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Abstract

This paper develops a stochastic differential game framework for analyzing strate-
gic exercise of options. We focus on research and development (R&D) competition in
information technology (IT) investment projects with technical and market uncertainty.
According to the theory of real options and game theory, uncertainty generates an op-
tion value of delay which can be diminished by the threat of competition. An important
feature of the IT projects is that the firms make investment decision on an ongoing basis
before the success of the R&D process. Consequently, repeated strategic interactions may
facilitate self-enforcing tacit collusion on R&D. We explore the possibility of defining a
collusion (cooperative) equilibrium based on the use of a trigger strategy with an infor-
mation time lag. When the information time lag is long, a preemptive (noncooperative)
equilibrium emerges in which the option values of delay are reduced by competition.
When the information time lag is sufficiently short, a collusion equilibrium emerges in
which investment is delayed more than the single-firm counterpart. An analysis of the
equilibrium exercise policies of firms provides a potential explanation for several other-
wise puzzling innovation market phenomenons. We also analyze the role of uncertainty
on the likelihood of tacit collusion on R&D and provide implications of strategic effects
for antitrust and merger control policies.

Keywords: Investment Under Uncertainty, Stochastic Differential Games, Real Options,
Information Technology, Trigger Strategy, Tacit Collusion, Information Time Lag
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1. Introduction

The valuation of Research and Development or R&D investment projects is an important

problem for Information Technology (IT) firms. R&D investments in IT have experienced a

rapid growth in the past 20 years, and were at the center of the high-tech boom and bust of

the late 1990s. The complexity of R&D projects makes a proper analysis of the associated

investments particularly challenging. Much of the difficulty arises from technical and market

uncertainty.

Investment under uncertainty problems have been analyzed using the real options ap-

proach, which improves upon traditional net present value (NPV) evaluation by recognizing

the flexibility of managers to delay, suspend, or abandon a project once it has started. Imple-

menting this approach helps to structure the project as a sequence of managerial decisions over

time and clarify the role of uncertainty in project evaluation, which allows us to apply models

that have been developed for valuing financial options to project investments (Schwartz and

Zozaya-Gorotiza (2003), Berk, Green, and Naik (2002)). A key feature of R&D investments,

however, is that they cannot be held independently of strategic considerations. When the op-

tions are held by a small number of firms with an advantage to the first mover, each firm’s

ability to wait is diminished by the threat of preemption. Firms also may have an incentive to

delay R&D investments to enhance corporate profits by avoiding an R&D war. The compet-

itive pressure and possibility of tacit collusion1 of many R&D projects create the motivation

for a systematic analysis of the effect of strategic interactions on the firms’ optimal exercise

strategies. When and how do we need to account competition and tacit collusion in evaluating

R&D projects? What is the role of uncertainty on the likelihood of tacit collusion?

In this paper, we develop an game-theoretic framework which include the possibility of

tacit collusion and preemption based on a trigger strategy to solve for optimal option exercise

1Tacit collusion needs not involve any collusion in legal sense, and needs to involve no communication be-
tween the parties. Since explicit collusion is usually banned by antitrust law, we will focus here on the possibility
of tacit collusion.
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strategies. In order to demonstrate the applicability of such an approach, we focus on a par-

ticular real-world example: the behavior of innovation markets2 in information technology

industry. 3 This analysis of the strategic equilibrium exercise policies of firms conducting

R&D investments provide a potential explanation for several otherwise puzzling innovation

market phenomenons. For example, some strategic R&D investments have been prone to be

more delayed than the single form counterpart. Thus, one can use the model to examine the in-

vestment thresholds. Firms, fearing to start an R&D war, hold back from investing to proceed

a tacit collusion equilibrium, which corresponds to a higher threshold. Similarly, some R&D

markets have been prone to overinvestment, where an R&D war may lead to a resumption of a

previously discontinued R&D program even when market conditions might still be worse than

when they were discontinued. The model provides a potential rational explanation for this

phenomenon. Firms react to a deviation from the collusive path with retaliation to follow a

preemption equilibrium with lower thresholds. We also analyze the role of uncertainty on the

likelihood of tacit collusion on R&D and provide implications of strategic effects for antitrust

and merger control policies.

Consideration of strategic exercise of investment projects using the result of a merger be-

tween the real options and game theory approaches is an emerging research trend in recent

2Innovation markets, sometimes called R&D markets, are markets in which firms compete in research and
development. Introduced in the 1995 Antitrust Guidelines for the Licensing of Intellectual Property, innovation
markets has quickly become an accepted part of the government’s antitrust arsenal. Historically, antitrust focused
on price and output effects in markets for goods and services, based on an analysis of historic market shares. In
today’s dynamic high-tech industries, anticompetitive effects on innovation can have far greater impact than
effects on price. Therefore it is not surprising that merger enforcement in these industries often focuses on so-
called innovation markets. Two cases are SNIA S.p.A., FTC Dkt. No. C-3889 (July 28, 1999), and Medtronic,
Inc., FTC Dkt. No. C-3842 (Dec. 21, 1998). (Morse 2001)

3The IT sector spends much more on research and development, relatively speaking, than industry as a whole
does. IT companies accounted for a disproportionate share of company-funded R&D (31 percent). Its R&D
intensity (i.e., R&D spending divided by industry sales) is three times the national average (U.S. Department
of Commerce 2003). IT R&D investments have a high-upside potential, high uncertainty, and indirect returns,
and face intensive competitive pressure and propensity to collusion. Thus they are good candidates for being
evaluated with a strategic R&D investment framework. For example, effective use of economics is critical in
defining the relevant market of high-end ERP research and development and explaining competitive effects and
coordinated effects in the DOJ v. Oracle/PeopleSoft case. SAP, Oracle and PeopleSoft are three big players in
the ERP industry. The merger of Oracle and PeopleSoft may lead to anticompetitive concern. Another example
is the EDA duopoly market of Cadence and the Synopsys, which came after Synopsys’ acquisition of Avant! in
2001.
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years. For example, Smets (1991) considers irreversible entry for a duopoly facing stochastic

demands. Grenadier (1996) uses the strategic exercise of options games to provide a ratio-

nal explanation for development cascades and recession-induced construction booms in real

estate markets. Huisman (2001) studies option games in a technology adoption context. Be-

sides combining irreversible investment under uncertainty with strategic interactions, Weeds

(2002) examines R&D by taking technical uncertainty into account. She identifies a preempted

leader-follower solution and a joint-investment outcome as two forms of noncooperative equi-

librium. The joint-investment outcome leads to greater delay than the single-firm counterpart.

However, these papers typically assume a one-shot investment cost within a stopping time

game formulation. The value of active ongoing management of R&D investment projects

4 is not captured in the standard one-shot model. In that type of model, a firm can neither

stop the project once it starts, nor resume investment once it terminates the project. In real-

ity, when a firm has an opportunity to invest in an R&D project, it owns an option to invest.

After the R&D project begins, a firm maintains the R&D process by making continuous ex-

penditures and receives no income until successful completion of the project. Thus, during

the active investment period, it has an option to suspend the R&D project. In fact, firms face

the investment decision of whether to invest or suspend R&D in each time period until the

project is completed. Under such circumstance, the strategic delay outcome mentioned by

Weeds (2002) is no longer a noncooperative equilibrium as each firm can manage its invest-

ment actively over time. The ongoing (continuous) nature of many R&D projects creates the

motivation for a systematic analysis of R&D investment decision with ongoing (continuous)

resource requirements.

In this paper, we analyze a duopoly case in which an R&D project requires ongoing (con-

tinuing) costs by developing a stochastic differential game model that allows for consideration

of technical and market uncertainty and strategic interactions among firms. There is one R&D

4Cooper, Edgett, and Kleinschmidt (1998) have an intensive study of portfolio management as currently
practiced in industry and define decision-making process on individual projects on an ongoing basis. The Real
Options Group has applied an option-based strategic planning and control framework of Trigeogis (1996) to
active management of investment projects over time.
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investment opportunity in a new product or technology. The firms compete by their choice of

individual investment strategies. The potential future market cash flow uncertainty is taken as

an exogenous state of the system, represented by a controlled stochastic process. The techni-

cal uncertainty of the R&D process is modeled as a Poisson jump process.5 We formulate

a stochastic optimal control problem which is governed by stochastic differential equations

(SDEs) of a type known as Ito equations. Our goal is to synthesize optimal feedback controls

for systems subject to SDEs in a way that maximizes the expected value of a given objective

function. This one-player stochastic optimal control problem is then expanded to a two-player

stochastic differential game.

The games considered here are non zero-sum, in that the sum of the payoffs achieved by

the firms is not a constant, and cooperation between the two firms may lead to their mutual

advantage. In a Nash equilibrium, no firm can improve its payoff by a unilateral deviation

from the equilibrium strategy. However, joint deviations by more than one firm could lead

to such improvements. In particular, Nash equilibria are usually not Pareto efficient, that is,

maximizing the sum of the payoffs to the two firms. This deviation raises the question of

whether there exists efficient Nash equilibria at all and whether there are any general methods

to construct such equilibria. This paper presents one such method which is based on the use

of trigger strategies. These trigger strategies monitor an implicit Pareto optimal cooperative

solution and implement a punitive plan when there is an indication that at least one firm is

departing from the cooperative solution.

Evidence of the existence of trigger strategy6 equilibria in a discrete-time stochastic games

was first given by Green and Porter (1984). They view the oligopolistic interaction as a re-

peated game with imperfect public information and propose a monitoring scheme where a

change in the mood of play from cooperation to retaliation would occur when the observed

price falls below a triggering level. The application of game theory to continuous-time mod-

5Technical uncertainty is similarly modeled as a Poisson arrival in Weeds (2002), Dixit (1988), Reinganum
(1983), Lee and Wilde (1980), Dasgupta and Stiglitz (1980), Loury (1979).

6Trigger strategies have been mainly discussed in the framework of infinitely repeated games in discrete time
(supergames); see e.g. Friedman (1986), Friedman (1991).
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els7 is not well developed and can be quite challenging. Stochastic nonzero-sum differential

games8 have not been extensively used in modeling economic competition as the mathemati-

cal apparatus is quite complicated, the Hamilton-Jacobi-Bellmen (HJB) equations do not lead

easily to a qualitative analysis of their solutions, and only the noncooperative feedback Nash

solution has been characterized for this class of games. Haurie, Krawczyk, and Roche (1994)

is an exception. They formulate a stochastic differential game for fisheries management and

identify a collusion equilibrium based on a memory strategy with an extended observable state.

Usually the implementation of a numerical approximation technique adapted from stochastic

control problems is necessary to circumvent the difficulties that arrive in trying to solve this

problem directly. Our approach allows us to obtain a close form solution or a sufficiently

tractable nonlinear approximation solution and to provide qualitative and quantitative analysis

of the solution. We construct a dominating collusion equilibria by implementing monitoring

with trigger strategies, which is related to the results of Dockner, Jorgensen, Van Long, and

Sorger (2000). They define trigger strategy equilibria by assuming that players observe a de-

fection by any opponent immediately and react to it with a fixed positive time delayδ > 0.

Our approach assumes an observation delay with an information time lag, which allows us to

remains the subgame perfectness of the trigger strategy equilibrium.

We explore the possibility of defining a so-called collusion equilibrium based on the use of

a trigger strategy with an information time lag. When the information lag is long, a preemptive

equilibrium emerges in which the option values of delay are reduced by competition. When

the information lag is sufficiently short, a collusion equilibrium emerges in which investment

is delayed more than the single-firm counterpart and delayed less than that from a one-shot

investment cost formulation like that in Weeds (2002).

7The value of continuous-time method lies in the clarity, with which optimal strategy or equilibria can be
characterized using HJB equations. The continuous-time approach also significantly simplifies the computation
of values and risk premium.

8References of stochastic differential game see Fleming (1969), Fleming and Rishel (1975), Uchida (1978),
Uchida (1979), Basar and Olsder (1995), pierre Cardaliaguet and Plaskacz (2003), Buckdahn, Cardaliaguet, and
Rainer (2003)
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While economic theory provide many insights on the nature of tacit collusive conducts,

it says little on how R&D in a particular industry will or will not coordinate on a collusion

equilibrium. Collusion on R&D has been considered as very unlikely, though still possible

(Ivaldi, Jullien, Rey, Seabright, and Tirole 2003). The situation may have changed with the

rapid growth of R&D expenditures and recent consolidation trend in R&D intensive industry.

US government began to respond with the new approach based on the analysis of innovation

market introduced in the 1995 Antitrust Guidelines. This generates the need to study the

likelihood of tacit collusion on R&D.

The evaluation of tacit collusion calls for a structural quantitative approach, rather than a

pure “check list” factors method, to incorporate the various effects.9 The main problem is

that models incorporating all the relevant dimensions would in most cases be unmanageable

and unlikely to yield clear-cut predications. (Ivaldi, Jullien, Rey, Seabright, and Tirole 2003).

We analyze the characteristics that can affect the sustainability of collusion with a structural

quantitative approach from the application of our framework. The goal of this paper is to

analyze the role of technical uncertainty and market uncertainty on the likelihood of tacit

collusion in innovation marketers of IT industry. In particular, we determine the impact of

probability of successful innovation, market growth drift and market volatility on the degree

of market transparency that is necessary to sustain the collusion.

This paper, inspired by the single decision maker analysis in Berk, Green, and Naik

(2002), develops a stochastic differential game approach to consider strategic interactions in

the duopoly case. A similar attempt can be found in Garlappi (2003) to analyze the impact of

competition on the risk premium of R&D projects. By developing a more general stochastic

differential game framework, we are able to study response maps and introduce a noncoop-

erative collusion equilibrium with a trigger strategy. Miltersen and Schwartz (2003) develop

9Another reason for little evidence of tacit collusion on R&D may be that in the past there lacked a structural
quantitative approach to assess the likelihood of tacit collusion. The qualitative analysis by government in the
DOJ v. Oracle/PeopleSoft case was not accepted by the district court. Anticipating such result, government may
take less blocking actions as really needed. So it might not be the small likelihood of tacit collusion, but the
difficulty to implement and win in court makes it seemed unlikely.
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a model to analyze patent-protected R&D investment projects when there is competition in

the development phase and marketing phase of the resulting product. Numerical methods to

deal with optimal stopping time problems (Longstaff and Schwartz (2001)) make it possible to

analyze their complex model. Their focus is on the impact of R&D competition on production

markets and prices instead of the nonprice competition on innovation markets, focused on in

this paper.

In summary, the main contributions of this paper are: (1) the development of a stochastic

differential game model that allows consideration of technical uncertainty, market uncertainty,

strategic interactions and ongoing decision making, (2) the derivation a tacit collusion equi-

librium and a preemption equilibrium based on a trigger strategy of nonprice competition in

innovation markets, (3) the construction of a structural quantitative approach to evaluate the

likelihood of tacit collusion by analyzing the information time lag, (4) the application of the

proposed model to provide a potential explanation of several innovation market phenomena,

and (5)the analysis of the role of uncertainty on the likelihood of tacit collusion to provide im-

plications for antitrust and merge control in IT industry. These contributions, however, are not

limited to IT R&D investments because the basic framework developed in this paper can be

applied to other types of highly uncertain R&D investments in which flexibility and strategic

interaction among competing firms plays a major role.10

An outline of the remainder of the paper is as follows. Section 2 describes the formal

model structure and various equilibria and solutions. Section 3 presents analytical results

by solving the coupled Hamilton-Jacobi-Bellman equations. Section 4 applies the framework

from the model to the case of duopoly competition for one R&D product within a winner-take-

all market environment. section 5 examines the role of uncertainty on the likelihood of tacit

collusion. Finally, section 6 presents our conclusions and discusses potential future research.

10For example, new drugs development in biotech/pharmaceutical industry , and alternative technology fuel
cell vehicles or hybrid electric cars in automotive industry.
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2. Model

2.1. Setup

Figure 1 illustrates the flow chart of the model.

We are given a standard Brownian motionB in R on a probability space(Ω,F ,P). We fix

the standard filtrationF= {Ft : t ≥ 0} of F and the time horizon[0,T]. 11

The potential cash flow stream of a project when the R&D is completed is modeled as a

process:{Xt , t ≥ 0} valued in the state spaceX⊂ R. We will assume that the process follows

a geometric Brownian motion, i.e.,Xt satisfies the stochastic differential equation

dXt = µXtdt+σXtdBQ
t ,X0 = x0, (1)

wheredBQ
t is the increment ofB under a risk-neutral Q-martingale.12

Now we consider two firms A and B that are competing for one product. Denote the

index set{A,B}. Suppose there are N stages for the R&D process. Then firm i’s stageni
t ∈

{0,1, ...,N}, for all i ∈ {A,B}. Denote byn−i
t ∈ {0,1, ...,N} the stage of the other firm. We

denote the system stagent = (ni
t ,n

−i
t ) for all i ∈ {A,B}.

11WhenT = ∞, the horizon is denoted[0,∞).
12In traditional financial option pricing models, the approach to valuation is based on no-arbitrage augments,

where one can trade the underlying asset and a riskless asset so that the option is replicated. However, the as-
sumptions about the liquidity of the underlying assets for such approach is questionable when the applications of
this model involve real assets like technology projects. An equilibrium approach relaxes the tradability assump-
tions needed for arbitrage pricing, although an appropriate equilibrium model must be chosen. This equilibrium
model will be used to derive the corresponding Bellman equation. For example, Grenadier (1995) uses the
continuous-time version of the capital asset pricing model of Merton (1973).
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We model the success of an active R&D process as a Poisson process with parameterπi ,

i.e.,

dNi
t =





1 with probabilityπidt

0 with probability1−πidt

Each firm’s decision at each point of time, given that it has not yet completed the R&D

process, is whether to invest in R&D, i.e. to choose a control variableui from its set of feasible

controlsUi : [0,T]→ A, where the actions setA = {0,1}. Denoteu−i as the control of the

other firm beside firm i.

The R&D cost process is defined asui I , whereI is the intensity level of the R&D invest-

ment,ui ∈ Ui is an admissible control for firm i.

Let θi ·Xt denote firm i’s cash flow from the completed R&D project at time t, whereθi

can have two possible values:θp andθ f , respectively, corresponding to the market pioneer

and the follower. The so called market pioneer is the firm that completes the R&D process

first while the market follower is the firm that finishes the R&D process second. Here we refer

the market pioneer and market follower as lower case p and f, respectively.13

The payoff functionals

Li(t,xt ,n
i
t ,n

−i
t ,ui ,u−i) =

∫ T

t
e−r(s−t)(ζi

sθ
iXs−ui

sI)ds+e−r(T−t)F(XT ,nT); i ∈ {A,B} (2)

whereF(XT ,nT) is the terminal payoff,r is the discount factor, and

ζi
t =





1 if ni
t = N

0 otherwise

13Later, we will refer the R&D Leader and R&D Follower as upper case letter L and F, where R&D Leader is
the firm that choose a lower investment threshold and R&D Follower is the firm that choose a higher investment
threshold.
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is the complete characteristic function for firm i.

Firm i’s expected payoff functional is defined as

V i(t,xt ,nt ,u
i ,u−i) = EQ

t
[
Li(t,xt ,nt ,u

i ,u−i)| j ∈ {A,B}] (3)

2.2. Definition of Solutions

In this section, we describe different solution concepts for this differential game.

2.2.1. Noncooperative Equilibrium

The information structure with feedback control is defined by the function

η(t) = {xt ,nt}, t ∈ [0,∞], wherent = (nA
t ,nB

t ). The information space for firm i,Ni
η, is

induced by its informationηi .

A 2-tuple differential game is formulated as (1),(2) with the admissible controlui ∈Ui , i ∈
{A,B} and the information structureη. We shall use the notationPη(x0,0) for this game.

A strategy for firm i inPη(x0,0) is a mappingφi : [0,T]×Ni
η → Ui . Formally ui(t) =

φi(t,xt ,nt), for i ∈ {A,B} and allt ∈ [0,T].

A 2-tupleφ = (φA,φB) of strategies is called a strategy profile. Denote the set of all feasible

strategy profiles forPη(x0,0) by Sη. The set ofφi is denoted bySi
η. The set ofφ−i = φ j ,

i, j ∈ {A,B}, i 6= j for which there exist a strategyφi such that(φi ,φ−i) ∈ Sη is denoted byS−i
η .

Finally, the set of feasible responses by firm i to a givenφ−i ∈ S−i
η is denoted bySi

η(φ−i).

Firm i’s expected payoff functional can be denoted as

V i(t,xt ,nt ,φi ,φ−i) = EQ
t

[
Li(t,xt ,nt ,u

i ,u−i)|u j(t) = φ j(t,xt ,nt), j ∈ {A,B}] (4)
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Definition 1. A Nash equilibrium for the differential gamePη(xt ,nt , t) is a strategy profile

φ∗ = (φi∗,φ−i∗) such that for alli ∈ {A,B} and all strategiesφi ∈ S−i
η (φ−i∗) it holds that

V i(t,xt ,nt ,φi∗,φ−i∗)≥V i(t,xt ,nt ,φi ,φ−i∗)

2.2.2. Cooperative Optimum

The cooperative solution is usually required to be Pareto optimal.

Definition 2. A cooperative (Pareto) solution for the differential gamePη(x0,0) is a strategy

profile φC∗ = (φCi∗,φ−Ci∗) such that for all strategy profileφ = (φi ,φ−i) it holds that

∑i={A,B}V i(t,xt ,nt ,φCi∗,φ−Ci∗)≥ ∑i={A,B}V i(t,xt ,nt ,φi ,φ−i)

2.2.3. Response Solution

Definition 3. A response solution by firm i to a givenφ−i ∈S−i is a strategyφir ∈Si(φ−i) such

that for all strategiesφi ∈ Si(φ−i) it holds thatV i(t,xt ,nt ,φir ,φ−i)≥V i(t,xt ,nt ,φi ,φ−i).

2.2.4. Trigger Strategy Equilibria

Although the cooperative solution is Pareto optimal, it is not an equilibrium with feedback

control. The response strategy of a cooperative outcome is to increase investment with a lower

threshold. It is then important to design a cooperative policy which retains the properties of

equilibrium and generates outcomes that dominate the Nash feedback equilibrium.

The basic idea for constructing such an equilibrium is to design a new game with history

dependent strategies and to construct a Nash equilibrium for this new game.

Now suppose firms can observe rival’s actions with information time lagδ. The informa-

tion structure with delayed action observation is then defined by function

12



hi(t) = {xt ,nt ,us−δ,s∈ [0, t]}, t ∈ [0,T], whereus = {ui
s,u

−i
s }, us = u0, for s≤ 0 . The

information space for firm i,Ni
h, is induced by its informationhi .

We denotePh(x0,0) as a 2-tuple differential game formulated by (1),(2) with the admissi-

ble controlui ∈ Ui , i ∈ {A,B} and the information structureh. Denote the set of all feasible

strategy profiles forPh(x0,0) by Sh.

Firm i’s expected payoff functional is defined as

V i(t,ht ,φi ,φ−i) = EQ
t

[
Li(t,xt ,nt ,u

i ,u−i)|u j(t) = φ j(t,ht)
]
,φ ∈ Sh, j ∈ {A,B} (5)

Specially, at initial time, the payoff functional might be conveniently denoted byV i(0,x0,n0,φi ,φ−i).

Definition 4. A Nash equilibrium for the differential gamePh(x0,n0,0) is a strategy pro-

file φ∗ = (φi∗,φ−i∗) such that for alli ∈ {A,B} and all strategiesφi ∈ S−i
h (φ−i∗) it holds that

V i(0,x0,n0,φi∗,φ−i∗)≥V i(0,x0,n0,φi ,φ−i∗)

We now introduce the trigger strategyψ ∈ Sh used to enforce a given target profileφ̃ ∈ Sh.

At any time instants′ ∈ [0,∞), firm i ∈ {A,B} can decide whether to cooperate and continue

to play his target strategỹφi or to defect by deviating from̃φi .

We assume that if a firm defects from its target path at times′, its opponent will observe

the deviation and start to punish it at times= s′+ δ. 14 It is furthermore assumed that the

punishment lasts forever. Under these assumptions a trigger strategy for firm i with target

profile φ̃ ∈ Sh can be defined as follows:

ψi(t, ·) =





φ̃i(t, ·) if no firm has defected before and at timet−δ

ϕi(t, ·) if a defection has occurred at or before timet−δ
(6)

14Defection of strategy may not lead to defection of action at some state region. As strategy is difficult to
observe, we assume only action is observable.
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whereϕ = (ϕi ,ϕ−i) ∈ Sh is a strategy profile which we call the threats or the punishment

strategies.

Denote the target path corresponding to the target profileφ̃ by h̃t . Now consider the deci-

sion problem of firm i at time t under the assumption that before time t no firm has defected. It

can either continue to cooperate, in which case its discounted payoff over the remaining time

horizon isV i(t, h̃t , φ̃i , φ̃−i), or it can defect at t. If we denote firm i’s defection strategy byφi

then we can write its discounted payoff over time interval[t,∞) in the case of defection as

V i
DEF(t, h̃t ,φi , φ̃−i)

= EQ
t [

∫ t+δ

t
e−r(s−t)(ζ̂i

sθ̂
iXs− ûi

sI)ds+e−rδV i(t +δ, ĥt+δ,ϕi ,ϕ−i)]; i ∈ {A,B} (7)

whereζ̂, θ̂, û(·) andĥ are the complete characteristic function, value parameter, control path,

and information path, respectively, corresponding to the strategy profile (φi , φ̃−i).

Proposition 1. Let φ̃ be a given target profile for the gamePh(x0,0) and let h̃t be the cor-

responding target path. The strategy profileψ = (ψA,ψB) defined in (6) constitutes a Nash

equilibrium for the gamePh(x0,0) if and only if

V i
DEF(t, h̃t ,φi , φ̃−i)≤V i(t, h̃t , φ̃i , φ̃−i) (8)

holds for all i ∈ {A,B}, all t ∈ [0,∞), and all feasible defection pathsφi ∈ Si
h(φ̃

−i).

There is only one condition to be satisfied by threats in order for a trigger strategy profile

to constitute a Nash equilibrium: the threats must be effective as described by condition (8).

However, in many situations the most effective threats may not be credible. A necessary

condition for threats to be credible is that they constitute a subgame perfect Nash equilibrium.

15

15A feedback Nash equilibriumϕ for gamePη(x0,n0,0) is subgame perfect if, for each(x,nt , t) ∈ X×
{0,1, ...N}2× [0,∞), the subgamePη(xt ,nt , t) admits a feedback Nash equilibriumψ such thatψ(y,ns,s) =
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Let us assume thatϕ is a feedback perfect Nash equilibrium of the gamePη(x0,n0,0). The

expected payoff in the case of defection is then

V i
DEF(t, h̃t ,φi , φ̃−i)

= EQ
t [

∫ t+δ

t
e−r(s−t)(ζ̂i

sθ̂
iXs− ûi

sI)ds+e−rδV i(t +δ, ĥt+δ,ϕi ,ϕ−i)]

= V i(t, h̃t ,φi , φ̃−i)+EQ
t {e−rδ[V i(t +δ, ĥt+δ,ϕi ,ϕ−i)−V i(t +δ, ĥt+δ,φi , φ̃−i)]}

for all i ∈ {A,B}.

Proposition 2. Let φ̃ be a given target profile for the gamePh(x0,0) and let ϕ ∈ Sη be a

feedback perfect Nash equilibrium. Denote the corresponding target path to beh̃t and let

ĥt be as defined before. The strategy profileψ = (ψA,ψB) defined in (6) constitutes a Nash

equilibrium for the gamePh(x0,0) if and only if

V i(t, h̃t ,φi , φ̃−i)−V i(t, h̃t , φ̃i , φ̃−i)≤
EQ

t {e−rδ[V i(t +δ, ĥt+δ,φi , φ̃−i)−V i(t +δ, ĥt+δ,ϕi ,ϕ−i)]} (9)

holds for all i ∈ {A,B}, all t ∈ [0,∞), and all feasible defection pathsφi ∈ Si
h(φ̃

−i).

3. Valuation

This section presents firms’ value of noncooperative strategy and cooperative strategy by solv-

ing the coupled HJB equations.

ϕ(y,ns,s) holds for(y,ns,s) ∈ X×{0,1, ...N}2× [0,∞). A feedback Nash equilibrium which is subgame perfect
is also called a feedback perfect Nash equilibrium
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3.1. Noncooperative Equilibrium

Proposition 3. For a 2-tuple nonzero-sum stochastic differential game of prescribed fixed

duration [0,T], described by (1), (2), the admissible controlui ∈ Ui ⊂ U, i ∈ {A,B} and the

information structureη, 2-tuple of feedback strategies{φi∗ ∈ Si
η; i ∈ {A,B}} provides a Nash

equilibrium solution if there exists suitably smooth functionsJi : [0,T]×Ni
η → R, i ∈ {A,B},

satisfying the Hamiltonian-Jacobian-Bellman equation:

DJi(t,x,ni
t ,n

−i
t )+ζi

tθ
iXt (10)

+ sup
ui

t∈Ui

{ui
t [π

i(ni
t)(J

i(t,x,ni
t +1,n−i

t )−Ji(t,x,ni
t ,n

−i
t ))− I ]} (11)

+ φ−i∗π−i(n−i
t )[Ji(t,x,ni

t ,n
−i
t +1)−Ji(t,x,ni

t ,n
−i
t )] = 0 (12)

Ji(T,x,ni
T ,n−i

T ) = F i(x,ni
T ,n−i

T ) (13)

where

DJi(t,x,ni
t ,n

−i
t ) =

1
2

σ2x2Ji
xx+µxJi

x +Ji
t − rJi (14)

where the subscriptJ refers to the partial derivative.

Lemma 1. Suppose∂
∂x(J

i(t,x,ni
t + 1,n−i

t )− Ji(t,x,ni
t ,n

−i
t )) ≥ 0, i ∈ {A,B}. Then firms have

threshold strategy, i.e.,ui = φi(t,xt ,nt) = 1xt≥xi∗(t,nt),
16 with a thresholdxi∗(t,nt)

When the feedback strategy is threshold strategy,φi(t,xt ,nt) = 1xt≥xi(t,nt), for threshold

xi(t,nt). It would be convenient to denoteV i(t,xt ,nt ,xi ,x−i) =V i(t,xt ,nt ,φi ,φ−i) for threshold

pairxi ,x−i . In addition, we may denoteV i(t,xt ,nt) = V i(t,xt ,nt ,xi ,x−i) for simplicity.

161value is a characteristic function. It equals 1 if value is true or 0 if value is false.
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We start by assuming that one firm (the R&D Leader) invests not later than its rival (the

R&D Follower), i.e.,xL∗ ≤ xF∗, wherexL∗ andxF∗ are Leader and Follower’s thresholds. The

R&D Leader or R&D Follower is not necessarily the market leader or market follower.

Theorem 1. Supposeni
t < N, i ∈ {L,F}. For a 2-tuple nonzero-sum stochastic differential

game of duration[0,∞), as described by (1), and (2), and under feedback information pattern,

i.e., ui(t) = φi(t,xt ,nt). Let V iss(t,xt ,nt),V ics(t,xt ,nt),V icc(t,xt ,nt) be functionals solved by

HJB equations (10) with(uL,uF) = (0,0),(uL,uF) = (1,0),(uL,uF) = (1,1), respectively, for

i ∈ {L,F}. Suppose∂
∂x(J

i(t,x,ni
t + 1,n−i

t )− Ji(t,x,ni
t ,n

−i
t )) ≥ 0, i ∈ {L,F}. Then a 2-tuple

of feedback strategies{φi∗ ∈ Si
η; i ∈ {L,F}} provides a Nash equilibrium solution such that

φi∗(t,xt ,nt) = 1xt≥xi∗(t,nt) .

The follower’s value is

VF(t,x,nt) =





VFss(t,x,nt) x < xL∗(t,nt). uL = uF = 0

VFcs(t,x,nt) xL∗(t,nt)≤ x < xF∗(t,nt). uL = 1,uF = 0

VFcc(t,x,nt) xF∗(t,nt)≤ x. uL = uF = 1

(15)

The leader’s value is

VL(t,x,nt) =





VLss(t,x,nt) x < xL∗(t,nt). uL = uF = 0

VLcs(t,x,nt) xL∗(t,nt)≤ x < xF∗(t,nt). uL = 1,uF = 0

VLcc(t,x,nt) xF∗(t,nt)≤ x. uL = uF = 1

(16)

with

VL(t,0,nt) = VF(t,0,nt) = 0 (17)

lim
x→∞

VL(t,x,nt) ∝ x (18)

lim
x→∞

VF(t,x,nt) ∝ x (19)
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whenx = xL∗(t,nt),

VLss(t,x,nt) = VLcs(t,x,nt) (20)
d
dx

VLss(t,x,nt) =
d
dx

VLcs(t,x,nt) (21)

VFss(t,x,nt) = VFcs(t,x,nt) (22)
d
dx

VFss(t,x,nt) =
d
dx

VFcs(t,x,nt) (23)

πL(VL(t,x,nL +1,nF)−VL(t,x,nL,nF))− I = 0 (24)

whenx = xF∗(t,nt),

VLcs(t,x,nt) = VLcc(t,x,nt) (25)
d
dx

VLcs(t,x,nt) =
d
dx

VLcc(t,x,nt) (26)

VFcs(t,x,nt) = VFcc(t,x,nt) (27)
d
dx

VFcs(t,x,nt) =
d
dx

VFcc(t,x,nt) (28)

πF(VF(t,x,nF +1,nL)−VF(t,x,nF ,nL))− I = 0 (29)

The R&D Leader and R&D Follower’s values follow from HJB equations (10) via some

notation changes from A and B to L and F. Equation (17) to (19) are standard boundary condi-

tions. The value matching conditions, (20,22,25,27) smooth pasting conditions (21,23,26,28)

and transitional boundary conditions (24), (29) are sufficient to solve for the parameters. For a

heuristic argument of the value matching conditions, and smooth pasting conditions see Dixit

(1993, Section 3.8); a rigorous proof is in Karatzas and Shreve (1991, Theorem 4.4.9). The

transitional boundary conditions follows from HJB equations (10).

Corollary 1. Supposeni
t < N, i ∈ {L,F}. For a 2-tuple nonzero-sum stochastic differential

game of duration[0,∞), as described by (1), and (2), and under feedback information pattern,

i.e., ui(t) = φi(t,xt ,nt). Let V iss(t,xt ,nt),V ics(t,xt ,nt),V icc(t,xt ,nt) be functionals solved by
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HJB equations (10) with(uL,uF) = (0,0),(uL,uF) = (1,0),(uL,uF) = (1,1), respectively, for

i ∈ {L,F}. Suppose∂
∂x(J

i(t,x,ni
t +1,n−i

t )−Ji(t,x,ni
t ,n

−i
t ))≥ 0, i ∈ {L,F}.

(i)(Response) For some firmi ∈ {L,F}, suppose the other firm’s threshold strategy is given

as φ−i(t,xt ,nt) = 1xt≥x−i(t,nt), then firm i’s response strategyφi(t,xt ,nt) = 1xt≥xi(t,nt), where

xi = R(x−i) = argmaxxi V i(t,xt ,nt ,xi ,x−i). Leader and Follower’s value functionals are solved

from equation (15) to (29) by ignoring corresponding transitional Boundary Condition (24)

or (29).

(ii) For all i ∈ {L,F}, suppose firm i’ threshold strategy is given asφi(t,xt ,nt) = 1xt≥xi(t,nt),

then Leader and Follower’s value functionals are solved from equation (15) to (29) by ignoring

transitional Boundary Conditions (24) and (29).

3.2. Cooperative Optimum

Now consider the case in which the two firms make their investment strategies cooperatively.

Proposition 4. For a 2-tuple nonzero-sum stochastic differential game of prescribed fixed du-

ration [0,T], described by (1), (2), the admissible controlui ∈ Ui , i ∈ {A,B} and the informa-

tion structureη, a 2-tuple of feedback strategies{φCi∗ ∈Si
η; i ∈ {A,B}} provides a cooperative

equilibrium solution if there exists suitably smooth function functionsJC : [0,T]×Nη → R,

satisfying the Hamiltonian-Jacobian-Bellman equation:

DJC(t,x,nt)+(ζA
t θA +ζB

t θB)Xt

+suput=(ui
t ,u

−i
t ){ui

t [πi(ni
t)(J

C(t,x,ni
t +1,n−i

t )−JC(t,x,ni
t ,n

−i
t ))− I ]

+u−i
t [π−i(n−i

t )(JC(t,x,ni
t ,n

−i
t +1)−JC(t,x,ni

t ,n
−i
t ))− I ]}= 0 (30)
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JC(T,x,ni
T ,n−i

T ) = FC(x,ni
T ,n−i

T ) (31)

where

DJC(t,x,nt) =
1
2

σ2x2JC
xx+µxJCx +JC

t − rJC (32)

where the subscript parameter ofJ refers to the partial derivative.

Denote the cooperative Leader and Follower’s thresholds asxCL∗ andxCF∗. ThenxCL∗ ≤
xCF∗.

Theorem 2. For a 2-tuple nonzero-sum stochastic differential game of duration[0,∞), as de-

scribed by (1), and (2), and under feedback information pattern, i.e.,ui(t) = φCi(t,xt ,ni
t ,n

−i
t ),

for i ∈{L,F}, letVCss(t,xt ,nt),VCcs(t,xt ,nt),VCcc(t,xt ,nt) be functionals solved by HJB equa-

tions (30) with(uL,uF) = (0,0),(uL,uF) = (1,0),(uL,uF) = (1,1), respectively. Suppose

∂
∂x(J

C(t,x,ni
t +1,n−i

t )−JC(t,x,ni
t ,n

−i
t ))≥ 0, i ∈ {L,F}, Then a 2-tuple of feedback strategies

{φCi∗ ∈ Si
η}, i ∈ {L,F} provides a cooperative equilibrium solution such thatφCi∗(t,xt ,nt) =

1xt≥xCi∗(t,nt) .

The combined value to two cooperative firms is described by

VC(t,x,nt) =





VCss(t,x,nt) x < xCL∗. uL = uF = 0

VCcs(t,x,nt) xCL∗ ≤ x < xCF∗. uL = 1,uF = 0

VCcc(t,x,nt) xCF∗ ≤ x. uL = uF = 1

(33)

with

VC(t,0,nt) = 0 (34)

lim
x→∞

VC(t,x,nt) ∝ x (35)
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whenx = xCL∗,

VCss(x,0,0) = VCcs(x,0,0) (36)
d
dx

VCss(x,0,0) =
d
dx

VCcs(x,0,0) (37)

πL(t,nt)(VC(t,x,nL
t +1,nF

t )−VC(t,x,nL
t ,nF

t ))− I = 0 (38)

whenx = xCF∗,

VCss(x,0,0) = VCcs(x,0,0) (39)
d
dx

VCss(x,0,0) =
d
dx

VCcs(x,0,0) (40)

πF(t,nt)(VC(t,x,nL,nF
t +1)−VC(t,x,nL

t ,nF
t ))− I = 0 (41)

4. Solution

We now consider a one stage R&D process with infinite horizon and winner-take-all market

environment, that is,N = 1, T = ∞, andθ f = 0. Without loss of generality, letθp = 1.

The stationary strategy profile solution with feedback information patten is defined by

φi(t,x,nt) = 1xt≥xi(nt), i ∈ {A,B}, wherexi refers to the corresponding investment thresh-

old. Then it will be convenient to denote the payoff functional of firm i defined in (2) by

Li(xt ,nt ,xi ,x−i), and then firm i’s expected payoff functional can be written asV i(xt ,nt ,xi ,x−i)=

V i(xt ,nt ,φi ,φ−i).

At equilibrium point (xi∗,x−i∗), the equilibrium value functional might be denoted as

V i(xt ,nt) = V i(xt ,nt ,xi∗,x−i∗)
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4.1. Noncooperative Equilibrium

Proposition 5. SupposeT = ∞,N = 1,θp = 1,θ f = 0. Then fori ∈ {L,F},

V i(x,ni = 1,n−i = 0) =
x

r−µ
(42)

V i(x,ni = 0,n−i = 1) = 0 (43)

At stagen = (0,0), the R&D Follower’s value is

VF(x,0,0) =





a1Fx−γ1,r x < xL∗. uL = uF = 0

b1Fx−γ1,r+πL +b2Fx−γ2,r+πL xL∗ ≤ x < xF∗. uL = 1,uF = 0

c2Fx−γ2,r+πL+πF +c3Fx+c4F xF∗ ≤ x. uL = uF = 1

(44)

The R&D Leader’s value is

VL(x,0,0) =





a1Lx−γ1,r x < xL∗. uL = uF = 0

b1Lx−γ1,r+πL +b2Lx−γ2,r+πL

+b3Lx+b4L xL∗ ≤ x < xF∗. uL = 1,uF = 0

c2Lx−γ2,r+πL+πF +c3Lx+c4L xF∗ ≤ x. uL = uF = 1

(45)

whereγ1,y, γ2,y solve1
2σ2(−γ)(−γ−1)+µ(−γ)−y = 0, assumey > 0.

γ1,y =
m−

√
m2 +2yσ2

σ2 < 0,

γ2,y =
m+

√
m2 +2yσ2

σ2 > 0, (46)

m= µ−σ2/2

This solution allows us to derive analytical characterization of the value and optimal strat-

egy. Here we can show closed form solutions for some special cases. In the general case the
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complexity of this formulation does not allow closed form solution. But it can be easily solved

by numerical methods.

The monopoly case In the monopoly case,xB = ∞. Then the threshold for the firm A

becomes

xA =
I(r−µ)

πA

(r +πA−µ)
r +πA

(γ2,r+πA− γ1,r)(r +πA)−πAγ2,r+πA

(γ2,r+πA− γ1,r)(r +πA−µ)− (1+πA)γ2,r+πA
(47)

The R&D Follower case In the follower case,xB = 0. 17 Then the threshold for firm A as

the follower becomes

xA =
I(r−µ)

πA

(r +πA +πB−µ)
r +πA +πB

(γ2,r+πA+πB− γ1,r+πA)(r +πA +πB)−πAγ2,r+πA+πB

(γ2,r+πA+πB− γ1,r+πA)(r +πA +πB−µ)−πA(1+ γ2,r+πA+πB)
(48)

The symmetric case In the symmetric case,πA = πB, thenxA = xB. Then the threshold for

both firm A and firm B becomes

xN∗ =
I(r−µ)

πA

(r +πA +πB−µ)
r +πA +πB

(γ2,r+πA+πB− γ1,r)(r +πA +πB)−πAγ2,r+πA+πB

(γ2,r+πA+πB− γ1,r)(r +πA +πB−µ)−πA(1+ γ2,r+πA+πB)
(49)

4.2. Cooperative Optimum

Now consider the case in which the two firms decide on their investment strategies coopera-

tively.

17The follower case means the situation that the other firm will always invest.
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Proposition 6. SupposeT = ∞,N = 1,θp = 1,θ f = 0. ThenVC(x,1,0) = VC(x,0,1) = x
r−µ

VC(x,0,0) =





a1x−γ1,r x < xCL∗

b1x−γ1,r+πL +b2x−γ2,r+πL +b3x+b4 xCL∗ ≤ x < xCF∗

c2x−γ2,r+πL+πF +c3x+c4 xCF∗ ≤ x

(50)

where

b3 =
πL

(r +πL−µ)(r−µ)
(51)

b4 =− I
r +πL (52)

c3 =
πL +πF

(r +πL +πF −µ)(r−µ)
(53)

c4 =− 2I
r +πL +πF (54)

The values ofa1,b1 andb2 are obtained by solving nonlinear equation (50) by optimization

methods.

The symmetric case In the symmetric case,πA = πB, thenxCL∗ = xCF∗. Then the threshold

for both firm A and firm B becomes

xC∗ =
I(r−µ)

πA

(r +πA +πB−µ)
r +πA +πB

(γ2,r+πA+πB− γ1,r)(r +πA +πB)−2πAγ2,r+πA+πB

(γ2,r+πA+πB− γ1,r)(r +πA +πB−µ)−2πA(1+ γ2,r+πA+πB)
(55)
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4.3. Analysis of noncooperative and cooperative solutions

We now analyze the noncooperative solution and the cooperative solution for two symmetric

firms. 18

ConsiderxA as a response function ofxB, asxA(xB), it is observed from (47), (48), (49)

and (55) thatxA(0) < xN∗ < xA(∞) < xC∗. Under uncertain future cash flow market condition,

the investment thresholds of the two firms are positively correlated.19

Response Map Denote the response mapR : X→ X for firm i, i.e., xi(x−i) = R(x−i) =

argmaxxi V i(t,xt ,nt ,xi ,x−i). The value ofR(x−i), i ∈ {A,B} follows from Corollary 1 by re-

placing the transfer boundary condition (29) or (24) with the given thresholdx−i wheni refers

to Leader or Follower.

Figure 2 demonstrates the positive correlations between the two firms’ thresholds. It is

noted that the response functionR(x) is an increasing monotone function.R(0) < R(x) <

R(∞),0 < x < ∞.

Notice that as showed in figure 2, cooperative solution{xC∗,xC∗} is not a noncooperative

equilibrium sinceR(xC∗) < xC∗.

Figure 3 illustrates the relations between the firms’s value and their threshold under the

response strategy. The response strategy threshold pair is(xA,xB(xA)), wherexB(xA) = R(xA)).

The value of a firm,V, is represented by the value ofa1 (refer to equation (44) or (45)) as a

function of thresholdxA. The solid-dotted line refers to the value of firm A and the dash-dotted

line refers to firm B. Firm A’s optimal investment threshold for response strategy isxNA∗, then

firm B’s optimal investment thresholdxNB∗ = xB(xNA∗).
18The asymmetric cooperative case has the difficulty in agreeing asymmetric investment rules and the need for

side-payments implicit in cooperative outcome, so it is not easy to be considered for tacit collusion.
19Under certain future cash flow market condition, the investment thresholds of the two firms are independent.
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Figure 3 also illustrates the relations between the symmetric firms’s value and their thresh-

old under the cooperative strategy. The cooperative threshold pair is(xCA,xCB). NoteVCA =

VCB, xCB = xCA in the symmetric case. The value of a firm,V, is represented by the value ofa1

(refer to equation (50)) as a function of thresholdxCA. The solid line refers to the value ofVCA

as a function of the cooperative thresholdxCA. The optimal investment cooperative threshold

is xCA∗ = xCB∗ = xC∗. It is observed thata1i(xCA∗,xCB∗) > a1i(xNA∗,xNB∗), which implies the

cooperative solution is more efficient than the noncooperative solution. It is also observed that

xC∗ > xN∗, which implies that the Pareto optimal solution leads to strategic delay.

The cooperative solution, however, is not an equilibrium with feedback strategy. Consider

the response strategy of one firm, say firm B.xB(xCA∗) < xCB∗. It is observed from Figure 3

thata1B(xCA∗,xB(xCA∗)) > a1B(xCA∗,xCB∗), a1A(xCA∗,xB(xCA∗)) < a1A(xCA∗,xCB∗). The impli-

cation is that firm B receives higher benefits through deviation, while firm A gets less benefits

by firm B’s deviation. It is also observed thata1A(xNA∗,xNB∗) > a1A(xCA∗,xB(xCA∗)), which

indicates that firm A has incentive to choose the feedback noncooperative solution facing the

deviation of firm B. These observations suggest that both firms have incentive to deviate from

the cooperative solution. They also indicate that the feedback noncooperative solution pro-

vides a credible threat.

These findings are also demonstrated in Figure 4, which illustrates the value of symmetric

firms A and B with various investment strategies. When one and only one firm has deviated,

the solid-pentagram line refers to the value of the firm that deviates,VDi(x;xD∗,xC∗), and the

solid-plus line refers to the value of the other firm which has not deviatedV−Di(x;xD∗,xC∗),

wherexD∗ = R(xC∗). The solid-star line refers to the value of the firm pursuing a cooper-

ative strategyVCi(x;xC∗,xC∗). The solid-dotted line refers to the value of the firm pursuing

a non-cooperative equilibrium strategyV i(x;xN∗,xN∗). It is observed thatVDi(x;xD∗,xC∗) >

VCi(x;xC∗,xC∗) >V i(x;xN∗,xN∗) >V−Di(x;xD∗,xC∗). These observations imply that the coop-

erative optimum is more efficient than the noncooperative equilibrium, the cooperative opti-
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mum is not an equilibrium, and the threat to punish from being deviated to the noncooperative

equilibrium is credible.

The interesting thing to note is that the Pareto optimal cooperative solution(xCA∗,xCB∗)

is not a noncooperative equilibrium. We will show that a collusion equilibria with a trigger

strategy generates payoffs which dominate those obtained via the classical noncooperative

equilibrium.

4.4. Trigger Strategy

The trigger strategy is described as followed. Symmetric firms choose coooperative threshold

xC∗, which is from Theorem 2, at the start of first period and continue pursuing it so long as

no firm has ever deviated. If any firm has ever deviated, say firm i has deviated to a response

xD∗ = R(xC∗), then after time lagδ, both firms choose non-cooperative thresholdxN∗, given

by Theorem 1. Thus the threshold pairs for the target strategy(φ̃i , ˜φ−i), deviation strategy

(φi , ˜φ−i), and punitive strategy(ϕi ,ϕ−i) are(xC∗,xC∗), (xD∗,xC∗) and(xN∗,xN∗), respectively.

There are three phases when two firms exercise the trigger strategies, coordination phase,

deviation phase and retaliation phase. In the coordination phase, both firms choose the Pareto

optimal thresholdxC∗, which exceeds the noncooperative feedback thresholdxN∗ of the puni-

tive phase. These findings have implications for the understanding and assessment of empirical

investment behavior.

For example, investment occurs late due to the strategic behavior of the firms who delay

their investment in the fear of setting an R&D war to the deviation phase and then the retal-

iation phase. Hence, delay is due to strategic interactions between firms, not just the option

effect of uncertainty. Investment is also more delayed than that when a single firm has the

opportunity to invest. Such strategic delay is similar to that described by Weeds (2002) but

arising for different reasons.
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Similarly, firms exercise investment according to threshold strategies in both the coordi-

nation phase and the retaliation phase. It implies that investment will occur after a period

of stagnation when market conditions rise and disappear after a period of investment activity

when market conditions fall. In addition, firms may deviate to the deviation phase and result

in the retaliation phase when the tacit collusion is not sustainable. This suggests that an R&D

war may lead to a resumption of a discontinued R&D program, with a sudden burst of compet-

itive activity, even when the market conditions are declining or unchanged, a phenomenon that

contrasts strongly with the usual presumption that investment starts when market conditions

increase.

5. Likelihood of Tacit Collusion on R&D

In this section, we analyze the characteristics that can affect the sustainability of collusion

with a structural quantitative approach. The goal is to analyze the role of technical uncertainty

and market uncertainty on the likelihood of tacit collusion. There are some basic structure

variables, such as the number of competitors, barriers for entry and market transparency. In

particular, we determine the impact of the probability of successful innovation, market growth

drift and market volatility on the degree of market transparency that is necessary to sustain the

collusion.

5.1. Measures of the degree of market transparency

The information time lagδ represents the degree of market transparency. We define two

thresholdsδL∗ andδH∗ to analyze the sustainability of collusion.
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To check whether the trigger strategy constitutes a Nash equilibrium or the threat is ef-

fective for a given information lagδ, we can go one step further from proposition 2 with

conditionsT = ∞,N = 1,θp = 1,θ f = 0. Inequality equation (9) can then be written as

V i(xt ,0,0,φi , φ̃−i)−V i(xt ,0,0, φ̃i , φ̃−i)≤
EQ

t {e−rδ1nt+δ=(0,0)[V
i(xt+δ,0,0,φi , φ̃−i)−V i(xt+δ,0,0,ϕi ,ϕ−i)]} (56)

Lemma 2.

1≥ Pr(nt+δ = (0,0)|nt = (0,0),φi , φ̃−i)≥ e−(πA+πB)δ (57)

Theorem 3. SupposeT = ∞,N = 1,θp = 1,θ f = 0. The strategy profileψ = (ψA,ψB) defined

in (6) constitutes a Nash equilibrium for the gamePh(x0,0) if

V i(xt ,0,0,φi , φ̃−i)−V i(xt ,0,0, φ̃i , φ̃−i)≤
e−(r+πA+πB)δEQ

t [V i(xt+δ,0,0,φi , φ̃−i)−V i(xt+δ,0,0,ϕi ,ϕ−i)] (58)

holds for all i ∈ {A,B}, all t ∈ [0,∞), and all feasible defection pathsφi ∈ Si
h(φ̃

−i).

The strategy profileψ = (ψA,ψB) defined in (6) fails to constitute a Nash equilibrium for

the gamePh(x0,0) if there exits a feasible defection pathφi ∈ Si
h(φ̃

−i) for somet ∈ [0,∞),

i ∈ {A,B} such that

V i(xt ,0,0,φi , φ̃−i)−V i(xt ,0,0, φ̃i , φ̃−i) >

e−rδEQ
t [V i(xt+δ,0,0,φi , φ̃−i)−V i(xt+δ,0,0,ϕi ,ϕ−i)] (59)

holds.

Denote

f 1(xt ,δ) = V i(xt ,0,0,φi , φ̃−i)−V i(xt ,0,0, φ̃i , φ̃−i)

−e−(r+πA+πB)δEQ
t [V i(xt+δ,0,0,φi , φ̃−i)−V i(xt+δ,0,0,ϕi ,ϕ−i)]

(60)
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f 2(xt ,δ) = V i(xt ,0,0,φi , φ̃−i)−V i(xt ,0,0, φ̃i , φ̃−i)

−e−rδEQ
t [V i(xt+δ,0,0,φi , φ̃−i)−V i(xt+δ,0,0,ϕi ,ϕ−i)]

(61)

δL(x) = min
δ≥0

{ f 1(x,δ)≥ 0} (62)

δL∗ = min
x
{δL(x)} (63)

δH(x) = max
δ
{ f 2(x,δ)≤ 0} (64)

δH∗ = min
x
{δH(x)} (65)

Corollary 2. SupposeT = ∞,N = 1,θp = 1,θ f = 0. Let the threshold pairs for the target

strategy(φ̃i , ˜φ−i), deviation strategy(φi , ˜φ−i), and punitive strategy(ϕi ,ϕ−i) are (xCi∗,x−Ci∗),

(xDi∗,x−Ci∗) and (xi∗,x−i∗), respectively. Suppose that∂ f k(x,δ)
∂δ > 0, for k = {1,2}. Then the

corresponding strategy profileψ = (ψA,ψB) defined in (6) constitutes a Nash equilibrium for

the gamePh(x0,0) if δ≤ δL∗. The corresponding strategy profileψ fails to constitute a Nash

equilibrium for the gamePh(x0,0) if δ > δH∗.

Calculation of deviation condition In order to apply the inequality equation (58) and (59),

it will be convenient to writeV i(xt+δ,0,0,φi ,φ−i) = V i(xt+δ,x
L,xF), ∀φ ∈ Sh, φ(.) = 1x≥xi ,

with i ∈ {L,F} refers to Leader or Follower, respectively, andxL,xF refers to the two thresh-

olds for the Leader and Follower, respectively.

Then

V i(x,xL,xF) =





a1ix−γ1,r x < xL. uL = uF = 0

b1ix
−γ1,r+πL +b2ix

−γ2,r+πL +b3ix+b4i xL ≤ x < xF . uL = 1,uF = 0

c2ix
−γ2,r+πL+πF +c3ix+c4i xF ≤ x. uL = uF = 1
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Notice that

EQ
t [e−rδa1ix

−γ1,r

t+δ 1xt+δ<xL ] = EQ
t [e−rδa1ie

−γ1,ryt+δ1yt+δ<yL ], Let y = lnx,yL = lnxL

= a1iG(yL;δ,−γ1,r ,1)

where

G(y;δ,d,k) = EQ[exp(−
∫ δ

0
rsds)ed·yδ1k·yδ≤y] (66)

Then

EQ
t [e−rδV i(xt+δ,x

L,xF)] = a1iG(lnxL;δ,−γ1,r ,1)

+b1i [G(lnxF ;δ,−γ1,r+π,1)−G(lnxL;δ,−γ1,r+πL ,1)]

+b2i [G(lnxF ;δ,−γ2,r+π,1)−G(lnxF ;δ,−γ2,r+πL ,1)]

+b3i [G(lnxF ;δ,1,1)−G(lnxL;δ,1,1)]

+b4i [G(lnxF ;δ,0,1)−G(lnxL;δ,0,1)]

+c2iG(− lnxF ;δ,−γ2,r+πL+πF ,1)+c3iG(− lnxF ;δ,1,−1)

+c4iG(− lnxF ;δ,0,−1)

(67)

So, if we can compute the function G, we can tell from proposition 3 whether a firm

deviates or not with information lagδ.

Whenrt ≡ r, µt ≡ µ, σt ≡ σ,

G(y;δ,d,k) =





edy0+(−r+(µ− 1
2σ2)d+ 1

2d2σ2)δΦ(
y
k−y0−(µ− 1

2σ2)δ
σ
√

δ
−σd

√
δ) k > 0

edy0+(−r+(µ− 1
2σ2)d+ 1

2d2σ2)δΦ(−
y
k−y0−(µ− 1

2σ2)δ
σ
√

δ
+σd

√
δ) k < 0

(68)

whereΦ() is the cumulative normal distribution.
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Figure 5 illustrates the impacts of factors like information delayδ andx on the decision

to deviate or not. The deviation decision only matters forx ∈ [xD∗,xC∗]. Deviations won’t

happen whenδ≤ δL(x), while deviation will happen whenδ > δH(x), whereδL(x) andδH(x)

are defined in (62) and (64). It is also observed that givenδ, the deviation is more likely to

happen whenx is near the middle ofxD∗ andxC∗, and less likely to happen whenx is nearxD∗

or xC∗.

Figure 5 also demonstratesδL∗ andδH∗, defined in (63) and (65), respectively. We can tell

whether there is a tacit collusion equilibrium following corollary 2.

Sufficiently Long Information Lag δ 20 The cooperative solution that follows from

Theorem 2,{xCA∗,xCB∗} is not a noncooperative equilibrium for the gamePh(x0,0).

Sufficiently Short Information Lag δ The cooperative solution following from Theo-

rem 2,{xCA∗,xCB∗}, under trigger strategy, is a Nash equilibrium for the gamePh(x0,0) for

symmetric two firms.

In summary, these findings suggest that information or observation of rivals actions pro-

vide a scheme to induce tacit collusion.

5.2. Comparative Statics

We now examine the effects of changes in underlying parameters on the information time lag

thresholds. In particular, we consider three potential influences onδL∗ andδH∗: the success

rate(π), the drift of market growth(µ), and the volatility of market(σ).

Consider the effect of the success rate on time lag thresholds. Figure 6 demonstrates that

the effect of increasing likelihood of innovation success is a decrease in both information time

20For example, in the extreme caseδ = ∞, the two firms are required to commit to a threshold at the start of
the game or they can’t observe their rival’s actions.
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lag thresholds. The intuition is that if the probability of successful innovation is substantial, the

firms then anticipate that innovation is coming soon and thus put less emphasis on the future

retaliation and are more tempted to cheat on collusion. Therefore, the more likely innovation

is, the more difficult it is to sustain collusion.

Now consider the effects of changes in the drift of market growth on the propensity of tacit

collusion. Figure 7 illustrate that the effect of increasing absolute value of drift of market is a

decrease in the two information time lag thresholds. It is also showed that a positive drift leads

to lower information time lag thresholds than a negative drift does, given the same abstract

drift value. A possible explanation to understand this is that the deviation only happens when

x is in the deviation region, i.e.,x ∈ [xD∗,xC∗] and the retaliation only matters whenx is in

the retaliation region, i.e.,x ∈ [xN∗,xC∗]. When|µ| > 0, firms, anticipating thatxt+δ may be

out of the retaliation region, put less emphasis on future retaliation and thus are more tempted

to defect. In addition,xt+δ is more likely out of the retaliation region whenµ > 0 than it is

whenµ < 0, given the same absolute value. Therefore, the intuition is that collusion is easier

to sustain in stagnating market, less likely to sustain in declining market and most difficult to

sustain in growing market.

Finally consider the effects of changes in the volatility of market on the propensity of tacit

collusion. Figure 8 illustrate that the effect of increasing volatility of market is first an increase

and then a decrease in the two information time lag thresholds.

There are debates on the effects of demand volatility on likelihood of tacit collusion.21

The implication from this analysis is that a simple “check list” factors method is not enough

when the relation is not a simple one. This paper provides a structural quantitative approach

to evaluate the likelihood of tacit collusion.
21For example, The European Court of First Instance (CFI) has recently overturned the decision by the Euro-

pean Commission to prohibit the merger between UK tour operators Airtours plc and First Choice plc. As regards
market conditions, the Commission had argued that the volatility of demand which characterized the market was
conducive to collusive behavior. However, the CFI noted that economic theory suggests the opposite (i.e. volatil-
ity of demand renders the creation of a collective dominant position more difficult) and that the Commission had
failed to establish that economic theory did not apply or that volatility in demand was conducive to the creation
of collective dominance. (Court of First Instance 6 June 2002)

33



6. Conclusion and Future Work

Motivated byR&D investments currently taking place in industry, we develop a stochastic

differential game approach to analyze R&D investment under technical and market uncertainty

with strategic interactions and ongoing costs. The model demonstrates that investment options

might be exercised based on a trigger strategy and lead to either a tacit collusion equilibrium

or a preemption equilibrium, depending on the length of the associated information time lag.

In such a collusion equilibrium, a cooperative solution is played as long as the deviation never

happens. If a deviation occurs, a punishment strategy derived from the preemption equilibrium

will follow that forever. When the information lag is long, a preemptive equilibrium emerges

in which the option values of delay are reduced by competition. When the information lag

is sufficiently short, a collusion equilibrium emerges in which investment is delayed more

than the single-firm counterpart and delayed less than that from a one-shot investment cost

formulation like that in Weeds (2002).

The solution for this option exercise game provide an underlying theory from which one

may begin to understand and assess empirical investment behavior. For example, some strate-

gic R&D investments have been prone to be more delayed than the single firm counterpart.

The model is able to isolate the conditions that make such phenomenons more or less likely.

In addition, some R&D markets have been prone to overinvestment, where an R&D war may

lead to a resumption of a previously discontinued R&D program even when market condi-

tions might still be worse than when they were discontinued. While this is often regarded as

irrational , the model provides a rational foundation for such exercise patterns.

We also provide implications of tacit collusion in R&D for antitrust and merger control

policy. Tacit collusion has been dealt with under the notion of coordinated effects in a number

of court decisions and corresponds to the “collective dominance” studied in Europe. Rather

than a pure “check-list” of relevant factors, this paper provides an attempt of a structural

quantitative analysis for a clear understanding of why each dimension is relevant, as well
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as how it affects collusion and it is affected by a merger. This helps to facilitate an overall

assessment when several factors have a role and push in different directions.

The model of strategic R&D investments can be applied to a variety of settings. More

recently, innovation market allegations have become common place, particularly in actions in-

volving the pharmaceutical industry, where drugs are introduced only after years of laboratory

and clinical testing and good information is available at least to the government about drugs in

advanced stages of R&D. In other industries, practical difficulties often arise in applying the

theory, given the secrecy of R&D. Consider also alternative technology hybrid electric cars

in automotive industry. For example, GM stopped its hybrid project in 1998 and resumed it

recently after observing Toyota’s success in its hybrid car project of Prius.

Motivated by the sequential radical technology innovations like hybrid car and fuel cells

vehicles currently being pursued in the automobile industry, Yao (2004) applies this stochastic

differential game approach to product development and to project selection problem. That

paper considers not only technical and market uncertainty as well as strategic interactions

among firms but also interactions among multiple products. A more general analysis form of

market share outcomes replaces the strong winner-take-all assumption employed here. That

approach can be used to explain the phenomenons of multiple technology R&D races in the

automobile and information technology industries.

A. Appendix

One player problem The one player objective functional, similar as two player’s version

(2), is denoted as:

L(t,xt ,nt ,ut) =
∫ T

t
e−r(s−t)(ζsθXs−usI)ds+e−r(T−t)F(XT ,nT). (69)
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The expected utility functional is defined as

V(t,xt ,nt ,ut) = EQ
t [L(t,xt ,nt ,ut)] (70)

From Ito’s formular with jumps,

dVt = µV(t)dt+σV(t)dBQ
t +βS(t)dZ(t) (71)

dZ(t) = κ(Z(t−)u(t,Xt)dNt . (72)

where

κ(0) = 1;κ(1) = 0

Nt is a Poisson process,

dNt =





1 with probabilityπdt

0 with probability1−πdt

The processZ(t) = nt has two possible stages, say 0 and 1. When in stage 0, given the

investment decisionu(t,Xt) = 1, the processZ moves to stage 1 after a time whose probability

distribution is exponential with parameterπ. Stage 1 is an absorbing stage whereZ(t) will

stay there forever.

Let Vt = f (Zt ,Xt , t), then

dVt = D f dt+ fSσS(t)dBQ
t + f (Zt ,Xt , t)− f (Zt−,Xt−, t), (73)

whereD f = 1
2σ2

SfSS+µSfS+ ft .

Moreover,dVt = µV(t)dt+dYt , for Y a local martingale and

µV(t) = D f +π(t)G(t),
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where

G(t) = f (Zt−+κ(Z(t−)u(t,Xt),Xt , t)− f (Zt−,Xt , t)

Proposition 7. For a one player stochastic differential equation of prescribed fixed duration

[0,T], described by (1), and the objective functional (69), the admissible controlu∈U and the

information structureη, a feedback strategy{φ∗ ∈Sη} provides a optimal control if there exists

suitably smooth function functionsJ : [0,T]×Nη → R, satisfying the Hamiltonian-Jacobian-

Bellman equation:

DJ(t,x,nt)+ζtθXt + sup
ut∈U

{ut [π(nt)(J(t,x,nt +1)−J(t,x,nt))− I ]}= 0 (74)

J(T,x,nT) = F(x,nT) (75)

where

DJ(t,x,nt) =
1
2

σ2x2Jxx+µxJx +Jt − rJ (76)

where the subscript parameter ofJ refers to the partial derivative.

Proof. This result follows from Fleming (1969) or Fleming and Rishel (1975) with application

of Ito’s formula with jumps. For a treatment of jumps see Duffie (2001, Appendix F).

Proof of Proposition 1 Obvious.

Proof of Proposition 2 Obvious.

Proof of Proposition 3 This result follows from the definition of Nash equilibrium and from

proposition 7, since by fixing all players’ strategies, except the ith one’s at their equilibrium
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choices, which are known to be feedback by hypothesis, we get a stochastic optimal control

problem covered by proposition 7 and whose optimal solution is a feedback strategy.

Proof of Lemma 1 Noticexi∗(t,nt) = argminx{Ji(t,x,ni
t +1,n−i

t )−Ji(t,x,ni
t ,n

−i
t )≥ 0}.

Proof of Theorem 1 The R&D Leader and R&D Follower’s values follow from HJB equa-

tions (10) via some notation changes from A and B to L and F. Equation (17) to (19) are

standard boundary conditions. The value matching conditions, (20)(22)(25)(27) smooth past-

ing conditions (21)(23)(26)(28) and transitional boundary conditions (24), (29) are sufficient

to solve for the parameters. The value matching conditions, and smooth pasting conditions fol-

low from Karatzas and Shreve (1991, Theorem 4.4.9). The transitional boundary conditions

follows from HJB equations (10).

Proof of Proposition 4 This result follows from the definition of Nash equilibrium and from

proposition 7, with a two elements array replacing the one dimension variable such as defining

u = (uCL,uCF).

Proof of Theorem 2 The values follow from HJB equations (30) via some notation changes

from A and B to CL and CF. The value matching conditions, smooth pasting conditions and

transitional boundary condition are sufficient to solve for the parameters. The value matching

conditions, and smooth pasting conditions follow from Karatzas and Shreve (1991, Theorem

4.4.9). The transitional boundary conditions follows from HJB equations (30).

Proof of Lemma 2 1≥ Pr(nt+δ = (0,0)|nt = (0,0),φi , φ̃−i) is obvious. To see the second

inequality, noticee−(πA+πB)δ = Pr(nt+δ = (0,0)|nt = (0,0),ui ≡ 1).

Proof of Theorem 3 Plug (57) in (56).

38



References

Basar, T., and G. J. Olsder, 1995,Dynamic Noncooperative Game Theory, Academy Press.

Berk, J. B., R. C. Green, and V. Naik, 2002, “Valuation and Return Dynamics of New Venture,”

Working Paper.

Buckdahn, R., P. Cardaliaguet, and C. Rainer, 2003, “Nash equilibrium payoffs for nonzero-

sum stochastic differential games,” Working Paper.

Cooper, R. G., S. J. Edgett, and E. J. Kleinschmidt, 1998,Portfolio management for new

products.

Court of First Instance, 6 June 2002,Case T-342/99 Airtours v Commission.

Dasgupta, P., and J. Stiglitz, 1980, “Uncertainty, industrial structure, and the speed of R&D,”

Bell Journal of Economics, 11.

Dixit, A., 1993, The Art of Smooth Pasting. , vol. 55 ofFundamentals of Pure and Applied

Economics, Hardwood Academic Publishers.

Dixit, A. K., 1988, “A general model of R&D competition and policy,”RAND Journal of

Economics, 19.

Dockner, E., S. Jorgensen, N. Van Long, and G. Sorger, 2000,Differential games in economics

and management science, Cambridge University Press.

Duffie, D., 2001,Dynamic Asset Pricing Theory, Princeton University Press.

Fleming, W., 1969, “Optimal continuous-parameter stochastic control.,”SIAM Review, 11,

470–509.

Fleming, W. H., and R. W. Rishel, 1975,Deterministic and Stochastic Optimal Control,

Springer-Verlag, Berlin.

Friedman, J. W., 1986, “Non-cooperative equilibrium in time-dependent supergames,”Econo-

metrica, 42, 221–237.

39



Friedman, J. W., 1991,Game Theory with Applications to Economics, Oxford University

Press.

Garlappi, L., 2003, “Risk Premia and Preemption in R&D Ventures,” Working Paper.

Green, E., and R. Porter, 1984, “Noncooperative collusion under imperfect price information,”

Econometrica, 52.

Grenadier, S., 1995, “Valuing Lease Contracts: A Real-Options Approach,”Journal of Finan-

cial Economics, 38, 297–331.

Grenadier, S., 1996, “The Strategic Exercise of Options: Development Cascades and Over-

building in Real Estate Markets,”Journal of Finance, pp. 1653–1679.

Haurie, A., J. Krawczyk, and M. Roche, 1994, “Monitoring cooperative equilibria in a stochas-

tic differential game,”Journal of Optimization Theory& Applications, 81, 73–95.

Huisman, K., 2001,Technology Investment: A game Theoretic Real Option Approach, Kluwer

Academic Publishers, Norwell.

Ivaldi, M., B. Jullien, P. Rey, P. Seabright, and J. Tirole, 2003, “The Economics of Tacit

Collusion,” Working Paper.

Karatzas, I., and S. E. Shreve, 1991,Brownian Motion and Sochastic Calculus, Spirnger.

Lee, T., and L. L. Wilde, 1980, “Market structure and innovation: A reformulation,”Quarterly

Journal of Economics, 94.

Longstaff, F., and E. S. Schwartz, 2001, “Valuing American Options by Simulation: A Simple

Least Squares Approach,”Review of Financial Studies, 14, 113–147.

Loury, G. C., 1979, “Market structure and innovation,”Quarterly Journal of Economics, 93.

Merton, R. C., 1973, “An intertemporal capital asset pricing model,” 41, 867–887.

Miltersen, K. R., and E. S. Schwartz, 2003, “R&D Investments with Competitive Interactions,”

Working Paper.

Morse, M. H., 2001, “The Limits of Innovation Markets,”ABA Antitrust and Intellectual

Property, Newsletter.

40



pierre Cardaliaguet, and S. Plaskacz, 2003, “Existence and uniqueness of a Nash equilibrium

feedback for a simple nonzero-sum differential game.,”International Journal of Game The-

ory, 32, 33–71.

Reinganum, J., 1983, “Uncertain Innovation and the Persistence of Monopoly,”American

Economic Review, 73.

Schwartz, E. S., and C. Zozaya-Gorotiza, 2003, “Investment Under Uncertainty in Information

technology: Acquisition and Development Projects,”Management Science, 49, 57–70.

Smets, F., 1991, “Exporting Versus Foreign Direct Investment: The Effect of Uncertainty,

Irreversibilities and Strategic Interactions,” Working Paper.

Trigeogis, L., 1996,Real Options: Managerial Flexibility and Strategy in Resource Alloca-

tion.

Uchida, K., 1978, “On the existence of Nash equilibrium point in n-person nonzero-sum

stochastic differential games.,”SIAM Journal on Control and Optimization, 16, 142–149.

Uchida, K., 1979, “A note on the existence of Nash equilibrium point in stochastic differential

games.,”SIAM Journal on Control and Optimization, 17, 1–4.

U.S. Department of Commerce, 2003,Digital Economy 2003.

Weeds, H., 2002, “Strategic Delay in a Real Options Model of R&D Competition,”Review of

Economic Studies, 69, 729–747.

Yao, T., 2004, “Dynamic R&D Projects Selection,” Working Paper.

41



Figure 1. The flow chart of the model
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Figure 2. Response Maps (Reaction Curves).This figure illustrates the relations of the strat-
egy thresholdsxA andxB. The dash-dotted line refers to firm B’s threshold as a response func-
tion of firm A ’s thresholdxB(xA). The solid-dotted line refers to firm A ’s threshold as a re-
sponse function of firm B ’s thresholdxA(xB). The non-cooperative equilibrium threshold pair
is (xA∗,xB∗). The cooperative optimum threshold pair is(xCA∗,xCB∗). The pairs of one firm’s
cooperative threshold and the other firm’s responsive threshold are{xDA = R(xCB∗),xCB∗} and
{xCA∗,xDB = R(xCA∗)}, whereR(.) is a responsive function, which imply that the cooperative
optimum is not an equilibrium as both firms have incentives to deviate.
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Figure 3. The effect of threshold on values with response and cooperative strategies.
This figure illustrates the relations between the symmetric firms’s value and their threshold,
under the response strategy or cooperative strategy, respectively. In the response strategy,
firm A choose its threshold first, firm B then select a threshold as a response of firm A’s.
The response strategy threshold pair is(xA,xB(xA) = R(xA)), whereR(.) is a response func-
tion. In the cooperative strategy, symmetric firms A and B choose the same threshold. The
cooperative threshold pair is(xCA,xCB), wherexCB = xCA. The value of a firm,V, is rep-
resented by the value ofa1 (refer to equation (44), (44) or (50)) as a function of threshold
xA or xCA. The solid-dotted line refers to the value of firm A and the dash-dotted line refers
to firm B, both as functions of thresholdxA. The response optimum for symmetric firms is
exactly the noncooperative equilibrium. Thus firm A’s optimal investment threshold for the
response strategy isxNA∗, firm B’s optimal response thresholdxNB∗ = xB(xNA∗). The solid line
refers to the value ofVCA as a function of the cooperative thresholdxCA. NoteVCA = VCB,
in the symmetric case. The optimal investment cooperative threshold isxCA∗ = xCB∗. It is
observed thataCi

1 (xCA∗,xCB∗) > ai
1(x

NA∗,xNB∗), i ∈ {A,B}, which implies that the coopera-
tive optimum is more efficient than the noncooperative equilibrium. It is also observed that
aB

1(xCA∗,xB(xCA∗)) > aCi
1 (xCA∗,xCB∗) > aA

1(xCA∗,xB(xCA∗)), which indicates that the coopera-
tive optimum is not an equilibrium.
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Figure 4. Noncooperative equilibrium, cooperative optimum, and deviation from coop-
erative optimum. This figure illustrates the value of symmetric firms A and B with various
investment strategy. When one and only one firm has deviated, the solid-pentagram line refers
to the value of the deviated firmVDi(x;xD∗,xC∗), and the solid-plus line refers to the value
of the other firm which has not deviatedV−Di(x;xD∗,xC∗). The solid-star line refers to the
value of the firm with cooperative strategyVCi(x;xC∗,xC∗). The solid-dotted line refers to the
value of the firm with non-cooperative equilibrium strategyV i(x;xN∗,xN∗). It is observed that
VDi(x;xD∗,xC∗) > VCi(x;xC∗,xC∗) > V i(x;xN∗,xN∗) > V−Di(x;xD∗,xC∗). These observations
imply that the cooperative optimum is more efficient than the noncooperative equilibrium, the
cooperative optimum is not an equilibrium, and the threat to punish from being deviated to the
noncooperative equilibrium is credible.
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Figure 5. The effect of information time lag and market flow income on the deviation
decisions. This figure illustrates the impacts of factors like information delayδ and flow
incomex on the decisions to deviate or not. The deviation decision only matters for x in
deviation region, i.e.,[xD∗,xC∗]. Deviation won’t happen whenδ ≤ δL(x), while deviation
will happen whenδ > δH(x), whereδL(x) andδL(x) are defined in (62) and (64). It is also
observed that givenδ, the deviation is more likely to happen whenx is near the middle ofxD∗
andxC∗, and less likely to happen whenx is nearxD∗ or xC∗.
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Figure 6. The effect of success rate on information time lag thresholds.This figure demon-
strates that the effect of increasing likelihood of innovation success is a decrease in both in-
formation time lag thresholds.
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Figure 7. The effect of market growth drift on information time lag thresholds. This
figure illustrate that the effect of increasing absolute value of drift of market is a decrease in
the two information time lag thresholds.
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Figure 8. The effect of market volatility on information time lag thresholds. This figure
illustrate that the effect of increasing volatility of market is first an increase and then a decrease
in the two information time lag thresholds.
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