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Abstract 
 
 

The effects of strategic behavior on asset returns are studied in a model of 

incremental investment with operating flexibility. We show how the interaction of 

competition and production and investment decisions influences the relation between 

industry structure and expected rates of return. The effect of competition on asset returns 

depends on the level of demand for the industry output. When demand is low firms in 

less concentrated industries earn higher returns. As demand increases and growth options 

become more valuable firms in more concentrated industries earn higher returns. We 

compare the predictions of our model with recent empirical evidence on industry 

structure and average rates of return by Hou and Robinson (2005). 
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Introduction 

 

A recent empirical study on industry concentration and stock returns by Hou and 

Robinson (2005) finds that firms in less concentrated industries earn higher returns, even 

after controlling for size, book-to-market, momentum, and other known return predictors. 

Hou and Robinson consider two possible explanations for their results. The first is that 

firms in less concentrated industries are riskier because they engage in more innovation, 

thus commanding higher expected returns. The second explanation is that barriers to 

entry in highly concentrated industries insulate firms from aggregate demand shocks. 

Therefore firms in more concentrated industries have lower distress risk and earn lower 

returns. There are a number of other reasons why industry concentration affects stock 

returns, hence this empirical evidence suggests a need for asset-pricing models which 

explicitly incorporate features of product markets as determinants of asset returns. 

This article studies the effects of competitive interactions among firms on asset 

returns in a real options framework. We analyze the asset pricing implications of product 

market competition by examining how the strategic behavior of market participants 

affects their equilibrium investment and production decisions. 

Our model extends the approach of Grenadier (2002), which derives the equilibrium 

investment strategies of firms in a Cournot-Nash framework, by introducing an operating 

option that allows firms to vary their capacity utilization in response to changes in 

demand. Specifically, capital is the only factor in production in our model and on any 

given period each firm chooses its output to maximize its current profit. This choice 

depends on current demand and it is constrained by the firm’s current production 

capacity. In addition, each firm must condition its output choice on the output choices of 

the other firms, which are also constrained by their capacity levels.  All the firms can 

expand their production capacity by investing in additional capacity and they must 

determine when to exercise their investment opportunities. Each firm investment strategy 

is conditional on its competitors’ investment strategies. Therefore investment and 

operating decisions arise from equilibrium in the product market which reflects strategic 

interactions among market participants.  
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To understand the link between the effect of product market competition on the firms 

operating and investment decisions and their expected returns we separate the total value 

of all firms into two components, the value of the assets in place and the value of the 

growth opportunities. Once we know how the firms’ strategic behavior affects the values 

and returns of each of these components separately, then the net effect of competition on 

the risk and return of every firm will depend on the weighting of its assets in place and its 

growth opportunities on its total value. 

The value of the assets in place is the present value of the future cash flows generated 

by the firm’s current production capacity. Hence the return on the assets in place depends 

on the effect of competition on the riskiness of these cash flows. In our model production 

costs introduce leverage which increases the risk of the firms’ cash flows. On the other 

hand the option to reduce output in response to a fall in demand diminishes the effect of 

leverage on risk. However, the value of this option decreases with the number of firms in 

the industry because with more competition the firms have less power to reduce output.  

Therefore the firm’s assets in place in more competitive industries earn higher returns as 

their cash flows are riskier. 

The value of the growth options derives from the firms’ ability to decide when to 

invest in additional capacity. Because the future value of any additional unit of capacity 

is uncertain, there is an opportunity cost to investing today. Thus the optimal investment 

rule is to invest when the value of the additional capacity exceeds the investment cost by 

an amount that is the value of the option to invest. However, increased competition leads 

the firm to invest earlier to avoid losing the investment opportunity to its competitors. 

Therefore, the value of the option to invest decreases with more firms in the market. The 

presence of growth option increases the total risk of a firm because these investment 

opportunities have implicit leverage. This leverage arises from fixed development costs. 

Thus, if the value of the growth options relative to the total value of a firm decreases with 

more competition then the risk and expected return of the firm also decreases. 

As seen above the assets in place in more competitive industries earn higher returns, 

whereas the value of the growth options decreases with more firms in the market. Then it 

follows that the net effect of competition on the risk and return of the firms depends on 

the weighting of the assets in place and growth options on the total value of the firm. 
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Regardless of the number of firms in the industry, growth options become more valuable 

as demand increases because they are more likely to be exercised. It follows that the 

value of the growth options as a proportion of the total value of the firm increases with 

the level of demand. Therefore when the demand level is low firms in less concentrated 

industries earn higher returns because their assets in place are riskier and the value of 

their growth options is relatively low, but as demand increases and expansion becomes 

more likely firms in more concentrated industries will earn higher returns because their 

growth options are more valuable. 

This article contributes to a growing research literature pioneered by Berk, Green, and 

Naik (1999) that links firms’ real investment decisions and asset return dynamics. This 

literature includes Gomes, Kogan, and Zhang (2003), Kogan (2004), Carlson, Fisher and 

Giammarino (2004), Cooper (2005), and Zhang (2005a, 2005b). These papers provide 

models that relate risk and return dynamics to firm specific-characteristics such as size 

and book-to-market. Specifically, if assets in place and growth options have different 

sensitivities to changing economic conditions, then their systematic risk is different. The 

relative weight of assets in place and growth options changes as the firm value changes. 

Hence, the firm’s true conditional systematic risk or beta can vary. However, the 

empirical methods fail to capture this variation. By endogenizing expected returns 

through firm-level decisions, the papers in this emerging literature show how the true 

conditional beta can be proxied by firm characteristics such as size and book-to-market. 

Thus, by providing theoretical structure for risk and return dynamics this literature 

explains the economic mechanisms behind the observed empirical regularities1. We 

contribute to this literature by showing how competitive interactions among firms in a 

given industry affect their risk dynamics. 

In addition to explaining a link between industry structure and asset returns through 

the effect of competition on firm decisions our framework is also helpful in expanding 

our understanding on the role of some key assumptions in the existing literature. For 

example, in a monopolistic setting, Carlson, Fisher and Giammarino (2004), and Cooper 

(2005) rely on operating leverage to explain the book-to-market effect or value premium 

                                                 
1 For example, Fama and French (1992, 1993) provide empirical evidence on the ability of size and book-
to-market to explain the cross-section of stock returns. 
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in stock returns. Intuitively, when firms’ revenue fall due to a fall in their output price, 

equity values fall relative to installed capital which can be proxied by book value. If the 

fixed operating costs are proportional to installed capital, the risk of the firm increases 

because of higher operating leverage. In contrasts Kogan (2004) can obtain the value 

premium without production costs in perfect competition. In his model investment is 

irreversible and firms always utilize all their installed capital. Therefore, to guarantee 

market clearing either prices or supply must adjust in response to a shock in demand. 

When installed capacity considerably exceeds the optimal level, the output price and the 

firm value must adjust to absorb a shock in demand. Therefore, asset prices are more 

sensitive to changing economic conditions and returns have more systematic risk. As firm 

value increases, investment in new capital becomes more attractive. The new supply will 

absorb the effect of changes in demand on the firm value and reduce its systematic risk. 

Therefore the expected return decreases as the value of the firm increases relative to its 

installed capital, which is the value premium. Kogan obtains the value premium without 

production costs because in a perfectly competitive industry the value of the options to 

invest in additional capacity is zero. However, in a monopolistic market the risk and 

expected return of the firm increases as its value increases because the increased 

contribution of the growth options to the total risk of the firm is greater than the reduction 

in risk resulting from new investment. Hence, to obtain the value premium Carlson, 

Fisher and Giammarino (2004), and Cooper (2005) introduce operating leverage to make 

assets in place riskier than growth options. But when firms always utilize all their 

capacity increasing competition does not affect the sensitivity of their operating cash 

flows to changes in demand. Thus, as discussed above, operating flexibility is required to 

explain why firms in more competitive industries earn higher returns.   

Our work is also related to Aguerrevere (2003) who shows how operating flexibility 

affects the behavior of equilibrium output prices in a model of strategic capacity 

expansion.  He demonstrates that when firms have the ability to vary their capacity 

utilization in response to a shock in demand, the output price volatility is increasing in the 

number of firms in the industry. 
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This article is organized as follows. Section 2 presents our model of capacity 

choice and operating flexibility. Section 3 derives the value of the firms in the market. 

Section 4 examines the effect of competition on expected returns. Section 5 concludes. 

 

 

2. The Model  
 

Our model extends the model of Grenadier (2002), which derives the equilibrium 

investment strategies of firms in a Cournot-Nash framework, by introducing an operating 

option that allows firms to vary their capacity utilization in response to changes in 

demand. 

Consider an industry composed of n firms producing a single non-storable good. At 

time t, each firm i produces qi(t) units of output. The output price is a function of the 

industry output and a stochastic demand shock. Specifically we assume the following 

simple form for the inverse demand curve: 

P(t)  = Y(t).Q(t)  –1/γ                                                            (1) 

Where P(t) is the output price, Y(t) is an exogenous shock to demand, is 

the industry output, and the constant γ > 1 is the elasticity of demand. With this assumed 

functional form changes in the variable Y will be reflected in parallel shifts to the demand 

curve. Thus Y can be thought as the relative strength of the demand side of the market. 

Conditions affecting the strength of demand include the level of industrial production, 

household income, etc. The demand shock evolves as geometric Brownian motion  

∑
=

=
n

i
i tqtQ

1
)()(

 

)()()()( tdZtYdttYtdY σμ +=                                                 (2) 
 

where μ is the instantaneous proportional change in Y per unit time, σ is the 

instantaneous standard deviation per unit time, and Z is a standard Wiener process. Both 

μ and σ are constant.  

Firms operate a simple production technology. Each unit of installed capacity can 

produce one unit of output per unit time at a cost Ci(qi) = cqi. Where c is the marginal 
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cost, which is the same constant for all firms. At any time t each firm chooses its output 

to maximize its current profit. For each firm the optimal output choice is constrained by 

its installed capacity, which is denoted by Ki(t). Specifically, at any time t the firms play a 

static Cournot game. Each firm chooses its output to maximize its profit. This choice 

depends on current demand and it is constrained by the firm’s current production 

capacity. In addition, each firm must condition its output choice on the output choices of 

the other firms, which are also constrained by their capacity levels.   

At any time t, each firm can invest in additional capital to increase its production 

capacity by an infinitesimal increment dKi(t). The price of a new unit of capacity is a 

constant I. If I = 1, then firm’s i capital Ki can be interpreted as the book value of the 

firm’s assets. 

Each firm chooses its production capacity Ki(t) to maximize its value, conditional on 

the capacity choices of its competitors. Thus the optimal investment decision is an 

endogenous Nash equilibrium solution in investment strategies. Production capacity is 

the strategic variable and each firm must condition its capacity choice on the strategies of 

its competitors. For each firm i, let K-i = (K1,.., Ki-1, Ki+1,.. Kn) denote the strategies of 

firm i’s competitors. An n-tuple of strategies (K1
*,…, Kn

*) is a Nash industry equilibrium 

if 

Ki
* = Ki(Y, K-i

*) ,  i = 1,…,n                                               (3) 

 

To simplify the analysis we assume that the industry is composed of n identical firms. 

That is, all the firms start with the same initial capacity and, thus, they all have the same 

size at any time. Thus, our analysis focuses on a symmetric Nash equilibrium. 

Let K(t) denote the total industry installed capacity. Since all firms are identical it 

follows that Ki(t) = K(t)/n, and  K-i(t) = (n – 1)K(t)/n. Thus, by focusing on a symmetric 

equilibrium, the state space is reduced and the firms condition their investment and 

production decision on the level of the demand shock Y and the total industry capacity K. 

For example the instantaneous profit that firm i earns at time t when the industry capacity 

is K(t) and the demand parameter is Y(t)is given by 
 

[ ])()())()((max))(),(( /1
/)()(0 tcqtqtQtYtYtK iintKtqi i

−= −
≤≤

γπ                    (4) 
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From the symmetric equilibrium assumption we get  
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3. Valuation 
 

Following Carlson, Fisher and Giammarino (2004) we assume the existence of traded 

assets that can hedge demand uncertainty. Specifically, let M be the price of a riskless 

asset with dynamics dM(t) = rM(t)dt where r is the (constant) risk-free rate of interest, 

and let X be the price of a risky asset which evolves as geometric Brownian motion 

 

)()()()( tdZtXdttXtdX ση +=                                                 (6) 
 

  The risky asset and the demand shock are driven by the same Brownian motion Z and 

have the same instantaneous standard deviation σ of relative changes. Thus, they are 

perfectly correlated. The difference in their drifts is δ = η – μ.  To ensure that the value of 

the firm is finite we must have δ  > 0.  Since the relative changes in X and Y are perfectly 

correlated we can construct a portfolio with X and M that exactly replicates the dynamics 

of the firm value. To find the value of the firm we use the traded assets X and M to define 

a new probability measure Q under which the process trtZtZ
σ

η −
+= )()(*  is a standard 

Brownian motion. Under this risk neutral measure, the demand shock follows the process 
 

                                             (7) )()()()()( * tdZtYdttYrtdY σδ +−=
 

Let Vi (K,Y) be the value of firm i when the industry capacity is K and the level of the 

demand parameter is Y. The firm’s problem is to choose the path of capacity expansion 
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that maximizes the present value of its future cash flows. Thus, each firm solves the 

following optimal control problem  
 

                 (8) 
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As in Pindyck (1988), and He and Pyndyck (1992) we approach the solution to this 

problem by examining the firm’s incremental investment decision.2 The opportunity to 

invest in an additional unit of capacity is analogous to a perpetual American call option. 

The underlying asset is the value of an extra unit of capacity and the exercise price is the 

cost of investing in this unit. 

Therefore, the solution to the firm’s capacity choice problem involves two steps. 

First, the value of an extra unit of capacity must be determined. Second, the value of the 

option to invest in this unit must be determined together with the decision rule for 

exercising this option. This decision rule is the solution to the optimal capacity problem. 

The value of a marginal unit of capacity is the present value of the expected flow of 

profits from this unit. Given the current capacity K, and demand Y, ΔFi (K,Y) denotes the 

value of a marginal unit of capacity. An expression for ΔFi is derived in the appendix. 

After obtaining the value of the marginal unit of capacity, we can value the option to 

invest in this unit. Let ΔGi (K,Y) denote the value of this option when the current capacity 

level is K. The exercise price of this option is equal to the investment cost I. Therefore, 

for any level of committed capacity K, ΔGi (K,Y) is a perpetual American call option 

whose value depends on Y. Hence, there will be a threshold value at which it will be 

optimal to exercise this option. Specifically, for any K and n there will exists a threshold, 

Yn(K), such that the option to build an additional unit of capacity will be exercised the 

first time that Y equals or exceeds Yn(K).  

The appendix shows that the solution to the investment threshold in an industry 

composed by n identical firms is of the form  
 

Yn(K) = vn K 1/γ                                                            (9) 

                                                 
2 The value of the firm can be derived as the solution to an optimal instantaneous control problem. He and 
Pindyck (1992) show that the solution to this type of capacity choice problem can be obtained by 
examining the firm’s incremental investment decision.  
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where the expression for vn is given in the appendix. 

 It follows from (9) that vn = Yn(K)K –1/γ is the output price at which firms expand 

their capacity. The appendix shows that given the number of firms in the industry n, vn is 

a constant which is independent of the industry capacity K. Thus the endogenous output 

price process has a constant upper reflecting barrier at vn . 

Once we solve for the firms optimal investment we can derive an expression for their 

value. Given the industry capacity K and the current value of Y, we can write the value of 

firm i, Vi, as the sum of two parts: 
 

Vi (K,Y) = Fi (K,Y) + Gi (K,Y)                                                   (10) 
 

were Fi (K,Y) is the value of the firm’s assets in place, and Gi (K,Y) is the value of the 

firm’s growth options. Therefore, to get the value each firm we need to obtain the value 

its assets in place and the value its growth options.  

The value of the assets in place is the value of the firm’s installed capacity. When the 

industry capacity is K, each firm i has K/n units of capacity. This capacity provides each 

firm a cash flow stream of πi(K(t),Y(t)) which is the profit given by (5). Also notice that 

in valuing the assets in place we have to take into consideration the effect of future 

investment on the value of the installed capacity. Specifically, the fact that firms can 

increase their capacity when the demand factor Y hits Yn(K) cuts off some of the upside 

potential for prices and profits. Therefore to determine the value of the assets in place we 

first find the present value of the profit flow πi(K(t),Y(t)) and then we adjust this value for 

the impact  of future increases in industry capacity on the value of the firm current 

capacity. 

The appendix shows that the present value of the profit flow πi(K(t),Y(t)) is ),( YKJ
n
K  

where J(K,Y) is the value of one unit of capacity which it is given by 
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The expressions for the functions A(K) and B(K), and the constants α and λ are given in 

the appendix. 

To facilitate the analysis of the results on the effect of competition on asset returns 

presented in Section 4 below, we provide an explanation for the expression for the value 

of one unit of capacity in (12). Equation (5) gives the profit function for a firm with K/n 

units of capacity. Thus the profit per unit is 
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If the installed capacity is always used the value of one unit of capacity is  
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Thus, when Y > nγcK1/γ/(nγ - 1), the term A(K)Yα in (11) is the value of the option to 

reduce output should Y decrease. This option is valuable because firms can reduce their 

output when Y < nγcK1/γ/(nγ - 1) and earn a profit of 
γ
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capacity. This profit is greater than YK -1/γ - c which is the profit per unit if installed 

capacity is always used. Therefore, A(K) is positive for all n.   
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When the installed capacity is not fully used, i.e. when Y < nγcK1/γ/(nγ - 1), the 

present value of the profits per unit of capacity is  
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The output of each firm and its capacity utilization increases as Y increases. However, 

when the industry capacity is K, each firm can produce up to K/n units of output. 

Therefore the term B(K)Yλ in (11) represents the impact of the capacity constraint on the 

value of the firms assets. This impact can be negative or positive depending on the degree 

of competition. In other words the sign of B(K) depends on the number of firms in the 

industry. To understand how competition affects the sign of B(K) we look at the influence 

of capacity constraints in the two most extreme cases of competition, namely monopoly 

and perfect competition. For the monopolist the capacity constraint reduces the profit that 

would otherwise be earned if the capacity was larger. That is for n = 1, 

c-  1
1

/1/1 γ
γ

γ

γ
γ

γ
−− >⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

YKYK
c

c  for all Y. Hence, when capacity is not completely 

utilized, i.e. when Y < γcK1/γ/(γ - 1), the term B(K)Yλ represents the reduction in the value 

of the firm’s assets in place if Y rises over γcK1/γ/(γ - 1) and capacity binds. Thus, for n = 

1 B(K) is negative. In the case of perfect competition, which in the model is obtained as 

the limit as n approaches infinity, the profit when capacity is not fully used is zero 

because the output price is equal to the marginal cost c. But when the capacity is 

completely utilized, i.e. when Y > cK1/γ, the profit per unit is YK -1/γ - c > 0. Therefore, 

B(K) is positive and B(K)Yλ represents the value of the option to earn a positive profit. 

The fact that B(K) is negative for monopoly and positive for perfect competition suggest 

that B(K) is increasing in the number of firms in the market n, and that there exist a 

number N such that B(K) is negative if n ≤ N and B(K) is positive if n > N. This number N 

depends on the parameters of the model.  

The value of one unit of capacity for fixed K , J(K,Y) in equation (11) does not take 

into consideration the effect of future investment on the value of the installed capacity. 

However the fact that firms can increase their capacity when the demand factor Y hits 

Yn(K) removes some of the upside potential for prices and profits, so the value of one unit 
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of capacity must be less than J(K,Y). Denote by H(K,Y) the value of one unit of capacity. 

The appendix shows that 

 
H(K,Y) = J(K,Y) + E(K)Yλ                                            (13) 

 
Where E(K)Yλ represents the impact  of future increases in industry capacity on the value 

of the firm current capacity. Since increased supply has a negative effect on output prices 

and, therefore, on future cash flows, the sign of E(K) is negative. 

Therefore, the value of firm i’s assets in place is 

),(),( YKH
n
KYKFi =                                                 (14) 

 

Finally, the appendix shows that value of the growth options is 

  
Gi (K,Y) = C(K)Yλ.                                           (15) 

 
Where the function C(K) is positive and decreasing in K. 

 

 

4. Expected Returns 

 
This section analyzes the effect of product market competition on asset returns by 

examining how the strategic behavior of firms affects their betas. The demand factor Y is 

the source of risk in our model, and the beta of a firm measures the sensitivity of relative 

changes in the firm’s value to relative changes in the demand factor. Thus, a firm’s beta 

is the elasticity of its market value with respect to the demand factor. Formally, if the 

demand factor has a beta of one, then the beta of firm i is given by3
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3 For a formal derivation of equation (16) see the proof of proposition 2 in Carlson, Fisher and Giammarino 
(2004) 
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Our model assumes that investment is totally irreversible. To highlight the importance 

of irreversible investment in generating our results on effect of product market 

competition on asset returns below, we first compute the beta of the firm when 

investment is totally reversible. Without investment frictions the value of the firm is 
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and beta is βi(K,Y) = γ . Therefore when investment is totally reversible the beta of the 

firm is a constant independent of the number of firms in the market. Hence, irreversible 

investment is required to generate our results on competition and asset returns. 

We study the effect of competition on asset returns by analyzing the betas of the 

assets in place and growth options. The beta of the assets in place is  
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Were the last equality in (17) follows from equation (14). From (17) and (13) we can get 

the following expression for the beta of the assets in place 

 

 )),((
),(

)(),(),( YK
YKH
YKEYKYK JJF βλββ

λ

−+=                            (18) 

 
Where βJ(K,Y) is the beta of the one unit of capacity for fixed K , and it is given by 
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The interpretation of (18) is as follows. In the previous section we showed that the value 

of one unit of capacity, H(K,Y), is equal to the value of one unit of capacity for fixed K, 
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J(K,Y), adjusted for the impact  of future increases in industry capacity on the value of the 

firm current capacity. New investment affects the beta of the assets in place because the 

additional supply from the added capacity buffers the effect of changes in demand on the 

firm’s value. Thus, the first term in equation (18) is the beta of the value of the profit 

stream provided by the firm’s current capacity, and the second term takes into account 

the effect of future investment on the beta of the assets in place. 

To understand how product market competition affects the riskiness of the assets in 

place we first analyze how the number of firms in the market affects the beta of each 

firm’s current capacity, βJ(K,Y). When Y > nγcK1/γ/(nγ - 1) the expression for the beta of 

the firm’s capacity in Equation (19) has three terms. The first term is the firm’s revenue 

beta. When a firm produces at full capacity its output is fixed and its revenue varies 

linearly with Y. Thus, the revenue beta is equal to the beta of demand, which is assumed 

to be one. With fixed production the total production cost is constant. This introduces 

leverage which increases the risk of the firm’s assets. Hence, the second term captures the 

leverage effect of fixed production costs. This leverage effect is more pronounced in 

more competitive markets because the value of one unit of capacity J(K,Y) decreases with 

the number of firms in the market. The third term derives from the option to reduce 

output in response to a fall in demand. This option diminishes the effect of leverage on 

risk, and consequently reduces beta4. However, the value of this option decreases with 

the number of firms in the industry. The reason is that with more competition the firms 

have less power to reduce output.  Therefore, when capacity is fully used the beta of the 

firms’ current capacity is increasing in the number of firms in the industry.  

When Y < nγcK1/γ/(nγ - 1) the expression for the beta of the firm’s capacity in Equation 

(19) has two terms. When capacity is not fully used each firm varies its output in 

response to changes in demand. The first term is the beta of the firm’s profits. This is also 

the beta of a firm that operates without capacity constraint. Therefore, the second term 

captures the impact of the capacity constraint on the risk of the firm’s assets. For a given 

level of capacity K, the level of demand at which the firms will produce at full capacity, 

nγcK1/γ/(nγ - 1), decreases with n. The reason is that for any specified level of demand Y 

the industry output increases with more firms in the market. Thus increased competition 
                                                 
4 The sign of this term is negative because α < 0 and A(K) > 0. 
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raises the probability that firms will use their capacity sooner. It follows that the exposure 

to changes in demand also increases because, as seen above, production at full capacity is 

riskier with more competition. Therefore, the beta of the firms’ current capacity is 

increasing in the number of firms in the industry.  

For a given level of capacity Figure 1 illustrates the relationship between the beta of 

the firm capacity and the level of demand for a monopoly, a duopoly, a 5-firm oligopoly, 

and a 10-firm oligopoly. The beta is increasing in the number of firms in the industry. 

Observe that for the level of capacity specified in the figure K = 100, the beta values for 

an industry with n firms are obtained for levels of demand between 0 and Yn(K). For 

levels larger than Yn(K) the industry capacity is greater than K because all the firms will 

optimally add capacity as soon as demand reaches Yn(K). Notice also that Y1(K) > Y2(K) > 

Y5(K) > Y10(K). The reason is that with more competition each firm has to expand its 

capacity sooner to avoid losing the investment opportunity to its competitors. In the 

appendix we prove that for any given K, the investment trigger Yn(K) is decreasing in n. 

The example in Figure 1 illustrates the effect of competition on the beta of the firm 

capacity for a given level of industry capacity that is independent of the number of firms 

in the market. Equivalently, we can also analyze the effect of competition on expected 

returns by allowing the current industry capacity to depend on the degree of competition. 

Specifically, let Kn be the total capacity for an n-firm industry. The endogenous industry 

capacity is increasing in the number of firms. Specifically, in the appendix we show that 

for any number of firms n, 
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thus the capacity of an n-firm industry is equal to the monopoly capacity times a factor 

that is greater than one, increasing in n, and converges to γ/(γ - 1) as n increases to 

infinity. 

However, the investment threshold for new capacity, Yn(Kn) is independent of the 

number of firms in the market. To prove this result it suffices to show that Yn(Kn) = 

Y1(K1) for all n. Substituting Equation (20) into Equation (A5) in the appendix proves this 

result. Thus, by allowing the industry capacity to be dependent on the number of firms in 
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the market we can compare the betas resulting from different number of firms in the 

market over the same interval for the demand values. 

Figure 2 provides an example of the effect of competition on the beta of the firm 

capacity when the relationship between industry capacity and the number of firms is 

given by (20). Beta is increasing in the number of firms in the industry for any level of Y 

between 0 and the investment threshold, Yn(Kn). Figure 2 also shows the level of Y above 

which firms will produce at full capacity, which is denoted by Yc. This level is the same 

for all n when the relationship between industry capacity and the number of firms is 

given by (20) because nγc(Kn)1/γ/(nγ - 1) is the same for all n. Notice that in the example 

illustrated in Figure 2 the beta of the firm’s capacity is monotonically decreasing in Y for 

the case of 1 and 2-firm industries. But for the case of 5 and 10-firm industries beta 

increases in Y when capacity is not fully used, i.e. when Y < Yn(Kn),  and decreases in Y 

when firms produce at full capacity, i.e. when Y > Yn(Kn). Regardless of the number of 

firms in the market the beta of the firm’s capacity is decreasing in Y when capacity is 

fully used. The reason is that total revenue increases as Y increases while total production 

costs are constant. Consequently leverage drops, causing risk to decrease. The 

explanation why the relationship between beta and the level of demand depends on the 

degree of competition when capacity is not fully used is as follows. When Y increases the 

probability that firms will use their capacity sooner increases. As explained above, when 

firms produce at full capacity the leverage introduced by constant production costs is 

more pronounced with more firms in the market because more competition reduces the 

value of the option to cut output if demand falls. Thus, when this leverage is sufficiently 

large beta will be increasing in Y when capacity is not fully used. 

 Figure 3 illustrates the effect of competition on the beta of the assets in place with 

the same parameters used for Figure 2. Beta is increasing in the number of firms in the 

industry for any level of Y between 0 and the investment threshold, Yn(Kn). Figure 3 also 

shows the level of Y above which firms will produce at full capacity, which is denoted by 

Yc. Recall that the difference between the value of the firm’s capacity and value of the 

assets in place is that the latter takes into consideration the effect of new investment on 

profits. When Y = Yn(Kn), the beta of the assets in place is zero because the production 

from new capacity exactly offsets the effect of demand volatility on the assets value. 
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The beta of the growth options is 
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Where the last equality follows from Equation (15). Equation (21) shows that the beta of 

the growth options is a constant independent of the industry capacity and the demand 

factor. The reason is that the option to invest in additional capacity is a perpetual 

American call option. Since λ > 1, the beta of the growth options is greater than the 

demand beta. This follows from the leverage effect arising from the fixed investment 

costs. 

The beta of the firm is the value-weighted average of the betas of the assets in place 

and growth options. Regardless of the number of firms in the market, the value of the 

growth options increases as Y increases, as investment in new capacity becomes more 

attractive. On the other hand the value of the growth options declines as the number of 

firms increases because increased competition reduces the incentive of waiting to invest 

as firms fear preemption. Thus, the ratio of the value of the growth options to the value of 

the firm decreases with more competition. This result combined with the result on 

competition and the beta of the assets in place above implies that the net effect of 

competition on firm return depends on the level of demand.  

Figure 4 illustrates the beta of the firm for different number of firms in the market, 

when the relationship between industry capacity and the number of firms is given by 

(20). When demand is low the proportion of the assets in place in the total value of the 

firm is larger and firms in more competitive markets earn higher returns. As demand 

increases and growth options become more valuable, firms in more concentrated 

industries earn higher returns. 

Our result that firms in more competitive industries earn higher returns when demand 

is low is consistent with Hou and Robinson (2005) finding that difference between the 

rates of return for firms in the most competitive industries and firms in the most 

concentrated industries grows as the economy contracts. 

In order to get a better understanding on how the different components of the value of 

the firm affect its return it is useful to consider two special cases. 
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Case 1: c = 0. This is the base case in Grenadier (2002). Since the variable production 

cost is zero, the firms always produce at full capacity. In this case we can get closed form 

solutions for the investment threshold and the value of the firm. 
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The value of one unit of capacity and is H(K,Y) = E(K)Yλ + J(K,Y), where 
 

γλ
λ

λδ
υ /

1

)( −
−

−= KKE n                                                  (23) 

and 

δ

γ/1

),(
−

=
YKYKJ                                                        (24) 

 
The value of the growth options is Gi (K,Y) = C(K)Yλ , where 
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Where c(K)Yλ is the value of the option to invest in one unit of capacity. 

The relation between the industry capacity for a n-firm industry and the monopoly 

capacity in (20) also obtains in this case. 

The beta of the assets in place is 
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βF(K,Y) is decreasing in Y because its derivative with respect to Y is negative. By 

substituting (20) into (23), (24) and (26) we can show that for all n 
 

βF(Kn,Y) = βF(K1,Y)                                                 (27) 
 
The beta of the firm is 
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To get (28) notice that the beta of the firm is the value weighted average of the betas of 

the assets in place and growth options. The derivative of C(K) with respect to n is 

negative and the limit of C(K) as n approaches infinity is 0. Combining this result with 

the result of equation (27) we get that the beta, and therefore the risk premium, is always 

higher for firms in more concentrated industries. This is inconsistent with the evidence in 

Hou and Robinson (2005). 

This case is also useful in understanding why Kogan (2004) obtains the value 

premium without production costs. For this purpose we use the following alternative 

expression for the beta of the firm 
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The value of the firm increases as Y increases. Therefore we can get the relation 

between the beta and the firm’s book-to-market ratio IKi / Vi(K,Y) by looking at the sign 

derivative of βi(K,Y) with respect to Y. It is straightforward to show that this sign is the 

same as the sign of E(K) + 
γλ

γ
−

c(K). In a monopoly, i.e, n =1, E(K) + 
γλ

γ
−

c(K) > 0 

and beta is decreasing in the book-to-market ratio. As n increases c(K) decreases and the 

sign of E(K)  + 
γλ

γ
−

c(K) will become negative and beta will be increasing in the book-

to-market ratio, which is the value premium. Kogan (2004) analyzes the effect of 

irreversible investment on assets prices in perfect competition. This corresponds to c(K) = 

0 in our case, and the beta of the firm is given by (22) when n increases to infinity. 

Furthermore, Kogan’s explanation on how the value premium arises in his model is 

similar to our intuition as to why E(K)  is negative.  

In sum it is possible to obtain the value premium in a model without production costs 

if the number of firms in the industry is sufficiently large, but the risk premium will 

decrease with more competition. Carlson, Fisher and Giammarino (2004) and Cooper 

(2005) introduce operating leverage to obtain the value premium in a monopolistic 
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industry. Next we investigate the introduction of operating leverage in the model of Case 

1. 

 

Case 2: c > 0 with no operating flexibility, which means that the firm always 

produces at full capacity and pays a total production cost cK/n per period. In this case we 

can also get closed form solutions for the investment threshold and the value of the firm. 

The expressions for vn, E(K)  and C(K) are similar to (18), (19) and (21) with I changed 

for I + c/r. The reason is that when a firm invests in an additional unit of capacity the 

total cost not only includes the purchase cost I but also the committed future payments 

whose present value is c/r. The value of one unit of capacity for fixed K is 
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The beta of the assets in place is 
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Comparing with (26) the expression in (31) has an additional term which represents the 

effect of operating leverage on beta. We can show that βF(Kn,Y) increases as n increases. 

This follows from the effect of operating leverage on the firm’s cash flows. Specifically, 

as n increases the revenue per unit Y.[Kn] –1/γ declines whereas the unit cost c is constant 

for all n. 

The beta of the firm is 
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Now the effect of competition on beta depends on the combined effects of operating 

leverage and growth options. When Y is small the operating leverage effect dominates 
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and beta increases as n increases. As Y increases to the investment threshold the growth 

option effect dominates and beta decreases as n increases. 

We showed above that without operating costs the beta of a monopolistic firm is 

decreasing in the book-to-market ratio. This contrasts with the empirical evidence on the 

value premium. By introducing operating leverage beta can be decreasing in Y if the 

leverage effect dominates the growth options effect. This is why the assumption of 

operating leverage is crucial in obtaining the value effect in Carlson, Fisher and 

Giammarino (2004) and Cooper (2005). 

Comparing cases 1 and 2 we see that it is possible to obtain the value premium 

without operating costs if there is “sufficient” competition in the market, but beta 

declines with the number of firms in the market for all Y. By introducing fixed production 

cost we saw when beta will be increasing with competition and why operating leverage is 

required to obtain the value premium in a monopolistic industry. However, recent 

evidence by Xing and Zhang (2004) fails to find much support for the operating leverage 

hypothesis of Carlson, Fisher and Giammarino (2004) and Cooper (2005). By measuring 

operating leverage as the elasticity of operating profits with respect to sales Xing and 

Zhang (2004) find that value firms have slightly lower operating leverage than growth 

firms. This is consistent with our model. Since firms do not need to use all their installed 

capacity when demand declines, the operating flexibility in our model implies that high 

book-to-market firms have lower operating leverage. Furthermore, we could use this 

measure of operating leverage to test our result that the option to vary output in response 

to changes in demand can explain the concentration premium documented in Hou and 

Robinson (2005). By forming portfolios based on industry concentration and the 

elasticity of operating profits with respect to sales we could test how the concentration 

premium changes with changes in operating flexibility. 

 

 

5. Conclusion 
 

In this paper we study the effect of product market competition on asset returns in a 

real-options framework. We analyze how industry structure affects asset returns by 
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examining how the strategic behavior of market participants affects their equilibrium 

investment and production decisions. We show how the option to vary output in response 

to changes in demand can explain the concentration premium documented in Hou and 

Robinson (2005). Production costs introduce leverage which increases the risk of the 

firms’ cash flows. On the other hand the option to reduce output in response to a fall in 

demand diminishes the effect of leverage on risk. However, the value of this option 

decreases with the number of firms in the industry because with more competition the 

firms have less power to reduce output.  Therefore the firm’s assets in place in more 

competitive industries earn higher returns as their cash flows are riskier. However, since 

firms can expand their production capacity by investing in additional capacity, the effect 

of competition on asset returns depends on the level of demand.  

The presence of growth options increases the total risk of a firm because these 

investment opportunities have implicit leverage that arises from fixed development costs. 

Growth options are more valuable as demand increases because they are more likely to be 

exercised. But, the value of the option to invest decreases with more firms in the market 

because the increased competition leads the firm to invest earlier to avoid losing the 

investment opportunity to its competitors. Therefore, as demand increases and growth 

options become more valuable firms in more concentrated industries earn higher returns. 

In sum the effect of competition on asset returns depends on the level of demand. 

When demand is low firms in less concentrated industries earn higher returns. As demand 

increases and the value of the growth options as a proportion of the total value of the firm 

increases firms in more concentrated industries earn higher returns. 

Our assumption of identical firms could be relaxed to allow for firms of different 

sizes and costs structures. This extension would provide greater realism to the model, but 

the loss of the simplifying feature of a symmetric equilibrium would greatly diminish the 

tractability of the model. 
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Appendix 
 
Capacity Choice 
 
The solution to the firm’s capacity choice problem involves two steps. First, the value of 

an extra unit of capacity must be determined. Second, the value of the option to invest in 

this unit must be determined together with the decision rule for exercising this option. 

This decision rule is the solution to the optimal capacity problem. 

 
The Value of a Marginal Unit of Capacity 
 

Given the current capacity K, and demand Y, ΔFi (K,Y) denotes the value of a 

marginal unit of capacity. The value of a marginal unit of capacity is the present value of 

the expected flow of profits from this unit. It follows from (4) that the profit from the 

marginal unit of capacity at any time t is 
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Thus, after it is completed, each incremental unit of capacity will be used only when the 

additional profit it generates is positive, i.e. when Y > nγcK1/γ/(nγ - 1). 

Following standard arguments, the value of the marginal unit of capacity satisfies the 

following differential equation 
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were Δπi is given by (A1). In the region where Y < nγcK1/γ/(nγ - 1), ΔFi satisfies the 

equation 
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Subject to the boundary condition 
 

ΔFi (K,0) = 0 
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Therefore, the solution is of the form 
 

ΔF1(K,Y) = ΔB(K)Yλ

 
Where λ is the positive root of the characteristic equation  
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In the region where Y > nγcK1/γ/(nγ - 1), ΔFi satisfies the equation 
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Subject to the boundary condition 
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Which implies a solution of the form 
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Where α is the negative root of equation (A2). To solve for ΔA(K) and ΔB(K) we 

consider the point Y =  nγcK1/γ/(nγ - 1), where the two regions meet. ΔF(K,Y) must be 

continually differentiable across Y =  nγcK1/γ/(nγ - 1), therefore ΔA(K) and ΔB(K) are the 

solutions to the system of equations 
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Solving this system we get 
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The Decision to Invest in the Marginal Unit 

 

Having valued the marginal unit of capacity, we can now value the option to invest in this 

unit. Let ΔGi (K,Y) denote the value of this option when the current capacity level is K. 

The exercise price of this option is equal to the cost of construction. Therefore, for any 

level of committed capacity K, ΔGi (K,Y) is a perpetual American call option whose value 

depends on Y. Hence, there will be a threshold value at which it will be optimal to 

exercise this option. Specifically, for any K there will exists a threshold, Y(K), such that 

the option to build an additional unit of capacity will be exercised the first time that Y 

equals or exceeds Y(K). 

Following standard arguments ΔGi satisfies the equation 
 

0),(),()(),(
2 2

2
2

2

=Δ−
∂
Δ∂

−+
∂
Δ∂

YKGrYK
Y
G

YrYK
Y

G
Y i

ii δσ  

 

The solution is subject to the following boundary conditions: 

 

                                                       ΔGi (K,0) = 0 
 

ΔGi (K,Y(K)) = ΔFi (K,Y(K)) – I 
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The first boundary condition arises because Y = 0 is an absorbing barrier for the process 

described in (2), and therefore the option to invest has no value at that point. This implies 

the following functional form for the option to invest in a marginal unit of capacity  

 

ΔGi (K,Y) = ΔD(K)Yλ     for Y < Y(K). 
 

where λ is the positive root of (A2). The last two boundary conditions form the system of 

equations that must be solved to get the values of Y(K) and D(K). They are the value-

matching and the smooth-pasting condition respectively, and they imply that Y(K) is the 

value of Y that maximizes the value of the option to invest. In solving this system of 

equations we notice that since the option to expand capacity will not be exercised when 

the current capacity is not fully used, that is when Y < γcK1/γ/(γ - 1), because there is no 

reason to incur the investment cost to keep the additional capacity idle for some time. 

Therefore, using the expression for ΔFi (K,Y) for Y > nγcK1/γ/(nγ - 1) in equations (A3) 

and (A4) the system becomes 
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Eliminating ΔD(K) we are left with the following equation for the investment threshold. 
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Using the solution for ΔA(K) in (A4) we can write this equation as follows 
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Where vn = Y(K) K –1/γ is the output price at which firms expand their capacity. It follows 

that foe a given the number of firms in the industry n, vn is a constant which is 

independent of the industry capacity K. This last equation cannot be solved analytically to 

get an expression for vn, however it is easily solved numerically. Once we get vn then the 

investment threshold is  

Y(K) = vn K 1/γ                                                  (A7) 

 

Therefore, the equilibrium investment strategy is for each firm to invest in an 

additional unit of capacity whenever the demand factor Y rises to the trigger Y(K). Given 

the number of firms in the industry n, the trigger function is an increasing function of K. 

We can also evaluate how the degree of competition affects the equilibrium investment 

strategies of firms. By totally differentiating equation (A5) we get 
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Thus, increasing competition leads each firm to expand its capacity sooner to avoid 

losing the investment opportunity to its competitors. 

As seen above, the function Y(K) is the firms’ optimal investment rule, if Y and K are 

such that Y > Y(K), firms should add capacity, increasing K until Y = Y(K). Equivalently, 

given the current level of the demand shock Y, we can determine the industry’s optimal 

capacity by rewriting Equation (A5) in terms of K(Y), 
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When the current level of demand is Y, the solution to equation (A9) gives the optimal 

capacity, K(Y), for an industry that has no capacity. Alternatively, since investment is 

irreversible, at any time t, K(Y(t)) is the level of “desired capacity”. Thus, the 

irreversibility constraint implies that K(t) ≥ K(Y(t)) for all t, and K(t) = K(Y(t)) if the 

industry is expanding its capacity at time t.   

Equation (A8) shows that the investment threshold for additional capacity is decreasing 

in the number of firms in the industry. This result is based on a given level of industry 
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capacity that is independent of the number of firms in the market. Equivalently, we can 

show how the degree of competition affects the industry optimal capacity. Let Kn(Y) be 

the optimal capacity for an n-firm industry. Comparing equation (A1) for n = 1 to the 

same equation for any n it is easily verified that 
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The Value of the Assets in Place 

 

First we derive the value of one unit of capacity for fixed K. Following standard 

arguments, the value of one unit of capacity J(K,Y) satisfies the following differential 

equation 
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were πUi is the profit per unit of installed capacity given by (13). In the region where Y < 

nγcK1/γ/(nγ - 1), J satisfies the equation 
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Subject to the boundary condition 
 

J(K,0) = 0 
 
Therefore, the solution is of the form 
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We require  to ensure that J2/)1()( 2σγγδγ −−−> rr 1(K,Y) is well defined. Since γ > 1 

and λ is the positive root of (A2) we must haveγ < λ. 
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In the region where Y > nγcK1/γ/(nγ - 1), J satisfies the equation 
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Subject to the boundary condition 
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Which implies a solution of the form 
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To solve for A(K) and B(K) we consider the point Y =  nγcK1/γ/(nγ - 1), where the two 

regions meet. J(K,Y) must be continually differentiable across Y =  nγcK1/γ/(nγ - 1), 

therefore A(K) and B(K) are the solutions to the system of equations 
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Solving this system we get 
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The value of one unit of capacity for fixed K , J(K,Y), derived above does not take into 

consideration the effect of future investment on the value of the installed capacity. 

However the fact that firms can increase their capacity when the demand factor Y hits 

Y(K) cuts off some of the upside potential for prices and profits, so the value of one unit 

of capacity must be less than J(K,Y). Since Y = 0 is an absorbing barrier for the demand 

shock process the value of one unit of installed capital is of the form  

 
H(K,Y) = E(K)Yλ + J(K,Y)                                             (A9) 

 
Where E(K)Yλ represents the impact  of future increases in industry capacity on the value 

of the firm current capacity. To find E(K) we use the following boundary condition for 

the value of the Kth unit of capacity H(K,Y)  
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This condition ensures that when the trigger Y(K) is reached, K increases by an 

infinitesimal amount dK , and J changes from  J(K,Y) to J(K + dK,Y). 

Combining (A9) and (A10) and the fact that firms invest when capacity is fully used we 

have 
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Where and are the derivatives of the functions A(K) and E(K) with respect to 

K. 
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Using the expressions for Y(K) and A(K) in (A7) and (A8) we get 
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The Value of the Growth Options 

 

When the industry capacity is K the value of the option to invest in one unit of capacity 

g(K,Y) satisfies the following boundary conditions 

 
g(K,0) = 0                                                          (A11) 

 
g(K,Y (K)) = H(K,Y (K)) – I                                     (A12) 

 
Condition (A11) implies that the value of the option has the functional form g(K,Y) = 

c(K)Yλ

From boundary condition (A12)  
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To get the value of firm i’s growth options we sum the value of these unit options by 

integrating to get 

 
Gi (K,Y) = C(K)Yλ
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Figure 1. The beta of the firm’s capacity as a function of Y 
for different number of firms in the industry 
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Notes. This figure shows the beta of the firm’s capacity as a function of Y when K = 100 
for 1 firm, 2 firms, 5 firms, and 10 firms. The assumed parameter values are I = 1, c = 
0.06, γ = 1.6, r = 0.06, δ = 0.05, and σ = 0.2. 
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Figure 2. The beta of the firm’s capacity as a function of Y 
for different number of firms in the industry 
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Notes. This figure shows the beta of the firm’s capacity as a function of Y when K 
depends of the number of firms in the market for 1 firm, 2 firms, 5 firms, and 10 firms. 
The assumed parameter values are I = 1, c = 0.06, γ = 1.6, r = 0.06, δ = 0.05, and σ = 0.2.  
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Figure 3. The beta of the assets in place as a function of Y 
for different number of firms in the industry 
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Notes. This figure shows the beta of the firm’s assets in place as a function of Y when K 
depends of the number of firms in the market for 1 firm, 2 firms, 5 firms, and 10 firms. 
The assumed parameter values are I = 1, c = 0.06, γ = 1.6, r = 0.06, δ = 0.05, and σ = 0.2.  
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Figure 4. The beta of the firm as a function of Y 
for different number of firms in the industry 
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Notes. This figure shows the beta of the firm as a function of Y for 1 firm, 2 firms, 5 
firms, and 10 firms. The assumed parameter values are I = 1, c = 0.06, γ = 1.6, r = 0.06, δ 
= 0.05, and σ = 0.2.  
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