
θ∗i′p are assumed. Under the scenario of Rif < 1 and Ri` > 1, the pre-emptive
thresholds exhibit the following properties on their relative magnitude:

1. φi(θ̂) > 0 ⇒ θ∗ip > θ∗i′p

2. φi(θ̂) = 0

(a)
dφi′

dθ
(θ̂) > 0 ⇒ θ∗ip = θ∗i′p

(b)
dφi′

dθ
(θ̂) < 0 ⇒ θ∗ip > θ∗i′p

3. φi(θ̂) < 0
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(a)
dφi′

dθ
(θ̂) > 0 ⇒ θ∗ip < θ∗i′p

(b)
dφi′

dθ
(θ̂) < 0 ⇒ θ∗ip > θ∗i′p.

The proof of Proposition 2 is presented in Appendix C. Let P denote the
point of intersection of φi(θ) and φi′(θ). The results in Proposition 2 are
related to whether the position of P is staying above or below the θ-axis and
whether P lies on the increasing part or decreasing part of the curve φi′(θ)
[see Figures 3a-3e for details]. Provided that the values of the leader and

follower thresholds of both firms are known, φi(θ̂) and
dφi′

dθ
(θ̂) can be readily

computed. The criteria stated in Proposition 2 can then be checked easily
to determine the relative magnitude of θ∗ip and θ∗i′p.

In Figure 2, the part of the separating curve corresponding to θ∗ip = θ∗i′p
that lies inside the region {(Rif , Ri`) : Rif < 1 and Ri` > 1} is given by the

part of the curve defined by φi(θ̂) = 0 satisfying
dφi′

dθ
(θ̂) > 0 [see Part 2(a) in

Proposition 2]. As for theoretical interest, the part of the curve: φi(θ̂) = 0

satisfying
dφi′

dθ
(θ̂) < 0 lies completely inside the region θ∗ip > θ∗i′p, which is in

agreement with Part 2(b) in Proposition 2.
We then consider the scenario where Ri` > 1 and Rif ≥ 1. In this case,

Firm i′ has competitive advantage over Firm i in monopoly state and no less
advantage in duopoly state. It can be shown easily that φi′(θ) > φi(θ) for all
values of θ ∈ (0, min(θ∗if , θ

∗
i′f )). Accordingly, we deduce that (i) θ∗i′p < θ∗ip if

both θ∗ip and θ∗i′p exists or (ii) only θ∗i′p exists. In Figure 2, we observe that

when Rif ≥ q(Ri) > 1, then θ∗ip does not exist, a result that is in agreement
with Corollary 2(ii) of Proposition 1.

Next, we consider the two special cases (i) Ri` = 1 and Rif < 1 and
(ii) Ri` = Rif = 1. For case (i), it is seen that φi(θ) > φi′(θ) for θ > 0 so
that θ∗ip < θ∗i′p if both θ∗ip and θ∗i′p exists or else θ∗i′p does not exist at all (see
Figure 2). The second case represents the interesting scenario of symmetry
in both firms. When Ri` = Rif = 1, we have θ∗i` = θ∗i′` and θ∗if = θ∗i′f so
that φi(θ) = φi′(θ) and thus θ∗ip = θ∗i′p. As shown in Figure 2, the separating
curve: θ∗ip = θ∗i′p does pass through the point (1, 1) (labeled as a circle).

Since {Rif > 1, Ri` ≤ 1} is equivalent to {Ri′f < 1, Ri′` ≥ 1}, and
similar equivalence for {Rif ≤ 1, Ri` < 1} and {Ri′f ≥ 1, Ri′` > 1}, the
properties on the relative magnitude of θ∗ip and θ∗i′p under the scenario of
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{Rif > 1, Ri` ≤ 1} and {Rif ≤ 1, Ri` < 1} can be deduced from the earlier
results by interchanging the roles of i and i′. Hence, we have completed the
characterization of the relative magnitude of the pre-emptive thresholds of
the two firms in the whole Rif -Ri` plane.

As a remark, the assumption of “asymmetry on cost only” in earlier
papers [Huisman et al . (2003), Kijima and Shibata (2002)] would limit
their consideration of strategic equilibrium in the region where Ri` < 1 and
Rif < 1. This corresponds to the less interesting scenario of one firm having
competitive advantage in both states. Actually, our model assumption of
“asymmetry on both cost and revenue” induces a complete characterization
of strategic equilibriums since it has already simulated all possible relative
positions of rival’s leader and follower threshold values.

Under the assumption of negative externalities, we also investigate the
impact of varying volatility values on the two regions: θ∗ip < θ∗i′p and θ∗i′p < θ∗ip,
and the pre-emptive thresholds. In Figure 4, we plot the separating curve:
θ∗ip = θ∗i′p with varying values of β (high β means lower volatility σ) in the
Rif -Ri` plane. Consider the region {(Rif , Ri`) : Rif < 1 and Ri` > 1},
an increase in volatility (lower value of β) steepens the separating curve
upward about the pivot point (1, 1), at which Rif = Ri` = 1. Suppose we
fix the value of Ri` and gradually decrease the value of Rif , we cross from
the region: {θ∗ip > θ∗i′p} to the region: {θ∗ip < θ∗i′p} at a lower value of Rif

under the scenario of higher value of β (lower volatility). This agrees with
the economic intuition that at a lower level of volatility, it would require a
stronger competitive advantage in duopoly state (smaller value of Rif ) to
enhance the pre-emptive incentive. From Figure 5, θ∗ip (θ∗i′p) is seen to be
decreasing (increasing) with increasing volatility level when Rif < 1 and
Ri` > 1. With higher volatility, the pre-emptive incentive of Firm i (Firm
i′) becomes greater (less) so that pre-emptive action becomes more (less)
favorable, thus leading to a lower (higher) value of pre-emptive threshold.

5 Strategic equilibriums

In this section, we analyze the strategic investment decisions of the two
competing firms under various forms of strategic equilibriums. The different
outcomes of investment decisions depend on the existence properties of the
pre-emptive thresholds. These properties are summarized below:

1. Under positive externalities, both firms do not have the incentive to
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pre-emptive so that θ∗ip and θ∗i′p do not exist.

2. Under negative externalities, it may occur that

a. only one of the pre-emptive thresholds exists;

b. both pre-emptive thresholds exist and one is strictly smaller than
the other;

c. the two pre-emptive thresholds are equal.

The different cases of existence of the pre-emptive thresholds would lead to
various forms of strategic equilibrium, which may be sequential equilibrium,
simultaneous equilibrium or pre-emptive equilibrium.

5.1 Positive externalities

Under positive externalities, there are no pre-emptive thresholds and the
leader and follower thresholds observe

θ∗if < θ∗i` and θ∗i′f < θ∗i′`.

Without loss of generality, we may assume θ∗if ≤ θ∗i′f , corresponding to Rif ≤
1. There are three possible orderings of the thresholds

(i) θ∗if ≤ θ∗i′f < θ∗i′` ≤ θ∗i`

(ii) θ∗if ≤ θ∗i′f ≤ θ∗i` ≤ θ∗i′`

(iii) θ∗if < θ∗i` ≤ θ∗i′f ≤ θ∗i′`.

The form of strategic equilibrium depends on whether the leader threshold
θ∗i` of Firm i comes after or before the follower threshold θ∗i′f of its rival, that
is, θ∗i` ≥ θ∗i′f or θ∗i` ≤ θ∗i′f .

First, we consider θ∗i` ≥ θ∗i′f . In this case, both firms would invest simul-
taneously at θ∗i′f , resulting in simultaneous equilibrium. Knowing that Firm
i′ would invest optimally as a follower when θ ≥ θ∗i′f , Firm i would invest
at θ∗i′f since the follower value of Firm i at θ = θ∗i′f is higher than its leader
value due to positive externalities. For the second case where θ∗i` ≤ θ∗i′f , Firm
i would invest at θ∗i`. This is because at θ = θ∗i` it is optimal for Firm i to
enter as a leader. Firm i′ would enter later at θ∗i′f as a follower. This results
in sequential equilibrium. In summary, unless the optimal stopping time of
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leader entry for Firm i comes before that of the follower entry for its rival,
Firm i prefers to wait until the stopping time for simultaneous entry of both
firms.

5.2 Negative externalities

First, we consider the case where Firm i dominates in the sense that only
θ∗ip exists but not θ∗i′p. Here, Firm i′ would never take pre-emptive action
since its pre-emptive leader value is always lower than its follower value.
Hence, Firm i can choose its optimal entry strategy without the influence
of its rival. Under negative externalities, we have θ∗i` < θ∗if so that Firm
i chooses to invest at θ = θ∗i` as optimal leader entry. Subsequently, Firm
i′ will invest optimally at a later time when θ reaches θ∗i′f . This results in
sequential equilibrium.

Next, we consider the scenario of “keen competition” where the pre-
emptive threshold of both firms exist. In Proposition 2, we present the cri-
teria to determine which pre-emptive threshold has a lower value or whether
both threshold values are equal. Without loss of generality, let us assume
θ∗ip < θ∗i′p, which infers that Firm i has stronger pre-emptive advantage. Firm
i does not have to take pre-emptive action to invest at θ∗ip as Firm i′ will re-
frain from entry when

L
(p)
i′ (θ) < Fi′(θ) for θ < θ∗i′p.

The optimal strategy for Firm i is to invest at min(θ∗i`, θ
∗
i′p). More precisely,

when θ∗i` ≤ θ∗i′p, Firm i will invest at θ∗i` as optimal leader entry. Otherwise,
when θ∗i` > θ∗i′p, Firm i enters at θ∗i′p as pre-emptive entry. The relative
magnitude of θ∗i` and θ∗i′p under keen competition is stated in Proposition 3.

Proposition 3
Under negative externalities and assuming both θip and θi′p exist, we have

θ∗i` ≤ θ∗i′p

⇔ βR
β

i (Ri` − 1) ≤ β(RiRi` −Rif ) + Rβ
if < R

β

i .

The proof of Proposition 3 is presented in Appendix D. Actually, the po-
tential pre-emptive action of Firm i′ has no effect on the strategic investment
decision of Firm i when θ∗i` ≤ θ∗i′p. This equilibrium outcome is indistinguish-
able from the dominant case when θip alone exists. Again, we have sequential
equilibrium since Firm i′ will invest at θ = θ∗i′f at a later time.
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When θ∗i` > θ∗i′p, it is obvious that Firm i will not wait till θ∗i` is reached
before entry, for its rival can pre-empt at θ∗i′p. Between θ∗ip and θ∗i′p, Firm i
will choose to delay entry till as close to θ∗i′p as possible. This strategy not
only yields greatest exercise value on Firm i’s own leader option among all
θ ∈ [θ∗ip, θ

∗
i′p), it also guarantees Firm i leadership over its rival. Being aware

of Firm i’s strategy, Firm i′ will choose to invest at θ∗i′f . Effectively, Firm i
will invest at θ∗i′p and Firm i′ at θ∗i′f , results in pre-emptive equilibrium.

Under the special case where θ∗ip = θ∗i′p, by following similar argument
as above, we also have simultaneous pre-emptive entry of both firms at θ∗ip,
except when the two firms are symmetric. Under symmetry of the two firms,
each firm will have 50% chance of successfully pre-empting its rival (Fuden-
berg and Tirole, 1985).

6 Conclusion

Our work combines two streams of research in investment science: investment
under competition and investment under uncertainty. We analyze various
forms of strategic equilibriums in investment games between two firms that
compete for entry in a project that generates uncertain revenue flows. Under
the assumption of asymmetry in both costs and revenue flows, our model
provides a wider set of strategic interaction of entry decisions. In particular,
we demonstrate that when no firm enjoys competitive advantage through-
out the two states, it is possible to yield simultaneous entry at suboptimal
threshold. This cannot happen under the framework of asymmetry in cost
alone; because the lower cost firm has competitive advantage over its rival
throughout, resulted in either sequential or pre-emptive equilibrium.

In this paper, we also derive the value functions for entry as a follower,
pre-emptive leader or dominant leader. We provide a complete characteri-
zation of strategic games between two competing firms facing single entry
decision. We have shown that when analysis is performed in the Rif - Ri`

parameter space, various equilibriums can be clearly presented. The set of
strategic equilibriums include pre-emptive equilibrium, sequential equilib-
rium and simultaneous equilibrium.

Under positive externalities, both firms do not have the incentive to pre-
empt. If the leader’s threshold of one firm is higher than the follower’s
threshold of its rival, then both firms would invest simultaneously at the
higher of the two follower’s thresholds. Otherwise, sequential equilibrium is

21



resulted where the firm with lower leader’s threshold would choose optimal
entry as a leader while its rival would enter at the optimal threshold as a
follower.

Under the scenario of negative externalities, when one firm dominates the
other, we again have sequential equilibrium. Dominance occurs when either
the pre-emptive threshold of only one firm exists or the leader’s threshold
of one firm is lower than the pre-emptive threshold of its rival. Without
dominance, the game equilibriums can be either pre-emptive or simultaneous.
In either case, the threat of pre-emption by rival leads to sub-optimal first
or simulataneous entry.

We also examine the influence of market uncertainty as measured by
the volatility of the underlying stochastic state variable on the pre-emptive
equilibriums. In the strategic investment game between two firms with asym-
metry in both cost and revenue, we find that an increase in volatility may
hasten or delay pre-emptive entry. Our numerical example shows that in-
creasing volatility hastens pre-emptive entry of the firm with competitive
advantage as follower. While rising volatility delays its rival’s pre-emptive
entry. This result is quite different from the usual model prediction that
volatility always delays investment entry.

Potential extensions of research on strategic investment games can be nu-
merous. For example, we may allow the sunk cost of investment to increase
over time. The sunk cost of investment and revenue flows can be propor-
tionally related. The amount of investment placed on the project can be
considered as a stochastic control variable rather than an exogenously given
constant. Also, we may assume that the capital required for the investment
cost is raised through financing, which in turn affects the leverage in the
corporate structure of the investment firm.
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Appendix A – Non-existence of pre-emptive threshold under pos-
itive externalities
We would like to show that φi(θ) ≤ 0 for θ ∈ (0, min(θ∗if , θ

∗
i′f )) under positive

externalities. When θ < θ∗if , we have F
(2)
i (θ) < F

(1)
i (θ). This is because the

continuation value F
(1)
i (θ) should be higher than the exercise value F

(2)
i (θ)

when θ has not reached the threshold θ∗if . It suffices to show that

L
(p)
i (θ)− F

(2)
i (θ) ≤ 0 for θ < θ∗i′f .

We write θ = αθ∗i′f , where 0 ≤ α < 1. It is seen that

L
(p)
i (θ)− F

(2)
i (θ) =

Did −Dim

r − µ
(αθ∗i′f )(α

β−1 − 1).

Since Did > Dim under positive externalities and αβ−1 − 1 < 0, we obtain
the required result.

Appendix B – Proof of Proposition 1
Under negative externalities, we have θ∗i` < θ∗if so that ai > 0 and Ri > 1.
Knowing that β is always greater than 1, the function φi(θ) is concave since

φ′′i (θ) = −β(β − 1)ai < 0.

To prove the existence of θ∗ip when Rif ∈ (0, q(Ri)), we consider the two
separate cases (i) 0 < Rif < 1 and (ii) Rif ≥ 1.

(i) When 0 < Rif < 1, the domain of definition of φi(θ) is [0, θ∗if ]. At the
two end points θ = 0 and θ = θ∗if , the functional values of φi(θ) are

φi(0) = −1 and φi(θ
∗
if ) =

β

β − 1
(Ri − 1)(1−Rif ) > 0.

By the continuity and concavity properties of φi, the function φi has
unique root θ∗ip ∈ (0, θ∗if ) (see the most upper curve in Figure 1).
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(ii) When Rif ≥ 1, the domain of definition of φi(θ) becomes [0, θ∗i′f ]. Con-
sidering

φi(θ
∗
i′f ) =

1

Ki

[
F

(2)
i (θ∗i′f )− F

(1)
i (θ∗i′f )

]
, where θ ∈ [0, θ∗i′f ],

and observing that

F
(2)
i (θ) ≤ F

(1)
i (θ) for θ ≤ θ∗if , and θ∗if < θ∗i′f ,

then we can deduce that φi(θi′f ) ≤ 0 (equality holds when Rif = 1).
The unique critical point θ∗c of φi(θ) is found to be

θ∗c =

(
bi

βai

) 1
β−1

.

It is quite straightforward to show that 0 < θ∗c < θ∗i′f and φ′′(θ∗c ) < 0
so that θ = θ∗c is a local maximum point (see the three lower curves in
Figure 1). The function φi(θ) has at least one root within (0, θ∗i′f ) if
and only if

φ(θ∗c ) =

(
bi

βai

) 1
β−1

(
bi − bi

β

)
− 1 > 0.

Rearranging terms in the above inequality, we obtain

Rif < q(Ri) =

[
1

β

(
R

β

i − 1

Ri − 1

)] 1
β−1

.

Next, it is necessary to show that q(Ri) > 1; otherwise, the condition
1 ≤ Rif < q(Ri) does not hold. It suffices to show that q(x) > 1 for
x > 1 and β > 1. First, we observe that

q(x) > 1 ⇔ g(x) = xβ − 1− βx + β > 0.

Since g(1) = 0 and g′(x) > 0 for x > 1 and β > 1, hence g(x) > 0 and
in turn q(x) > 1. Now, under negative externalities, we have Ri > 1
and so q(Ri) > 1.

Combining (i) and (ii), we deduce that θ∗ip exists if and only if

0 < Rif < q(Ri).
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To prove Corollary 1, we use symmetry to deduce that θ∗i′p exists if and

only if 0 < Ri′f < q(Ri′), which is equivalent to Rif >
1

q(Ri′)
since Ri′f =

1

Rif

. Combining this with the result from Proposition 1, θ∗ip and θ∗i′p both

exist if and only if
1

q(Ri′)
< Rif < q(Ri).

Suppose Rif ≥ q(Ri), then θ∗ip does not exist. However, since

Ri′f =
1

Rif

≤ 1

q(Ri)
< 1,

we deduce that θ∗i′p exists. Interchanging i′ with i in the above arguments,

when Rif ≤ 1

q(Ri′)
, we deduce that θ∗ip exists but not θ∗i′p. Hence, the results

in Corollary 2 are obtained.
The three inequalities in Corollary 3 are derived from negative external-

ities and existence conditions of both θ∗ip and θ∗i′p:

Ri′f < q(Ri′), Rif < q(Ri) and Ri′ > 1.

The first two inequalities are obtained from the main result of Proposition
1. The last inequality arises as a derived condition of negative externalities
for Firm i′. This is seen as one of the necessary conditions for the existence
of θ∗i′p. It is straightforward to show that

Ri′f < q(Ri′) ⇔ Ri` >
Rif

Ri

q−1

(
1

Rif

)

Ri′ > 1 ⇔ Ri` >
Rif

Ri

.

Appendix C – Proof of Proposition 2
Given Rif < 1, which is equivalent to Ri′f > 1, the two functions φi(θ) and
φi′(θ) are defined over [0, θ∗if ]. From Proposition 1, we obtain φi(θ

∗
if ) > 0

26



and φi′(θ
∗
if ) < 0. Also, from Ri` > 1, we obtain

dφi

dθ
(0) <

dφi′

dθ
(0). The five

possibilities of how the curve of φi(θ) intersects that of φi′(θ) are shown in
Figures 3a – 3e. The relative magnitude of the roots of φi(θ) and φi′(θ) can
be deduced readily from Figures 3a–3e.

Appendix D – Proof of Proposition 3

The condition θ∗i` ≤ θ∗i′p is equivalent to {φi′(θ
∗
i`) ≤ 0 and

dφi′

dθ
(θ∗i`) > 0},

that is, the point (θ∗i`, φi′(θ
∗
i`)) does not go above the θ-axis and it lies on the

increasing part of φi′(θ). It can be shown that

φi′(θ
∗
i`) ≤ 0 ⇔ β(bkθ

∗
i` − 1) ≤ βakθ

∗β
i`

dφi′
dθ

(θ∗i`) > 0 ⇔ βakθ
∗β
i` < bkθ

∗
i`.

Combining the above two inequalities, we obtain

β

(
θ∗i`
θ∗i′`

− 1

)
≤ β

(
θ∗i`
θ∗i′`

− θ∗i`
θ∗i′f

)(
θ∗i`
θ∗if

)β−1

+

(
θ∗i`
θ∗i′f

)β

< 1.

Rearranging the terms, we obtain the result in Proposition 3.
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Fig. 1 Behaviors of φi(θ) within the domain [0, min(θ∗if , θ
∗
i′f )] under varying

values of Rif . When 0 < Rif < q(Ri), φi(θ) has at least one root so that the
pre-emptive threshold θ∗ip exists.
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Fig. 2 Characterization of the relative magnitude of the pre-emptive
thresholds, θ∗ip and θ∗i′p, in the Rif -Ri` plane. For a fixed value of the pa-

rameter Ri, the region where both pre-emptive thresholds exist is bounded

by Rif < q(Ri), Ri` > q−1

(
1

Rif

)
Rif

/
Ri and Ri` > Rif/Ri. Under negative

externalities, the feasible region is given by Ri` > Rif/Ri.
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Fig. 3a φi(θ̂) < 0 and
dφi′

dθ
(θ̂) > 0 implying θ∗ip < θ∗i′p.
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Fig. 3b φi(θ̂) = 0 and
dφi′

dθ
(θ̂) > 0 implying θ∗ip = θ∗i′p.
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Fig. 3c φi(θ̂) > 0 and
dφi′

dθ
(θ̂) can be positive or negative, implying θ∗ip >

θ∗i′p.
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Fig. 3d φi(θ̂) = 0 and
dφi′

dθ
(θ̂) < 0 implying θ∗ip > θ∗i′p.
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Fig. 3e φi(θ̂) < 0 and
dφi′

dθ
(θ̂) < 0 implying θ∗ip > θ∗i′p.
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Fig. 4 The dependence of the separating curve: {(Rif , Ri`) : θ∗ip = θ∗i′p} on
the parameter β.
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Fig. 5 With increasing volatility σ, θ∗i′p increases while θ∗ip decreases. The

parameter values used in the calculations: Rif =
69

100
, Ri` =

57

50
, Ri =

69

57
(corresponding to θ∗i′` = 50, θ∗i` = 57, θ∗if = 69, θ∗i′f = 100), r = 4% and
µ = 1.6%.

32


