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Inference by Genetic Programming of an analytical 
expression for the Optimal Exercise Threshold of an 

asset that follows a Mean Reversion Process 

Abstract 

 
The American option evaluation is a relatively complex and expensive process 

due to commonly used methodologies as Finite Differences, Dynamic Programming, 

Monte Carlo Simulation, etc. needs high computational performance. Besides that, 

the complexity needed to calculate the option value and the optimal threshold 

increases when the price of underlying asset follows the Mean Reversion Stochastic 

Process. By this way, is interesting to achieve an analytical approximation in order to 

make easier to obtain the optimal threshold and the option value. 

There are many analytical approximations mentioned in bibliography 

respecting to American Options about asset prices following a Geometric Brownian 

Motion [1] [2], but none about it follows Mean Reversion Processes. 

This work proposes a model based on Symbolic Regression by Genetic 

Programming to obtain an analytical approximation for the optimal threshold 

respecting to an American option which its asset follows a Mean Reversion Process. 

The Optimal Threshold that separates during the option life-cycle the decision 

to exercise the option, is later employed to evaluate the option. The result achieved 

by the proposed model (Threshold Analytical Function) seemed to be satisfactory. 

 
Genetic Programming 
 

The Genetic Programming [3] [4] is inspired by Darwin ideas related to the 

survival of the most capable individual, to evolve computer programs and 

mathematical functions to solve problems. Such programs are generally structured in 

tree diagrams. The idea of the Symbolic Regression is to evolve Mathematical 

Functions which in the end return us a solution or an approximation for a peculiar 

problem. To obtain a mathematical solution, the Symbolic Regression uses a set of 

functions, mathematical operations and terminals. Terminals are the leaves of the 



tree while the functions and mathematical operations are always allocated in the tree 

vertices as shown in Figure 1 

 
Figure 1 - Tree Structure representing the function f(x,y)=x2+y 

 

This set of functions, mathematical operations and terminals are combined 

and evolved through mutation and crossover operators (Figure 2 e Figure 3), looking 

for solving the problem with an equation that is a function of all relevant parameters. 

 
 

Figure 2 - Crossover between two individuals above generating the 

descendants right below. 

 

Figure 3 - Mutation. The 30  branch was substituted by 8 

 
 
 



Model Description 
 

The Symbolic Regression Model uses Genetic Programming and optimal 

exercise s (optimal thresholds) samples obtained through numerical methods. The 

system is partitioned into three operational blocks. Sample Generation, Genetic 

Programming and Option Value calculated by Monte Carlo, Figure 4. 
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Figure 4 - Block diagram illustrating the proposed model. 

 

Sample Generation: The Generation Sample block refers to optimal 

thresholds sample generation through numerical methods. To generate those 

samples, is necessary the input of parameters related to the asset behavior during its 

life-cycle represented by the Mean Reversion Stochastic Process proposed by 

Bhattacharya [5] to be used by the numerical method. 

The samples were created by proprietary software owned by PETROBRAS to 

execute analysis of alternatives for oil field development under market uncertainty [6], 

this software analyzes the investment option in an oil reservoir and calculates the 

option value using arbitrage theory approach using the solution of partial differential 

equations through the explicit method. This option to invest is similar to an American 

call option. The software has generated the sceneries considering the variation of the 

free risk interest rate and the Petroleum Price Volatility. 

The parameters used to generate the option optimal exercise curves are: 

• D is the investment cost of the underlying alternative to develop an oil field 

(US$/bbl). 

• q is technical quality of the respective alternative. 

• B is the estimated average size of the reservoir in barrels. 

• Pmax is the maximum price reached by the petroleum during the option life-

cycle (US$ per year). 



• P0 is the petroleum initial price (US$/bbl). 

• P  is the estimated  price reached in long term horizon (US$/bbl). 

• δ  is the convenience yield (% per year). 

• σ  is the petroleum price volatility (% per year). 

• r is the free risk interest rate (% per year). 

• ρ  is the exogenous discount rate adjusted to business’ risk in US$ (% per 

year). 

• T is option life-cycle duration (years). 

• η  is the Mean Reversion Speed used in Bhattacharya process. 

Each parameterization returns an optimal exercise threshold and its option 

value. 

After the samples generation, the thresholds are separated in optimal exercise 

thresholds for training (50 thresholds) and optimal exercise thresholds for testing (9 

thresholds). The testing thresholds have the purpose to evaluate the answer given by 

the Genetic Programming block. 

The training set containing 50 thresholds is responsible for evaluating the 

mathematical expressions (individuals) during the Genetic Programming evolution. 

The test set containing 9 thresholds is used to certify that the analytical 

expression found by GP works fine also for thresholds out of the training set. 

 

Genetic Programming: The Genetic Programming block is responsible for 

the Symbolic Regression, i.e., to find an analytical equation to the optimal exercise 

threshold. This block receives as input the optimal exercise thresholds for training. 

The genetic programming uses in its evolutionary process individuals that 

represents just mathematical functions. This makes easier the adjustments to the 

functions and terminals sets needed to create individuals randomically. 

To implement the Genetic Programming software to evolve functions in order 

to return the optimal exercise threshold analytical function, there was used the 

OpenBEAGLE GP framework [7]. 

To evolve an optimal exercise threshold analytical function, it is necessary set 

the GP control parameters. Besides, there is interest into add terminals related to the 

analytical function to cooperate with the search for an optimal solution. In Table 1, 



there are parameters used as terminals in the trees from GP with its respective 

ranges of values and the functions or vertices are described in Table 2. 

 

D (US$/bbl) 2500 

q 0.22 

B (MM bbl) 400 

Pmax 60 

P0 20 

P  20 

δ  0.08 
ρ  0.12 

T 2 
η  0.3466 

σ   (variable) [0.05; ...;0.5] 

r  (variable) [0.01; ...;0.17] 

Table 1 – Range of values assigned to terminals 

 

Table 2 – GP function set. 

 

Besides the terminals mentioned before, there were added encapsulated 

terminals for helping the individual’s evolution. Those terminals are made by other 

terminals already inserted in search space and the reason for being inserted is due to 

having relationship to similar problems already solved and could be useful in search 

for the optimal individual. Those terminals are: 

 

• ( )[ ]tTrJMS −−= 2/2σ  

N( ) Normal Cumulative Density Function 

 Squared Root 

Pow Power 

exp Exponential 

ln Natural Logarithm 

+, -, x, / Addition, Subtraction, Product and Division 



• ( )[ ]tTrJPS −+= 2/2σ  

• tTDDNOM −= σ  

• ( ) ( )( )
T

TrDqPBd
σ

σ ×++
=

2//ln 2

1  

• Tdd σ−= 12  

 

The Genetic Programming process can be described as: 

1. An initial population is generated with individuals created randomically by 

the combination of between functions and terminals related to the problem 

(analytical function). 

2. The following steps are processed until the termination criteria be satisfied: 

• Each Mathematical equation in the population is solved and a fitness is 

assigned to it representing how precise was this equation to solve the 

problem. 

• A new population of mathematical equations is created applying genetic 

operators. The genetic operations (mutation and crossover) are applied 

to the mathematical functions selected probabilistically by its fitness. 

3. The best mathematical equation found so far is returned as result of the 

GP. This result may be the solution of the problem. 

 

The termination criteria used can be the maximum of generations reached by 

the population. 

Option Value Calculated: The Option Value is calculated by Monte Carlo 

simulation using the optimal exercise threshold analytical function found by Symbolic 

Regression in the Genetic Programming block. 

To calculate the option value, the simulation generates sceneries for the asset 

price using the Bhattacharya Mean Reversion Stochastic Process in discrete way. 

The moment each scenery cross the threshold is considered to calculate the 

difference between the price and the strike price (payoff). Once it is realized, the 

value is brought to present value and accumulated. In the end, the sum resulted by 

the accumulation of payoffs is divided by the number of sceneries generated. If the 

scenery doesn’t reach the threshold, the option value for that scenery is zero. 



After 10000 sceneries generated the average option value is calculated 

considering every option values obtained during the simulation. 

 

Results 
 

The model proposed based on Symbolic Regression by Genetic Programming 

was executed considering a population of 4000 individuals and 200 generations. By 

each generation, the 300 better individuals were preserved and copied to the 

following generation. The result achieved at the last generation was: 
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Where P* represents the critical price or threshold for each instant t, P  is the 

long term price, σ  is the price volatility, r is the risk free interest rate, T is the 

expiration time, η  is the mean reversion speed, D is the investment cost, q is the 

reservoir quality, B is the size of the reservoir in barrels, ( )[ ]tTrJPS −+= 2/2σ , 

tTDDNOM −= σ  and ( ) ( )( )
T

TrDqPBd
σ

σ ×++
=

2//ln 2

1 . 

This analytical expression obtained by GP was tested using a new set for 

evaluation, the test set, containing nine optimal exercise thresholds. Those 

thresholds were generated varying the values from the volatility of the price and the 

free risk interest rate parameters. 

In Table 3, the volatility and free risk interest rate parameters used to generate 

the test and training sets are presented, and the errors between the test thresholds 

and the thresholds returned by the analytical function discovered by GP. In this table, 



it is observed that the analytical function achieves good approximations for the 

parameters involved. 

In the appendix, the figures show the approximation between thresholds 

returned by the analytical function and the respective sample from test set. It is 

indicated also the parameters (volatility and risk free interest rate) and the MAPE as 

well. 

 

r σ  RMSE MAPE % 

0.04 0.25 0.18 0.48 
0.06 0.25 0.14 0.36 
0.08 0.25 0.10 0.26 
0.1 0.25 0.09 0.23 
0.08 0.15 0.50 1.57 
0.08 0.20 0.27 0.78 
0.08 0.30 0.16 0.40 
0.08 0.35 0.22 0.57 
0.08 0.40 0.21 0.48 
Table 3 - Results according MAPE and RMSE to values variation of the risk 

free interest rate and volatility in a test set of samples. 

 

In Table 4 the option value calculated by Monte Carlo simulation using 

thresholds returned by analytical function is compared to the option value obtained 

by solving partial differential equations through the sample generator software. In this 

table is also observed that the error between the option values is small. This error 

can be decreased, increasing the number of sceneries for the price used in the 

simulation or decreasing the time steps, in this case, 0.01. The step used to generate 

the thresholds for the test set was 10-6. 

Option Value with the GP 
Threshold Option Value of the Sample Option Value Relative Error  % 

13.09 13.38 2.17 
15.79 16.17 2.35 
19.34 19.43 0.46 
23.27 23.22 0.22 
0.68 0.78 12.82 
6.26 6.27 0.16 
39.27 39.90 1.58 
63.13 66.16 4.58 
95.07 96.71 1.70 

Table 4 – Option value comparison. 



Conclusion 
 

This paper has introduced a model based on Symbolic Regression by Genetic 

Programming to obtain an analytical approximation for an American option optimal 

exercise threshold which its underlying asset price follows the Mean Reversion 

Process, considering two varying parameters (volatility and risk free interest rate). 

The model was tested in a real options problem about investing analysis in petroleum 

reservoir under market uncertainty conditions. This real option analysis is similar to 

an American call option. 

The proposed model returned an analytical equation that has achieved good 

approximations for the option optimal exercise threshold. 

The Symbolic Regression by Genetic Programming seemed to be a technique 

able to infer equations based on a sample set producing satisfactory results. 

The significance of this work, although its initial simplicity has considered just 

two varying parameters, lies on the necessity of an analytical approximation that 

makes easier to calculate an American option optimal exercise threshold which its 

asset follows a Mean Reversion Process. 
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Appendix: Threshold Curves returned by the GP Analyitical Function X Test Curves. 

 
Figure 5 – r=0.04, σ =0.25, MAPE=0.48 

 

Figure 6 - r=0.06, σ =0.25, MAPE=0.36 



 
Figure 7 – r=0.08, σ =0.25, MAPE=0.26 

 

Figure 8 - r=0.10, σ =0.25, MAPE=0.23 



 

Figure 9 - r=0.08, σ =0.15, MAPE=1.57 

 

Figure 10 - r=0.08, σ =0.20, MAPE=0.78 



 

Figure 11 - r=0.08, σ =0.30, MAPE=0.40 

 

Figure 12 - r=0.08, σ =0.35, MAPE=0.57 



 

Figure 13 - r=0.08, σ =0.40, MAPE=0.48 
 


