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Abstract

In this paper, we explore the impact of debt financing on the timing of an irreversible
investment and the value of waiting to invest. As a benchmark, we consider the case
where the market for loans is perfectly competitive. Alternatively, a small firm has
limited access to financial markets and must bargain with its bank to get financing.
The debt contract is a Consol and as soon as the firm cannot meet the required coupon
payment, liquidation takes place. In the competitive case, when default occurs, the
higher the debt level, the higher the coupon, the lower the investment trigger which
dampens the option value. Under imperfect competition, the higher the bargaining
power of the lender, the higher the coupon charged, the higher the investment trigger
but the lower the value of waiting to invest. Earnings volatility has an ambiguous
impact on the value of the firm. In particular, more uncertainty negatively affects the
option value when investment is close to be undertaken. Overall, the impact of debt
on the investment timing depends on the loan market structure, but the possibility of
default raises the cost of capital lowering the option value, which may be a reason why
firms seem to mainly rely on internal sources to finance investment.
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1. INTRODUCTION

Building on some earlier works on investment by Jorgenson (1963) and Arrow (1968), Mc-
Donald and Siegel (1986) were among the first to study the implications of irreversibility
on the timing of investment decisions under uncertainty. Since then, an extensive literature
in real options has emphasized the benefits from delaying an irreversible investment. When
the payoffs of an irreversible investment are stochastic, the investor has an option and when
investing she chooses to kill her option. This implies that at the optimal date for investing
the present discounted value of future cash-flows exceeds the investment cost by the option
value, the marginal benefits of investing being equal to the marginal cost of investing and
giving up the option. For more details, the reader can refer to Pindyck (1991) as well as the
seminal book, Investment under Uncertainty, by Dixit and Pindyck (1994) which represents
a comprehensive review on real options.

In the standard real option model, the analysis conducted assumes that the firm can
afford the cost of the project. However, many companies must rely on external funds to
finance their investment. The objective of this paper is to explore the impact of debt
financing on the timing of an irreversible investment and the value of waiting to invest
under different loan market structures.

1.1. Related Literature

Bernanke (1983) highlights that only unfavorable outcomes actually matter for the decision
to undertake or postpone an investment. In other words, the distribution of payoffs is trun-
cated and actually, only the left tale of the distribution is to be considered. He calls this
effect the “bad news principle of irreversible investment”. Ingersoll and Ross (1992) study
the effects of uncertain interest rates on the investment timing. In particular, they find
that uncertainty have an ambiguous impact on the option value of waiting. One of the cen-
tral issues of this paper, the investment-uncertainty relationship, is related to the work by
Caballero (1991) who demonstrates that when relaxing the hypothesis of symmetric adjust-
ment costs, the positive relationship between investment and uncertainty may still hold. In
addition, he identifies the nature of competition as the key determinant of the relationship.
Actually, under imperfect competition, the investment-uncertainty relationship can become
negative when the adjustment costs are highly asymmetric and there is a strong negative re-
lationship between marginal profitability of capital and the level of capital. Along with debt
arises the issue of capital structure and its implications on investment. The Modiggliani-
Miller theorem (1958) states that companies should be indifferent between using debt or
cash flows to finance their investment projects. Merton (1974) and (1977) was the first to
use a non-arbitrage approach to evaluate a risky corporate debt. Lehand (1994) focuses on
the optimal capital structure by explicitly computing the value of time independent long
term risky debts using the contingent claim techniques. Paseka (2004) endogenizes default
on debt and looks at the implications on credit spreads. From an empirical point of view, as
documented by Ross, Westerfiled and Bradford (1993), 80 percents of firms prefer relying
on internal sources of funds for their investments. Jensen and Meckling (1976) argue that
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when using external funds, managers tend to make the firm’s activities riskier at the ex-
pense of debt holders. As a consequence, the cost of external funds is higher, which induces
firms to mainly self finance their projects. More recently, Gomes (2001) examines invest-
ment behavior when firms face a costly access to external funding. He develops a general
equilibrium and his findings are quite insightful but he takes as given the cost function. In
this paper, coupon or equivalently interest on debt is endogenously determined. Closely
related is the paper by Sabarwal (2003) who studies debt financing under limited liability.
He assumes perfect competition for the loan market and finds that debt reduces the wedge
between the investment trigger and the cost of investing with respect to the standard NPV
rule of the irreversible investment theory (McDonald and Siegel (1986)). The option value
of waiting shrinks since the project risk is now shared between equity and debt holders, so
“bad news” are less costly for the firm.

1.2. Results

The main contribution of the paper is to clarify some effects of debt financing on irreversible
investment decisions. As a benchmark, we consider the case where the market for loans is
perfectly competitive. Alternatively, a small firm has limited access to financial markets
and must bargain with its bank to get financing. The debt contract is a Consol and as soon
as the firm cannot meet the required payment, liquidation takes place. In the competitive
case, the probability of default induces a higher coupon, a lower investment trigger which
dampens the option value. When bargaining takes place, the more power the lender has,
the higher the coupon charged, the higher the investment trigger and the lower the value
of waiting to invest. Regarding the effects of uncertainty, in the competitive case, the
results are the same as when the firm does not use debt. Under bargaining, it is still true
more uncertainty raising the investment trigger. However, the impact of the volatility of
the project on the option value is now more ambiguous. In particular, more uncertainty
dampens the value of waiting to invest when the optimal investment date is close.

The paper is organized as follows. Section 2 describes the economic setting and provides
some analytical results. In section 3, we assume that the market for loans is perfectly
competitive. Conversely, in section 4, we use Nash bargaining to model the negotiation
process between the firm and its bank. Section 5 concludes. Proofs of all results are
collected in the appendix.
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2. THE ECONOMIC SETTING

We consider a standard irreversible investment problem. Time is continuous; a firm has to
choose optimally the timing of its investment under uncertainty while partially relying on
debt to cover the cost of the project. We examine two distinct market structures for the loan
market. As a benchmark, we consider the case of perfect competition. Alternatively, we
assume that the firm is small, does not have access to financial markets and must negotiate
with its bank the financing of its project.

2.1. Investment Opportunity and Information Structure

Uncertainty is modeled by a probability space (Ω,F , P ) on which is defined a two di-
mensional (standard) Brownian motion w. A state of nature ω is an element of Ω. F
denotes the tribe of subsets of Ω that are events over which the probability measure P is
assigned. Let Ft be the σ-algebra generated by the observations of the value of the project,
{P (s); 0 ≤ s ≤ t)} and augmented. At time t, the investor’s information set is Ft. The
filtration F = {Ft, t ∈ R+} is the information structure and satisfies the usual conditions
(increasing, right-continuous, augmented).

A risk neutral firm has to choose when to invest into a project whose gross revenues P
fluctuates across time according to a geometric Brownian motion

dP (t) = P (t) (αdt+ σdw(t)) ,

where dw(t) is the increment of a standard Wiener process under the probability P , α is the
average growth rate of future revenues and σ captures the magnitude of the uncertainty.
The investment is irreversible with cost I > 0, the risk free rate is r > 0. Let µ be the
average return of an asset portfolio perfectly correlated with P . As presented in Dixit and
Pindyck (1994), we denote δ = µ−α and we assume that δ > 0 for the value of the project to
be bounded. Assuming that the output of the project is tradable, under complete markets,
µ is the market risk-adjusted rate of return and by the CAPM formula, we have

µ = r + ρPmφσ,

where φ is the market price of risk and ρPm is the coefficient of correlation between P and
the whole market. It follows that under the risk neutral probability Q, the dynamics of the
gross revenues P are given by

dP (t) = P (t) ((r − δ)dt+ σdwQ(t)) ,

with

dwQ(t) = dw(t) +
α− (r − δ)

σ
dt,

where dwQ(t) is the increment of a standard Wiener process under the probability Q. In
the sequel, EQ

t denotes the conditional probability at time t given the information set Ft
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under the risk neutral probability Q.

Contract

The contract between the firm and the lender is specified as follows: The lender agrees
to deliver an amount D ≤ I when the decision to invest is undertaken and immediately
after, the firm agrees to deliver a perpetual fixed coupon C > 0 (Consol) provided that its
revenues are above C. When its revenues fall below C, the firm must turn over its entire
revenues. As soon as earnings hit a minimum level 0 ≤ L ≤ C, bankruptcy is declared1, the
firm is liquidated at no cost and the lender receives the minimum value between the value
of the project and the perpetuity C

r . A particular case is when L = C.

We start by briefly recalling the standard irreversible investment decision problem as
presented in Dixit and Pindyck (1994).

2.2. Benchmark Case: The standard Irreversible Investment Problem

A firm has to choose when to invest into a project whose cash flows P fluctuate across time
according to a geometric Brownian motion

dP (t) = P (t) ((r − δ)dt+ σdwQ(t)) .

The problem can be seen as an infinite horizon American Call option with strike price I
and underlying security P . Between time t and t + dt, as long as the investment is not
completed, there is no cash outflows or inflows. Thus the option value to invest F evolves
according to the following dynamics

F (P ) = 0 + e−rdtEt [F (P + dP )] .

Using Ito’s lemma, it is easy to show that F satisfies the following ODE

σ2

2
P 2F 00(V ) + (r − δ)PF 0(P ) = rF (P ).

The interpretation goes as follows: The expected value of waiting is equal to the risk free
return on the amount F (P ). The general solution is

F (P ) = AP β1 +BP β2 ,

where (A,B) is a couple of constants to be determined and (β1, β2) are respectively the
positive and negative root of the quadratic equation

σ2

2
x2 + (r − δ − σ2

2
)x− r = 0.

1 In Paseka (2003), as soon as the firm cannot fulfill its payment, a court supervises a mediation between
bondholders and the management who can propose a reorganization plan if the asset value goes up to a
certain level. The firm is liquidated if the value of the company drops to a floor level.
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Since we must have F (0) = 0, this implies that B = 0. Thus

F (P ) = AP β1 .

As long as the value of waiting F (P ) is greater that the net benefit of investing

EQ
0

·Z ∞

0
P (s)e−rsds

¸
=

P

δ
− I.

The investment trigger value P ∗F is such that

F (P ∗F ) =
P ∗N
δ
− I

F 0(P ∗F ) =
1

δ
.

The last condition is known as the smooth pasting condition. We obtain

P ∗F =
β1δ

β1 − 1
I

A =
P
∗(1−β1)
F

β1
.

The value of the project is ³
P ∗F
δ − I

´³
P
P∗F

´β1
for P ≤ P ∗F

P
δ − I for P ≥ P ∗F .

Here the implicit value of the coupon is

C =
I

r
.

The investment decision is: Invest as soon as P hits the trigger value P ∗F . Dixit and Pindyck
(1994) conclude that the NPV rule is simply incorrect. There exists a wedge between the
value of the project and the cost of undertaking it, the size of the wedge being the factor
β1

β1−1 > 1. In the sequel, we investigate how bargaining can affect this wedge. We first look
at the firm problem.

2.3. The Firm Problem

We start by determining the reward by investing into the project. Let us assume that it is
optimal to invest when P > C (we will check this conjecture later). Let us denote τ the
stopping time defined by

τ = inf {t ≥ 0, P (t) = L},
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with P0 > L. The firm net cash flows are

[P −C]+ 1{t≤τ},

where 1A is the indicator function for the set A and x+ = max{x, 0} is the positive part of
x. At time τ , the firm is liquidated and the shareholders receive R with

R(C,L) =

·
L

δ
− C

r

¸+
,

since when P0 = L

EQ
0

£R∞
0 P (s)e−rsds

¤
=

L

δ
.

Hence, the reward value V F (P ) of investing at time 0 (when cash flow is P ) is

V F (P ) = EQ
0

£R τ
0 [P (s)− C]+ e−rsds+ e−rτR(C,L)

¤
.

As shown in appendix 1.,

EQ
0

£
e−rτR(C,L)

¤
=

µ
P

L

¶β2

R(C,L).

Then, as shown in Dixit and Pindyck, chapter 6, p. 187

EQ
0

£R τ
0 [P (s)− C]+ e−rsds

¤
=

(
A1
¡
P
C

¢β1 +A2
¡
P
C

¢β2 + P
δ − C

r , P ≥ C

B1
¡
P
C

¢β1 +B2
¡
P
C

¢β2 , L ≤ P ≤ C
,

where A1, A2, B1, B2 are constants to be determined. To rule out bubbles, we must have
A1 = 0. Then, the boundary condition is

B1

µ
L

C

¶β1

+B2

µ
L

C

¶β2

= 0

and the value matching and smooth pasting conditions at P = C respectively are

A2 +
C

δ
− C

r
= B1 +B2

β2A2C
−1 +

1

δ
= β1B1C

−1 + β2B2C
−1.

We are only interested in the constant A2. It follows that

A2 =
β1 − β2

¡
L
C

¢β1−β2
β2(β1 − β2)

µ
(1− β2)

C

δ
+ β2

C

r

¶
− C

β2δ
.

Finally we obtain

V F (P ) = A2

µ
P

C

¶β2

+
P

δ
− C

r
+

µ
P

L

¶β2

R(C,L).
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Hence, the option value starting at P0 is given by

F (P0) = sup
τ≥0

EQ
0

£
e−rτ

¡
V F (P (τ))− I +D

¢¤
.

Dropping the time index, we have

F (P ) =

½
APβ1 +BP β2 , P ≤ P ∗

V F (P )− I +D, P ≥ P ∗,

where P ∗ is the optimal investment threshold. Since F (0) = 0, this implies that B = 0
and A is a positive constant to be determined. The value matching and smooth pasting
conditions are

A(P ∗)β1 =
P ∗

δ
− C

r
+A2(

P ∗

C
)β2 +

µ
P ∗

L

¶β2

R(C,L)− I +D

β1A(P
∗)β1 =

P ∗

δ
+ β2A2(

P ∗

C
)β2 + β2

µ
P ∗

L

¶β2

R(C,L).

Eliminating A leads to

(β1 − 1)
P ∗

δ
+ (β1 − β2)

Ã
A2(

P ∗

C
)β2 +

µ
P ∗

L

¶β2

R(C,L)

!
= β1

µ
I +

C

r
−D

¶
.

Finally the option value F is given by

F (P ) =
(1− β2)

P∗
δ + β2(I +

C
r −D)

β1 − β2

µ
P

P ∗

¶β1

. (2.1)

2.4. The Lender Problem

At time τ , the firm is liquidated and debt holders receive T (C,L) with

T (C,L) = min {L
δ
,
C

r
}.

As long as t ≤ τ , they receive
min {C,P}.

It follows that the value V L(P ) of the lender is given by

V L(P ) = EQ
0

£R τ
0 min {C,P (s)}e−rsds+ e−rτT (C,L)

¤
.

As seen before,

EQ
0

£
e−rτT (C,L)

¤
=

µ
P

L

¶β2

T (C,L).

8



Given the preliminary result in appendix 1., it is easy to show that

EQ
0

£R τ
0min {C,P (s)}e−rsds

¤
=

(
M1

¡
P
C

¢β1 +M2

¡
P
C

¢β2 + C
r , P ≥ C

N1
¡
P
C

¢β1 +N2
¡
P
C

¢β2 + P
δ , L ≤ P ≤ C

,

where M1,M2, N1, N2 are constants to be determined. To rule out bubbles, we must have
M1 = 0. Then, the boundary condition is

N1

µ
L

C

¶β1

+N2

µ
L

C

¶β2

+
L

δ
= 0,

and the value matching and smooth pasting conditions at P = C respectively are

M2 +
C

r
= N1 +N2 +

C

δ

β2M2C
−1 = β1N1C

−1 + β2N2C
−1 +

1

δ
.

We are only interested in the constant M2. It follows that

M2 = −
µ
L

C

¶−β2 L
δ
− β1 − β2

¡
L
C

¢β1−β2
β1 − β2

C

r
+

β1 − 1− (β2 − 1)
¡
L
C

¢β1−β2
β1 − β2

C

δ
.

Finally we obtain

V L(P ) =
C

r
+M2

µ
P

C

¶β2

+

µ
P

L

¶β2

T (C,L).

We now determine the optimal contract (P ∗, C∗) under two different market structures for
the loan market.

3. Perfect Competition Case

In this paragraph, we assume that the market for loans is perfectly competitive so the
no-profit entry condition implies when P = P ∗C

V L(P ∗C)−D = 0,

or equivalently
C

r
−D +M2

µ
P ∗C
C

¶β2

+

µ
P ∗C
L

¶β2

T (C,L) = 0.

Definition 1. An equilibrium is an optimal couple (P ∗C , C
∗) that satisfies

(β1 − 1)
P ∗C
δ
+ (β1 − β2)

Ã
A2(

P ∗C
C∗
)β2 +

µ
P ∗C
L

¶β2

R(C∗, L)

!
= β1

µ
I +

C∗

r
−D

¶
C∗

r
−D +M2

µ
P ∗C
C∗

¶β2

+

µ
P ∗C
L

¶β2

T (C∗, L) = 0.
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A special case: L = C. In this case

A2 = −(C
δ
− C

r
)

R(C,C) = C

·
1

δ
− 1

r

¸+
M2 = −C

r

T (C,C) = Cmin{1
δ
,
1

r
}.

Therefore the contract (P ∗C , C
∗) is defined by

(β1 − 1)
P ∗C
δ
+ (β1 − β2)(

P ∗C
C∗
)β2

Ã·
1

δ
− 1

r

¸+
− 1

δ
+
1

r

!
C∗ = β1

µ
I +

C∗

r
−D

¶
C∗

r
−D +

µ
P ∗C
C∗

¶β2
µ
min{1

δ
,
1

r
}− 1

r

¶
C∗ = 0.

If r > δ, then there is no default (in the sense that even if the firm is liquidated, its resale
value can cover the perpetuity C

r ) so

C∗ = rD

P ∗C = P ∗F =
β1δ

β1 − 1
I.

If r < δ, then
C∗

r
−D +

µ
P ∗C
C∗

¶β2
µ
1

δ
− 1

r

¶
C∗ = 0,

so
C > rD,

and
P ∗C
δ
=

β1
β1 − 1

I +
β2

β1 − 1
µ
C∗

r
−D

¶
. (3.1)

In appendix 3., the existence and uniqueness of a solution is established. The wedge between
NPV and investment trigger threshold is reduced. Debt financing introduces risk sharing
between the entrepreneur and the financial institution. The investment up-front is reduced
which fosters early investment decision. However, Jorgenson user cost is capital is

r(I −D) + C∗.

As shown is appendix 3, the investment trigger P ∗C is always strictly greater than r(I −
D) + C∗ and P∗C

δ is always above the cost of the project I. In addition, from relationship
(3.1), it is easy to see that P ∗C < P ∗F . Hence, we have

1 <
P ∗C
δ
≤ P ∗F

δ
,
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which means that Tobin’s q is still above unity but it is reduced with respect to the self
financing case. Also worth noticing is the fact that at the time of the investment, the firm
pays I−D, and should the firm invest without relying on debt into a project with the same
characteristics but with cost I −D, the investment trigger value will be

β1
β1 − 1

(I −D).

It turns out that
P ∗C
δ

>
β1

β1 − 1
(I −D),

as shown in appendix 3. The manager takes into account the possibility of not being able
to fulfill her commitment in the future and the associated cost, i.e., liquidation of the
company. Consequently she requires a larger wedge between P ∗C and C∗ than the myopic
value β1

β1−1(I −D). Equivalently, one can realize the investment payoffs are reduced due to
the liquidation threat since

V F (P ∗)− (I −D) =
P ∗

δ
− C

r
+

µ
1

r
− 1

δ

¶µ
P ∗

C

¶β2

− (I −D)

=
P ∗

δ
− I

<
P ∗

δ
− (I −D),

which leads the manager to wait longer. In addition, an upper bound for the coupon is δD,
so δ−r is an upper bound for the premium on the riskfree rate r. Finally, using relationship
(3.1), the option value F can be written

F (P ) =

µ
P ∗C
δ
− I

¶µ
P

P ∗C

¶β1

.

Then, given P

∂F (P )

∂P ∗C
=

1

P ∗C

µ
P

P ∗C

¶β1
µ
P ∗C
δ
− β1

µ
P ∗C
δ
− I

¶¶
=

β1 − 1
P ∗C

µ
P

P ∗C

¶β1
µ

β1I

β1 − 1
− P ∗C

δ

¶
≥ 0.

The standard McDonald Siegel (1986) investment thresholds corresponds to the case where
this is no debt, D = 0. Since P ∗C ≤ P ∗F , we can conclude that relying on debt decreases
the value of waiting to invest. Finally, in appendix 3, we also prove that an increase of
the debt level increases the value of the coupon, i.e. ∂C∗

∂D > 0 and reduces the investment

trigger threshold, i.e. ∂P∗C
∂D < 0. We conclude the analysis by presenting some numerical

simulations on the effects of debt level and uncertainty on the equilibrium couple (P ∗C , C
∗).

Table I: Impact of debt level on investment threshold and coupon
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D/I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C∗ 0 0.414 0.849 1.302 1.775 2.270 2.787 3.331 3.906 4.518 5.179
P ∗C 9.464 9.455 9.433 9.399 9.353 9.293 9.219 9.128 9.017 8.882 8.716

r = 0.04, δ = 0.06, σ = 0.2, I = 100.

Table II: Impact of uncertainty on investment threshold and coupon

σ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C∗ 2.084 2.158 2.270 2.366 2.447 2.515 2.572 2.621 2.663 2.699 2.729
P ∗C 6 7.081 9.293 12.314 16.174 20.942 26.592 33.210 40.793 49.352 58.894

r = 0.04, δ = 0.06, I = 100, D/I = 0.5.

Both the investment trigger and the coupon increase with uncertainty. However, we notice
that P ∗C is much more sensitive to uncertainty than C∗. Then

∂F (P )

∂σ
=

∂F (P )

∂P ∗C

∂P ∗C
∂σ

+
³
P ∗C
δ
− I

´
ln

P

P ∗C

µ
P

P ∗C

¶β1 ∂β1
∂σ

.

Since P ∗C ≤ P ∗F , it follows that
∂F (P )
∂P∗C

> 0 and thus we can conclude that when uncertainty
rises, so does the option value.

3.1. Extension to Senior and Junior debts

In this paragraph, we assume that the face values of the senior and junior debts are re-
spectively D1 and D2 with D1 +D2 ≤ I. The conditions of the contracts are the same as
before: the firm agrees to pay a perpetual coupon C1 for its senior debt and similarly a per-
petual coupon C2 for its junior debt. To keep things simple, we assume that the company
is liquidated as soon as earnings P hits C1 + C2. As before, the condition for the firm is

(β1−1)
P ∗C
δ
+(β1−β2)(

P ∗C
C∗1 +C∗2

)β2

Ã·
1

δ
− 1

r

¸+
− 1

δ
+
1

r

!
(C∗1+C

∗
2) = β1

µ
I +

C∗1 +C∗2
r

−D1 −D2

¶
(3.2)

For the senior debt, we still have

T1(C1, C1 + C2) = min {C1 + C2
δ

,
C1
r
}.

12



However, for the junior debt, we have

T2(C2, C1 + C2) = min {C1 + C2
δ

− T1(C1, C1 +C2),
C2
r
}

= min {
·
C1 + C2

δ
− C1

r

¸+
,
C2
r
}.

Then the no profit entry conditions for senior and junior debt holders respectively are

C∗1
r
−D1 +

µ
P ∗C

C∗1 + C∗2

¶β2
µ
min {C

∗
1 + C∗2
δ

,
C∗1
r
}− C∗1

r

¶
= 0 (3.3)

C∗2
r
−D2 +

µ
P ∗C

C∗1 + C∗2

¶β2
Ã
min {

·
C∗1 + C∗2

δ
− C∗1

r

¸+
,
C∗2
r
}− C∗2

r

!
= 0. (3.4)

There are three possible outcomes. Case 1, there is no default for both the senior and junior
debts. In this case, C∗1 = rD1 and C∗2 = rD2. Again, a necessary and sufficient condition
for this to happen is r > δ. Case 2, there is default only for the junior debt. In this case,
C∗1 = rD1 and C∗2 > rD2. We need r < δ, but δ should not be too high. Case 3 is when
there is default for both the junior and the senior debt (r << δ) and therefore C∗1 > rD1
and C∗2 > rD2. Note that in case 2 and 3, the investment trigger is still below P ∗F . Note
that summing up relationships (3.3) and (3.4), we have

C∗1 + C∗2
r

− (D1 +D2) +

µ
P ∗C

C∗1 + C∗2

¶β2
µ
min{1

δ
,
1

r
}− 1

r

¶
(C∗1 +C∗2) = 0. (3.5)

This implies that given a total amount of debt D = D1 + D2, the investment trigger P ∗C
is same as in the case of senior debt with face value D. The composition of the total debt
does not affect P ∗C . It is then easy to realize that the result also holds for the option F that
is unaffected by the composition of the total debt. Moreover, the existence and uniqueness
of (P ∗C , C

∗
1 , C

∗
2) is guaranteed since given we already know that there is unique solution to

equations (3.2) and (3.5). Then, given a value for C1 + C2, it is easy to see that (3.3) and
(3.4) has a unique solution (C∗1 , C∗2). Finally, we present some numerical simulations for the
junior and senior debt coupons.

Table III: Investment threshold, Senior and Junior debt coupons

δ = 0.06 δ = 0.25

C∗1 1.2 1.312
C∗2 1.587 6.024
P ∗C 9.21877 26.848

r = 0.04, σ = 0.2, I = 100, D1/I = D2/I = 0.3.

For an equal face value, junior and senior coupons can be quite different, reflecting a much
larger probability of default for the junior debt. Next, we move away from perfectly com-
petitive loan markets and analyze the case of a small company that needs to bargain with
some credit institution to get financing.
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4. Nash Bargaining

In this section, we assume that as soon as the price of the project drops below C liquidation
takes place. We use Nash Bargaining to model the interaction between the firm and its
banks as for instance presented in Osborne and Rubinstein (1990), chapter 2. As shown
in the sequel, a nice feature of this bargaining process is that the outcome is independent
of the initial condition (here the value of earnings) at the date of the agreement between
the two parties. At time 0, the borrower and the lender agree on a couple (P ∗N , C

∗
N) that is

solution of the program
max

(P,C)∈S
F (P0)V

L(P0), (N)

where

S =

(
(P,C), (β1 − 1)

P

δ
+ (β1 − β2)(

P

C
)β2

Ã·
1

δ
− 1

r

¸+
− 1

δ
+
1

r

!
C = β1

µ
I +

C

r
−D

¶)
.

Since the contract is closed before the investment is realized, P0 < P ∗N and we have

F (P0) =
(1− β2)

P∗N
δ + β2(I +

C
r −D)

β1 − β2

µ
P0
P ∗N

¶β1

.

V L(P0) = (V
L(P ∗N )−D)EQ

0

£
e−rτ

¤
,

where τ is the first time P hits P ∗N . Thus

V L(P0) = (V
L(P ∗N)−D)

µ
P0
P ∗N

¶β1

,

Case 1: r > δ In this case, we have

P ∗N =
β1δ

β1 − 1
µ
I +

C

r
−D

¶
,

V L(P ∗N) =
C

r
,

so program N is equivalent to

max
C
(
C

r
−D)(I +

C

r
−D)1−2β1 .

Notice that the bargaining problem is independent from the initial price P0 and the optimal
solution is

C∗N = rD +
rI

2(β1 − 1)
.

In the competitive case, the coupon C is equal to rD. Here, the lender has more bargaining
power and uses it to charge a fixed premium (independent from the amount lent) equal to

14



rI
2(β1−1) . In addition, since

∂β1
∂σ < 0, we can conclude that the higher the uncertainty, the

higher the risk premium rI
2(β1−1) . This leads to an investment threshold P ∗N given by

P ∗N =
β1(2β1 − 1)δI
2(β1 − 1)2

> P ∗C .

Investment takes place at a later date with respect to the competitive case and note that
P ∗N is independent of the debt level D. The wedge between NPV and investment trigger
threshold is enhanced. We have seen that, given P

∂F (P )

∂P ∗
=

β1 − 1
PC

µ
P

PC

¶β1
µ

β1I

β1 − 1
− P ∗

δ

¶
.

Since P ∗N > β1δI
β1−1 , we find that the value of waiting to invest F is reduced. In appendix 4,

we indeed prove that P ∗N > C∗N .

By maximizing the product of the utility functions, implicitly, we have assumed that
the firm and the lender have equal bargaining power. Alternatively, we can consider the
family of asymmetric Nash solutions for which that the firm has a bargaining ability with
weight 1− θ whereas the lender has a bargaining ability with weight θ for some θ in [0, 1].
Program N is now

max
(P,C)

(F (P0))
1−θ ¡V L(P0)

¢θ
,

or equivalently

max
C
(
C

r
−D)θ(I +

C

r
−D)1−β1−θ.

The solution is

C∗N = rD +
rθI

β1 − 1
P ∗N =

β1(β1 − 1 + θ)δI

(β1 − 1)2
> P ∗C .

Indeed, the higher the bargaining power of the lender, the higher the coupon and the
investment threshold and therefore the lower the option value F . Note that the maximum
coupon is

C∗N = rD +
rI

β1 − 1
.

Even when the lender has all the bargaining power, optimally she does not charge a too
high coupon as she understands that the higher the coupon, the longer the investment is
postponed and therefore the more she has to wait before receiving some payment. The proof
to show that P ∗N > C∗N is the same as before. We now investigate the effects of uncertainty
on the option value.
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4.1. Uncertainty Effects on the Option Value

The volatility of the project now plays an ambiguous role. On the one hand, as in the
standard case, the direct effect of uncertainty is to raise the value of waiting to wait due the
convexity of the payoffs. On the other hand, the higher the magnitude of uncertainty, the
higher the cost of capital and the lower the value of the firm. We now examine in details
the two effects. We already know that ∂β1

∂σ < 0 so

∂P ∗N
∂σ

= −(β1 − 1)(1 + θ) + 2θ

(β1 − 1)3
∂β1
∂σ

> 0.

Then, given P ≤ P ∗N , we have

∂F (P )

∂σ
=

∂F (P )

∂P ∗N

∂P ∗N
∂σ| {z }

indirect effect

+
³
P∗N
δ
− I

´
ln

P

P ∗N

µ
P

P ∗N

¶β1 ∂β1
∂σ| {z }

direct effect

.

The direct effect is positive whereas the indirect is negative since ∂P∗N
∂σ > 0 and ∂F (P )

∂P∗N
< 0.

Overall, as proved in appendix 4.

∂F (P )

∂σ
=

β1
(β1 − 1)4P ∗N

µ
P

P ∗N

¶β1
µ
θ((β1 − 1)(1 + θ) + 2θ) + δ ((β1 − 1 + θ)(β1(1 + θ)− 1) ln P

P ∗N

¶
∂β1
∂σ

.

When P << P ∗N , the direct effect overcomes the indirect effect and the option value
increases with uncertainty. However, when P is close to P ∗N , the direct effect is very small
and the indirect effect dominates. This means that when P

P ∗N
is small, more uncertainty

increases the option value, when P
P∗N

is large enough, more uncertainty decreases the option
value, and in the between, the relationship between option value and uncertainty is U
shape. Ingersoll and Ross (1992) also find that changes in uncertainty about interest rates
may have an ambiguous impact on the option value of waiting. Moreover, our results
corroborate Caballero’s (1991) findings on the investment-uncertainty relationship that can
become negative when the adjustment costs are highly asymmetric and there is a strong
negative relationship between marginal profitability of capital and the level of capital.

Case 2: r < δ In this case, we have

β1 − 1
δ

P ∗ − (β1 − β2)(
P ∗

C
)β2
µ
1

δ
− 1

r

¶
C = β1

µ
I +

C

r
−D

¶
V L(P ∗) =

C

r
−D + C(

1

δ
− 1

r
)

µ
P ∗

C

¶β2

,

so

V L(P ∗)−D =
1

β1 − β2

µ
β1 − 1

δ
P ∗ − β2(

C

r
−D)− β1I

¶
F (P0) =

1−β2
δ P ∗ + β2(I +

C
r −D)

β1 − β2

µ
P0
P ∗

¶β1

.
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Again, program N is independent from the initial cash flow P0 and can be rewritten

max
C,P∗

³
β1−1
δ P ∗ − β2(

C
r −D)− β1I

´³
1−β2
δ P ∗ + β2(I +

C
r −D)

´
(P ∗)−2β1

s.t. β1−1
δ P ∗ − (β1 − β2)(

P∗
C )

β2
¡
1
r − 1

δ

¢
C = β1

¡
I + C

r −D
¢

The first order conditions with respect to P ∗ and C respectively are

β1−1
δ

β1−1
δ P ∗ − β2(

C
r −D)− β1I

+
1−β2
δ

1−β2
δ P ∗ + β2(I +

C
r −D)

− 2β1
P ∗

= ψ

µ
β1 − 1

δ
− β2(β1 − β2)

µ
1

r
− 1

δ

¶
(
P ∗

C
)β2−1

¶

−β2
r

β1−1
δ P ∗ − β2(

C
r −D)− β1I

+
β2
r

1−β2
δ P ∗ + β2(I +

C
r −D)

= ψ

µ
−β1

r
+ (β2 − 1)(β1 − β2)

µ
1

r
− 1

δ

¶
(
P ∗

C
)β2
¶
,

where ψ is the Lagrange multiplier. Hence

β1−1
δ P ∗

β1−1
δ P ∗ − β2(

C
r −D)− β1I

+
1−β2
δ P ∗

1−β2
δ P ∗ + β2(I +

C
r −D)

− 2β1

= ψ

µ
(β1 − 1)(1− β2)

δ
P ∗ + β1β2

µ
I +

C

r
−D

¶¶

−β2Cr
β1−1
δ P ∗ − β2(

C
r −D)− β1I

+
β2

C
r

1−β2
δ P ∗ + β2(I +

C
r −D)

= ψ

µ
−(β1 − 1)(1− β2)

δ
P ∗ − β1β2

C

r
− β1(β2 − 1)(I −D)

¶
The couple (P ∗, C) is solution of the following 2 by 2 non-linear system

β1−1
δ P ∗ − (β1 − β2)(

P∗
C )

β2
¡
1
r − 1

δ

¢
C = β1

¡
I + C

r −D
¢

P∗
δ

(β1−1)(1−β2)
δ

P∗+β2(β1+β2−2)(Cr −D)+(2β1β2−β1−β2)I −2β1(
β1−1
δ

P∗−β2(Cr −D)−β1)(
1−β2
δ

P∗+β2(I+
C
r
−D))

β2
C
r
(
β1+β2−2

δ
P∗−2β2(Cr −D)−(β1+β2)I)

=
(β1−1)(1−β2)

δ
P ∗+β1β2(I+C

r
−D)

− (β1−1)(1−β2)
δ

P∗−β1β2 Cr −β1(β2−1)(I−D)

Numerical Simulations.

Table VI: Impact of debt level on investment threshold and coupon
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D/I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C∗ 1.258 1.719 2.194 2.684 3.190 3.713 4.254 4.817 5.404 6.021 6.675
P ∗N 12.202 12.176 12.136 12.084 12.018 11.937 11.840 11.724 11.588 11.426 11.233

r = 0.04, δ = 0.06, σ = 0.2, I = 100.

As in the competitive case, P ∗N is decreasing in the level of debt D whereas C∗ is increasing.
We notice that with respect to Table I, for any given value of D/I, both the coupon and
the investment trigger threshold are higher.

Table V: Impact of uncertainty on investment threshold and coupon

σ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C∗ 2.084 2.599 3.713 5.222 7.118 9.428 12.177 15.386 19.07 23.237 27.894
P ∗N 6 7.744 11.937 19.002 30.280 47.587 73.211 109.925 160.99 230.164 321.701

r = 0.04, δ = 0.06, I = 100, D/I = 0.5.

As before, more uncertainty implies a higher probability of default, so the coupon must be
greater and so is the investment threshold.

5. CONCLUSION

We used a very simple model of irreversible investment to explore the implications of debt
financing on investment timing decisions and the value of waiting to invest. Two mar-
ket structures for the loan market have been considered: Perfect competition and Nash
bargaining. In the first case, the investment trigger is below the usual NPV value of the
irreversible investment theory indicating that the decision to invest is hastened. Conversely,
the opposite occurs when markets for external funds are not competitive. In this last case,
we also find that the relationship uncertainty - option value is now ambiguous and possibly
negative if the investment is close to be undertaken. The possibility of debt default induces
a higher cost of capital, and not surprisingly, the more bargaining power the lender has, the
higher the coupon charged. Consequently, in both cases, the value of waiting to invest is
reduced with respect to the self financing case, which may be a reason why firms seem to
mainly rely on internal sources to finance investment.

Our model is very sterilized and in particular, we have ignored the effects of tax benefits
to leverage which could be worth considering. Another possible extension to the model
would be to assume a finite horizon debt in order to investigate the impact of short term
versus long term debt financing on the investment timing and the option value. This is left
for future research.
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6. APPENDIX

6.1. APPENDIX 1

Preliminary result. It τ is a stopping time, then for all continuous function f

F (P0) = EQ
0

£R τ
0 f(P (s))e

−rsds
¤
,

satisfies the following ODE

rF (P ) = f(P ) + (r − δ)PF 0(P ) +
σ2

2
P 2F 00(P ).

See Karling and Taylor (1981). Then, let P0 > L and define

τ = inf{t ≥ 0, P (t) = L}.

We want to compute
EQ
0

£
e−rτ

¤
.

Let us write
1− r

R τ
0 e
−rsds = e−rτ .

Given the preliminary result
F (P0) = EQ

0

£R τ
0 e
−rsds

¤
satisfies

rF (P ) = 1 + (r − δ)PF 0(P ) +
σ2

2
P 2F 00(P ).

The general solution to this equation is given by

F (P0) =
1

r
+AP

β1
0 +BP

β2
0 ,

where β1 and β2 are respectively the positive and negative root of the quadratic

σ2

2
x2 + (r − δ − σ2

2
)x = r.

Hence we have
EQ
0

£
e−rτ

¤
= −AP β1

0 −BP
β2
0 .

Note that the LHS is bounded which implies that we must have A = 0 and for P0 = L, the
LHS is equal to 1, so we must have −BLβ2 = 1. It follows that

EQ
0 e
−rτ =

µ
P0
L

¶β2

.
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6.2. APPENDIX 2

We want to show existence and uniqueness of the following system

C∗

r
−D +

µ
P ∗C
C∗

¶β2
µ
1

δ
− 1

r

¶
C∗ = 0

β1
β1 − 1

I +
β2

β1 − 1
µ
C∗

r
−D

¶
=

P ∗C
δ
,

Define x = P∗C
C∗ and manipulating the two equations of the system, we obtain that x must

be solution of µ
1

r
− 1

δ

¶
xβ2 +

(β1 − 1)
β1u− β2

x

δ
− β1u

β1u− β2
= 0,

with u = I
D ≥ 1. It is then enough to that the function

[1,∞) → R
F : x 7→ ¡

1
r − 1

δ

¢
xβ2 + (β1−1)

β1u−β2
x
δ − β1u

(β1u−β2)r ,

has a unique root. Note that F is a continuous function with

F (1) =
1

(β1u− β2)rδ
((r − δ)β2 + r((1− u)β1 − 1)

≤ 1

(β1u− β2)rδ
((r − δ)β2 − r) .

Since

(r − δ)β2 − r = −σ
2

2
β2(β2 − 1) < 0,

we can conclude that F (1) < 0. Then F is differentiable with

F 0(x) = β2

µ
1

r
− 1

δ

¶
xβ2−1 +

(β1 − 1)
β1u− β2

1

δ

F 00(x) = β2(β2 − 1)
µ
1

r
− 1

δ

¶
xβ2−2 > 0.

F 0 is either always strictly positive or non-positive on some interval [1, x∗] and positive on
(x∗,∞). Since lim

x→∞F (x) = ∞, we can conclude that F has a unique root on [1,∞). It
follows that the couple (P ∗C , C

∗) exists and is unique with P ∗C ≥ C∗.

6.3. APPENDIX 3

The Jorgenson user cost of capital is

r(I −D) + C.
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Thus we want to show that

β1δ

β1 − 1
I +

β2δ

β1 − 1
µ
C∗

r
−D

¶
> r(I −D) + C∗,

or equivalently

β1(r − δ)I + rI >

µ
C∗

r
−D

¶
(r(β1 − 1)− β2δ).

Notice that

C∗

r
−D =

µ
P ∗C
C∗

¶β2
µ
1

r
− 1

δ

¶
C∗

<

µ
1

r
− 1

δ

¶
C∗ since

µ
P ∗C
C∗

¶β2

< 1,

which implies that
C∗ < δD.

Hence, it is enough to prove that

β1(r − δ)I + rI ≥ D

µ
δ

r
− 1
¶
(r(β1 − 1)− β2δ),

or

(β1(r − δ) + r)u ≥
µ
δ

r
− 1
¶
(r(β1 − 1)− β2δ),

with u = I
D ≥ 1. since β1(r − δ) + r > 0, it is in fact enough to show that

β1(r − δ) + r ≥
µ
δ

r
− 1
¶
(r(β1 − 1)− β2δ),

or after some cancellation that

0 > −1− β2

µ
δ

r
− 1
¶
,

which indeed is true since
r + (δ − r)β2 > 0.

In addition, we have
P ∗C
δ

> I,

since

P ∗C
δ
− I =

I

β1 − 1
+

β2
β1 − 1

µ
C∗

r
−D

¶
>

D

β1 − 1
µ
u+ β2

µ
δ

r
− 1
¶¶

>
D

(β1 − 1)r
(r + β2(δ − r)) > 0.
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P ∗C
δ
− β1

β1 − 1
(I −D) =

1

β1 − 1
µ
β2

µ
C∗

r
−D

¶
+ β1D

¶
>

D

(β1 − 1)r
(β1r + (δ − r)β2)

>
D

(β1 − 1)r
(r + (δ − r)β2) > 0.

On the one hand
β1 − 1

δ

∂P ∗C
∂D

= −β2
µ
1− ∂C∗

∂D

¶
(6.1)

and on the other hand sinceµ
1

r
− 1

δ

¶
(P ∗C)

β2 =

µ
C∗

r
−D

¶
(C∗)β2−1,

we have

β2

µ
1

r
− 1

δ

¶
(P ∗C)

β2−1∂P
∗
C

∂D
=

µ
β2

C∗

r
+ (1− β2)D

¶
(C∗)β2−2

∂C∗

∂D
. (6.2)

Notice that since C < δD, we have

β2
C∗

r
+ (1− β2)D >

D

r
(r + (δ − r)β2) > 0.

This implies that ∂P∗C
∂D and ∂C∗

∂D must have opposite sign. Then, from relationship (6.2),
∂P∗C
∂D = 0 exactly when ∂C∗

∂D = 0. But ∂P∗C
∂D = 0 is then incompatible with relationship (??).

It follows that ∂P∗C
∂D and ∂C∗

∂D must have a constant sign. Since P ∗C ≤ P ∗F and P
∗
F corresponds

to the case when D = 0, we can conclude that ∂P∗C
∂D < 0 and therefore ∂C∗

∂D > 0.

6.4. APPENDIX 4

We want to show that P ∗N > C∗N or equivalently that

β1(2β1 − 1)δI
2(β1 − 1)2

> rD +
rI

2(β1 − 1)
,

i.e.
β1(2β1 − 1)δI > r(β1 − 1) (2(β1 − 1)D + I) .

Since D ≤ I, it is enough to show that

β1δ > r(β1 − 1).
Then recall that β1 is the positive root of the quadratic Q with

Q(x) =
σ2

2
x2 + (r − δ − σ2

2
)x− r.
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Since β1 > 1, from Q(β1) = 0, we obtain that

σ2

2
β1(β1 − 1) + (r − δ)β1 = r,

so

β1δ − r(β1 − 1) =
σ2

2
β1(β1 − 1) > 0,

and the proof is complete.

Uncertainty and Option Value: δ < r. We already know that ∂β1
∂σ < 0. Then, for

P ≤ P ∗N , we have

∂F (P )

∂β1
=

∂F (P )

∂P ∗N

∂P ∗N
∂β1

+
³
P∗N
δ
− I

´
ln

P

P ∗N

µ
P

P ∗N

¶β1

=
1

P ∗N

µ
P

P ∗N

¶β1
µ³

β1I − (β1 − 1)
P∗N
δ

´ ∂P ∗N
∂β1

+ P ∗N
³
P∗N
δ
− I

´
ln

P

P ∗N

¶
.

Since P ∗N =
β1(β1−1+θ)δI

(β1−1)2 , it follows that

∂P ∗N
∂β1

= −(β1 − 1)(1 + θ) + 2θ

(β1 − 1)3
,

so finally

∂F (P )

∂β1
=

β1
(β1 − 1)4P ∗N

µ
P

P ∗N

¶β1
µ
θ((β1 − 1)(1 + θ) + 2θ) + δ ((β1 − 1 + θ)(β1(1 + θ)− 1) ln P

P ∗N

¶
.
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