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First Follower’s Real Option to revert to the Competitive Strategy 

Low & High Price Point Collusion Capacities 

Abstract 

Drawing from ideas of collusion in option games model with Cournot competition and price 
competition in a differentiated duopoly, we model, in a binomial framework, the latent collusion 
opportunity open to a first-follower.  The first-follower is faced with investment decision in 
production capacity under market uncertainty as well as competitive uncertainty. The first-
follower has an opportunity to collude with the incumbent in the Bertrand pricing game which 
will ensue with the first-follower’s entry; on the basis of a non-binding agreement. The 
investment decision is faced by only one firm – the first follower; unlike other papers where both 
firms are faced with the same decision albeit with asymmetry in information or cost structure. 
Focus on collusion in Bertrand game in a differentiated duopoly leads to the insight that for a 
given degree of collusion (the extent by which Nash Equilibrium payoffs are improved for each 
of the players), there are two price pairs; which we call the high price point and the low price 
point. The capacity required to follow the high price point strategy is even lesser than that 
required to play the low price point strategy. The strategy to go in for low capacity in the initial 
period and scale up subsequently if need be has costs – variable costs are lower at higher capacity 
levels, scaling up requires installing appropriate technology and there is a possibility of the first-
follower’s capacity constraint becoming binding. We find that under different market demand 
volatility, elasticity and high/ low price point scenarios, the value of the option to revert to the 
competitive strategy (the option to scale up capacity) is significant. This insight can aid capacity 
creation decision of first-follower firms. Existence of low and high price points for collusion 
follows from an interesting Quartic equation in the price of either of the players. 

Introduction 

The three broad areas of strategic interest of the real options perspective are real options as an 
organizational decision making process (Bowman & Hurry, 1993; McGrath, 1997) real (growth) 
options perspective on market value of  assets and firms (Grenadier, 1996; Quigg, 1993; Berger 
et al.,1996; Garner et al., 2002) and the real options approach to the analysis of investments under 
uncertainty (Dixit & Pindyck, 1994; Trigeorgis, 1996). This paper is part of the research work 
which deals with the latter two of the above-mentioned areas of interest; and focuses on modeling 
the capital investment decision facing a small first-follower biopharmaceutical firm in an option 
game framework. 

A distinguishing feature of investment opportunities facing research oriented biopharmaceutical 
companies in India, and other third-world countries, is their focus on first-follower research; 
targeted at drugs going off-patent in the near future. If their research programs are successful, 
they have to commit capital in production capacities. Not only do they face uncertainty regarding 



the size of the market, but they also face competitive uncertainty in terms of the product’s price-
market share scenario which is likely to emerge in the resulting duopoly consisting of the 
incumbent (the innovator) and the first-follower. So far, the approach of a number of Indian 
companies has been to simply go in for a rock bottom price strategy. This involves heavy capital 
outlay to begin with, under high degree of market and competitive uncertainty. In the particular 
case we examine, the rock bottom price strategy does not support the kind of investments 
required. Discussions with the top management of one such company, FSM, reveal that a ‘more 
cooperative pricing approach may enhance the revenue from the drug’.  

A more ‘cooperative’, or collusive pricing strategy potentially requires lesser installed capacity to 
execute. We bring together two important aspects of the option games literature – collusion 
(Huisman & Kort, 1999)and price competition in differentiated product markets (Vives, 2001) – 
in a discrete time setting. Whereas collusion has been discussed in a Cournot competition setting 
with firms competing to invest under uncertainty (Huisman & Kort, 1999) (Joaquin & Butler, 
2000), we explore the collusion possibility in Bertrand competition in a differentiated product 
market and how this possibility gives rise to an option to create capacity in stages. This gives the 
first-follower an ‘option to revert to the competitive equilibrium’. Our focus on collusion in price 
competition leads us to the interesting insight that for a certain degree of collusion (ratio by 
which NE payoff is improved for both the players), there are two collusive price points with 
corresponding capacity requirements. That is, the first-follower can install even lesser capacity at 
high collusive price point as compared to the capacity corresponding to low collusive price point. 
If the incumbent reciprocates, the first-follower can continue to play the cooperative price 
strategy. If the incumbent follows a purely competitive pricing strategy, then depending on how 
the demand uncertainty has been resolved, the first-follower can enhance capacity and follow a 
purely competitive pricing strategy thence. Retaining this option to play the competitive price in 
the first stage, allows the first-follower, FSM, to stage investment. We find that for a wide variety 
of scenarios in the market volatility, first-follower’s price-elasticity, collusion price points and 
degree of collusion; investing in lesser capacity is the optimal investment strategy for the first-
follower.  

The incumbent has a very large capacity, and the investment problem is faced by only the first-
follower. Option games literature till date only focuses on symmetrical decision problems, for 
example (Smets, 1993; Grenadier, R., 1996; Trigeorgis, 1996). Product market competitive 
dynamic gives rise to an option like feature in the investment problem. Staging investment 
dominates a one-shot capacity creation strategy under a wide variety of scenarios. This insight 
can help companies such as FSM to ensure successful R&D programs are seen through to the 
market; even if their pure-competitive NPVs are below 0. Variable cost implication of lower 
scales as well as the follower becoming capacity constrained in certain cases are endogenous to 
our analysis; and are the significant costs of flexibility. 

Literature Review 

The focus of Real Options models on (partially) irreversible investment under uncertainty has 
lead to claims in the literature (Dixit & Pindyck, 1994) of its utility in ‘strategic’ investment 
decision analysis. Optimizing ones behavior in the face of competition and uncertainty is studied 



by Option Game models. The Option Game models address the competitive effect by a combined 
game-theoretic and option-theoretic approach, which strengthens the claim to ‘strategic’ decision 
analysis (Trigeorgis, 1996). The degree to which the competitive effect is endogenous to the 
analysis is a key differentiator of option-game papers. The least endogenous manner in which 
‘competitive’ effect is captured is by adjusting the ‘dividend’ upwards when an opportunity to 
invest is modeled as an American call option (Dixit & Pindyck, 1994). Early real options papers 
which included the competitive aspect, modeled the underlying asset to be subject to a Poisson 
arrival process and on arrival the investment opportunity is lost (Trigeorgis, 1991; Ankum & 
Smit, 1993). Note that these earlier attempts do not use game-theoretic approach to dealing with 
the competitive effects. 

The game-theoretic treatment of the competitive effect (endogenous) is a rapidly growing area, 
with text books appearing in the fast growing area of Option Games (Huisman, 2001a; Grenadier, 
R., 2000; Trigeorgis, 1996). In the typical endogenous treatment, firms compete to invest in 
capacities under demand uncertainty. Real option papers typically view the value of the project 
(which does not include the contingent/ discretionary investment – the exercise price) to follow 
GBM (in continuous time analysis) or a binomial process (in discrete time analysis). In option 
game papers, the parameters of the demand (or inverse demand) functions – intercept term or 
elasticity – follow a GBM or a binomial process (Huisman, 2001a; Grenadier, 2000; Trigeorgis, 
1996). Competition to invest is modeled as a Cournot game to begin with – where the strategic 
variable is quantity and the firms set their quantities (create capacities) simultaneously (Cournot, 
1897; Romp, 1997).  The insight from these models is that under competition, firms invest earlier 
than in the monopolistic case, under uncertainty. In a more generalized approach (Huisman, 
2001b; Huisman & Kort, 1999; Joaquin & Butler, 2000), the threshold value levels for 
investment are derived for the first-follower (by assuming that the other player has already 
invested and approaching it as a Stackelberg follower’s decision problem), the leader 
(approaching it as a Stackelberg leader’s decision problem) and for simultaneous exercise.  

 

Leader and Follower Values and Entry Thresholds (Dias & Teixeira, 2003)  



When the simultaneous entry payoff dominates the sequential payoffs of Stackelberg competition 
(Romp, 1997), then Cournot type game emerges. Similar insights emerge in the discrete time 
models (for example, Trigeorgis, 1996), which are accessible to a wider audience due to the 
relative simplicity in the math.  

Game-theoretic concepts: Game theory being a well developed field by itself, a number of 
game-theoretic concepts has been included in various option game papers. Indeed, this is a 
significant growth area for option game literature. Whereas the initial option games papers 
focused basic game-theoretic settings of complete information and non-cooperative players 
((Romp, 1997) gives a simple explanation for the basic game-theory concepts); subsequent 
papers began to focus on more advanced game-theoretic concepts. For instance, in (Grenadier, 
1996) two building owners have an option to upgrade their buildings. Upgrading a building 
improves its own rentals and has a negative externality – its impact on the other building’s rent. 
With demand shocks in each of the periods, (Grenadier, 1996) gives a rational option game 
explanation for the seemingly irrational real estate buildup in times of declining demand. The 
building owners in this paper do not collude and the game is set in complete and perfect 
information. Later option games papers focus on tacit collusion (Huisman & Kort, 1999; Joaquin 
& Butler, 2000; Boyer, Gravel & Lasserre, 2004), information spillovers (Trigeorgis, 1996), war 
of attrition (Dias, 1997), bargaining (Dias & Teixeira, 2004) and move from duopoly setting to 
oligopoly setting(Murto, Nasakkala & Keppo, 2004). 

Collusion: (Boyer, Gravel & Lasserre, 2004) as well as (Huisman & Kort, 1999) (Huisman & 
Kort, 2003) investigate the effect of magnitude and irreversibility of capacity outlays (with 
respect to the market size) on the development of the industry. They find that the early phase of 
such an industry is characterized by strong preemptive competition which implies riskier entry, 
lower expected returns, and more bankruptcies. This outcome occurs irrespective of the volatility 
or the speed of market development. At later stages of development, when both firms hold 
capacity, competition may be weaker in the sense that tacit-collusion equilibrium points may 
exist. Tacit collusion to restrict production takes the form of postponed simultaneous 
investment by both firms. (Huisman & Kort, 1999) as well as (Joaquin & Butler, 2000) show that 
when the demand level is set high enough (by adjusting the parameters of the demand function 
upward – for instance, the intercept term), then this tacit collusive equilibrium is no longer stable.  

Asymmetry: The effect of firm asymmetry is an important direction of development in the real 
options field. (Joaquin & Butler, 2000) investigate the effect of asymmetry in variable costs on 
leader, follower and simultaneous exercise thresholds. In multi-stage games, firms can carry out 
R&D in the initial stages which bestows on them cost advantage which can be propriety or shared 
(Trigeorgis, 1996; Smit & Trigeorgis, 2004; Smit & Trigeorgis, 1997). However, the decisions 
facing the players are the same. That is, the literature focuses on competition among equally 
positioned firms.  

Price competition in Differentiated product markets: In an early paper, (Kreps & 
Scheinkman, 1983) analyze the equilibrium of a two stage duopoly game. Firms first compete on 
capacity to be installed and in the next time period on price. Kreps and Scheinkman (1983) show 
that this Cournot-Bertrand game has the same equilibrium as a Cournot game. This point has 



been emphasized in (Varian, 1992) as well as in (Dias & Teixeira, 2004). This has perhaps 
contributed to the focus on quantity as a strategic variable, which is more suited to commodity 
type product markets.  

We model a situation in which the investment decision is faced only by the first-follower. 
Further, unlike investment timing games and research and development races, the first-follower 
here has an option to revert to the competitive price strategy and thereby an opportunity to scale-
up accordingly. This is essentially a scaling up option, studied in a option game setting. We focus 
on the collusive aspect and find that high price point and low price point collusion are both 
possible – each with a different capacity implication and a different equilibrium outcome. The 
bringing together of price competition in differentiated products, demand uncertainty, 
asymmetric decision situation, collusion possibility and the combined impact of the three on 
initial capacity levels as well as quantum of scaling is the feature unique to our study.  

In our study, the first-follower firm has developed a technology and obtained the required 
regulatory clearances to launch the drug as soon it goes off patent. The market which would 
result from the first-follower’s investment in production capacities is modeled as a price 
competition between differentiated products – the augmented Bertrand model (Vives, 2001). The 
investment decision is faced by the first-follower only – therefore, it is asymmetric in the 
decision of interest. The purely competitive equilibrium in the product market does not support 
the investment in production capacities. However, the first-follower has a latent opportunity to 
collude on the prices (Romp, 1997). The prospect of collusion gives the first-follower an 
opportunity to go in for a smaller capacity in the first period and play the collusive strategy. The 
risk in this strategy is that of the first-follower becoming capacity constrained – the benefit is 
from postponing investment until the demand uncertainty gets resolved. The costs incurred by the 
first-follower to achieve this flexibility and scalability in capacity are in terms of variable cost 
impact, capacity constrained and incremental capacity addition penalty; the former two being 
endogenous to our option game analysis. This is a situation faced by a significant number of 
research oriented Indian (and indeed, developing country) firms targeting the first-follower space.  

 Model Setting 

A small biotechnology based vaccine and drug research and manufacturing firm in India (FSM) 
has developed the technology and obtained permissions from drug regulators to launch a niche 
segment (monoclonal antibody) drug as the first-follower, as soon as the innovator’s drug goes 
off-patent. Traditionally, FSM like other Indian firms has chosen to go in for prices which are 1/3 
to 1/2 of the innovator’s prices. In the case of this particular niche segment drug, the typically 
low price strategy makes the project a negative NPV project. However, management is of the 
view that a more ‘cooperative’ approach to pricing might result in better payoffs. Since the stages 
of research and development have already been completed, the typical R&D real options models 
are not applicable in this particular project for FSM.  

Market uncertainty gets resolved through the passage of time in option game models. In multi 
period settings, this allows the decision to defer investment from the first stage of the game. We 
consider, in addition to demand uncertainty which gets resolved through the passage of time, 



uncertainty regarding competitive interaction (Romp, 1997). This is an uncertainty which can 
only be resolved by participating in the market after creating capacities in the case of market 
entry by a first-follower which we explore. Our attempt shows that there is an option to choose 
lower capacity levels and enhance this capacity in subsequent stages. The first-follower has a 
latent opportunity to try and negotiate a ‘collusive’ pricing strategy with the incumbent, 
prior to deciding on the capacity to be installed, where the demand is uncertain. Such an 
agreement to collude on the prices is non-binding (Dias & Teixeira, 2004) – the incumbent and 
the first-follower can enter into such an agreement and then deviate from it. That is, either of the 
players can behave in an opportunistic manner. It is this latent opportunity that we are exploring. 
Prior to making the capacity investment decision, this collusion opportunity is significant because 
collusive outcomes in Bertrand duopoly of differentiated products (Singh & Vives, 1984) require 
lesser quantities as compared to NE quantities – hence lesser capacity needs to be installed – to 
play. 

Our model is a two stage model. At the beginning for the first stage, the first-follower has to 
decide on the capacity to install which will be required to produce the drug. The cost required to 
set up this capacity is incurred in one go, at the beginning for the first period; and it takes the 
entire of first stage (one year) to install the capacity. The second stage of the model is an 
infinitely repeated (one time unit is one year) Bertrand pricing game in a differentiated duopoly 
with an opportunity for price collusion (Singh & Vives, 1984). This collusion is on the basis of 
an agreement entered into prior to the first-follower setting up the capacity. In the first stage of 
the model, demand is uncertain – the intercept term of the demand functions can take two values 
– corresponding to the ‘up’ and ‘down’ stages of demand. The Bertrand pricing game itself 
occurs after this demand uncertainty has been resolved by the passage of the first-stage of the 
model.  

For each state of demand (either ‘up’ or ‘down’) which materializes in the second stage of the 
model, the first-follower can negotiate with the incumbent the ‘degree of collusion’ and 
following from that, the collusive prices that each should set. This negotiation occurs prior to the 
first stage of the game, when the first-follower has to make the capacity decision. The degree of 
collusion is the extent by which the NE payoff of each of the players is enhanced, if they 
successfully coordinate on the collusive price. We have only investigated scenarios where the 
degree of collusion is the same for both the players. Further, we have only investigated scenarios 
where the degree of collusion is the same for both states of demand, at the given level of 
volatility. The incumbent and the first-follower are more likely to agree to a non-binding 
collusive agreement under the ‘down’ state of demand as compared to the ‘up’ state. Such a non-
binding collusive agreement only in the ‘down’ state can be included in the analysis and is an 
area for future work in this direction. We can show that for the same degree of collusion, a ‘high-
price-pair’ and ‘low-price-pair’ are possible. That is, the incumbent and the first-follower can 
collude on two price pairs of prices – and in both the cases, with the restriction of equal degree of 
collusion for players and across demand states. The quantities cleared by the market are least for 
the ‘high-price-pair’ collusive outcome, more for the ‘low-price-pair’ collusive outcome and 
maximum for the NE outcome.  

The existence of two collusive price-pairs can be demonstrated by solving the collusive payoff 
functions of the incumbent and the first-follower simultaneously, which requires solving a 



Quartic equation in price (Abramowitz & Stegun, 1972). The maximum degree of collusion 
possible (βMax

) is determined by the price points lying in the region to the right and above both 

incumbent’s and first-follower’s NE isoprofit curves (Romp, 1997).  

Second stage 

The second stage of the two-stage game is an infinitely repeated Bertrand pricing game in a 
differentiated duopoly (Singh & Vives, 1984) (augmented Bertrand model). Whichever demand 
state fructifies continues steadily for each succeeding year. Such an evolution for the market 
demand abstracts a great deal from reality. In multi stage settings, market evolution has been 
modeled to follow exogenous demand shock at each stage; for example, (Trigeorgis, 1996) (Smit 
& Trigeorgis, 2004) (Smit & Trigeorgis, 1997). Our objective, in this paper, is to explore the 
possibility of collusion outcomes and the capacities required by the first-follower to support the 
same. From a game-theoretic perspective there are five ways in which purely competitive players 
are able to achieve cooperative (collusive) outcomes in a repeated game setting (Romp, 1997). 
These are infinitely repeated games, repeated games with multiple Nash equilibrium, finitely 
repeated games with bounded rational players, uncertainty about when the game will end in 
finitely repeated games and finitely repeated games where each of the players assigns a small 
probability to the other being ‘irrationally cooperative’ in the first instance of a finitely repeated 
game (Romp, 1997; Rosenthal, 1981; Radner, 1980). While the last of these mechanisms mirrors 
market development better, the case of infinitely repeated games is simpler and allows us to 
concentrate on the collusive pricing – lower capacity linkage; the key focus of this paper.  

The two firms set prices with full information of their competitors variable costs, demand 
elasticities, intercepts of demand function and the cross elasticities. Although, in the first stage of 
the game when the first-follower makes the capacity decision, demand is uncertain; this 
uncertainty is resolved at the beginning of the second stage, the two players have to set the prices 
in the second stage. This translates into the first-follower requiring the extent of the first stage – 1 
year – in our case to set up the capacity. The intercept term can take two values – representative 
of demand uncertainty – in the first stage of the game. In the second stage of the game, one of 
‘up’ or ‘down’ demand equation intercepts has fructified and demand state in the second stage of 
the model is common knowledge.  

The first-follower, as part of the collusive agreement entered into with the incumbent, follows a 
punishment strategy (Romp, 1997) where the first-follower sets the collusive price in the first 
year of the second stage. If the incumbent sticks to the collusive agreement, then this collusive 
outcome continues to infinity. If the incumbent deviates from the collusive agreement, then the 
first-follower reverts to the NE price. Depending on the capacity created by the first-follower in 
the first stage of the game, the first-follower may or may not be able to execute the NE pricing 
strategy. In case the first-follower had set up a lesser capacity anticipating a collusive outcome, 
then the first-follower will have to invest in the incremental capacity in the first year of the 
second stage in order to play the NE from the second year onwards. In case, the investment cost 
does not cover the incremental revenues, then the first-follower will settle with the existing 
capacity. But, our modeling approach does not explicitly consider the possibility of the 
incumbent trying to follow a limit pricing strategy with a view to shutting the first-follower out. 



The main entry barrier in the biopharmaceutical industry is technological. In our case, the first-
follower has already crossed this barrier, and obtained the necessary regulatory clearances to 
enter the domestic market. The domestic market is miniscule as compared to the world market for 
the particular monoclonal antibody. In the past, large MNCs have attracted regulatory attention 
due to significantly lower prices of drugs across countries. Monopolistic practices are monitored 
closely by regulators, particularly is the drug sector. 

By equating the incumbent’s collusion and deviation strategies, we can obtain the indifference 
discount rate of the incumbent (Romp, 1997). If the incumbent discounts future revenues at a 
rate lower than the indifference discount rate, then the incumbent will stick to the collusive price. 
We derive the expected value to the first-follower from following this ‘try collusion’ strategy by 
assigning a probability to incumbent’s discount rate being lower than the indifference discount 
rate. This probability function is increasing in the incumbent’s indifference discount rate. That is, 
higher the indifference discount rate of the incumbent the higher the probability that the 
incumbent’s discount rate is a ‘cooperative’ one. When the incumbent’s discount rate is lower 
than the indifference discount rate, then the incumbent cooperates and the payoff to the first-
follower corresponds to the collusive outcome. When the incumbent’s discount rate is higher than 
the indifference discount rate, then the incumbent does not cooperate. The first-follower’s payoff 
corresponds to incumbent’s reaction function outcome for the first year and the NE payoff 
thereafter. In this particular paper, we use the probability that the incumbent’s discount rate is 
lesser than the indifference discount rate is equal to the indifference discount rate itself, subject to 
a maximum of 1. 

First Stage 

This possibility of a collusive outcome in the second stage of the game gives the first-follower a 
choice to invest in different capacity levels in the first stage of the game. For each demand state, 
the NE capacity and the Collusive (at the agreed upon degree of collusion) outcome capacity are 
the capacity choices open to the first-follower; giving rise to four levels of capacity to choose 
from. The capacity required to play the collusive strategy under ‘down’ state of demand is the 
least. The capacity required to play the NE strategy under ‘up’ state of demand is the maximum. 
In between these two values are the capacity required to play the NE strategy under ‘down’ state 
of demand and the capacity required to play the collusive strategy under ‘up’ state of demand.  

We assume that the incumbent is able to observe the capacity decision made by the first-follower. 
The incumbent entertains the option of colluding only when the first-follower installs a capacity 
in line with that required by the cooperative outcome. That is, there is no chance of the incumbent 
cooperating were the first-follower to install capacity required to play NE in the ‘up’ state of 
demand. There is chance of the incumbent cooperating only when the first-follower installs 
capacity corresponding to collusive quantity of the ‘up’ state or lower. Note that under certain 
combinations of demand volatility and degree of collusion, collusive quantity of the ‘up’ state 
might be higher or lower than the NE quantity of the ‘down’ state of the demand. 

Flexibility Cost 



By going in for capacities lower than or equal to the collusive quantity of the ‘up’ state the first-
follower benefits from flexibility in the face of the demand uncertainty and from the probability 
that the incumbent will stick to the collusive pricing strategy. However going in for lower 
capacity levels has cost impact in three areas. Firstly, going in for lower capacities may make the 
first-follower ‘capacity constrained’ in realizations of demand and incumbent cooperativeness 
which require larger capacities than those available with the first-follower. This capacity 
constraint is addressed by a class of games called Bertrand-Edgeworth games (Vives, 2001;  
(Edgeworth, 1925). When the capacity constraint is binding – that is, the potential quantity to the 
first-follower is greater than the installed capacity – the first follower would adjust price upward 
to make full use of the capacity. This is anticipated by the incumbent and so on. The payoffs to 
the incumbent and the first-follower are calculated following (Froeb, Tschantz & Crooke, 2003). 

Secondly, we introduce an ‘incremental capacity addition penalty’. That is, if the first-follower 
installs a lower capacity in the first stage of the game and is required to enhance capacities in the 
second stage; then this ‘stepping up’ of capacity is costly. In the biotechnology industry, this 
corresponds to incurring expenditure on the appropriate technology which will allow such scaling 
up. The larger the capacity step, the costlier is the technological features which will allow for 
such capacity step up. Therefore, we set the ‘incremental capacity addition penalty’ to be 
proportional to the capacity step up involved, in the second stage of the game. Lower the initial 
capacity installed (in the first stage) and higher the final capacity installed (in the second stage), 
higher is the incremental capacity addition penalty. Whereas, the first cost (in the previous 
paragraph) is endogenous to the game-theoretic analysis; this second cost is exogenously 
supplied to the model. 

The third cost of lower capacities is the capacity impact on variable costs. Variable cost is taken 
to be inversely proportional to the installed capacity and is endogenous to the model; since our 
model has two players attempting to maximize their payoffs – quantity times difference between 
price and variable costs – in a game-theoretic setting. The variable costs are derived from the 
material costs as well as the level of wastage. Typically the wastages are lower, higher the 
capacity since higher capacities support better process control instrumentation. 
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Figure 1: Real Option to Revert to Competitive Price Strategy 



Model 

In the second stage of the game, the incumbent (INC) and the first follower (FF) face the 
following linear demands, following standard practice – for example, (Smit & Trigeorgis, 2004; 
Smit & Trigeorgis, 1997; Vives, 2001; Singh & Vives, 1984) 

ppkq
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ppkq
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α+−= Φ   …(2) 

Due to superior brand reputation of the incumbent, the incumbent’s quantities are less sensitive to 
the price changes than the first-follower. We express this by keeping kk FFINC

<  . We run our 
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andkFF
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; 

(125,80) and (150,67). We add the condition that the product of the price elasticities is greater 
than the square of the cross-elasticity; that is  

α≥ 2

FFINC kk  …(3) 

This ensures that the second order partial derivative condition for the existence of maxima holds 
(Singh & Vives, 1984)  

The variable cost of the first-follower are a function of the installed capacity and tends to fall, the 
larger is the installed capacity. That is, Qv

FF
FF

M= . The variable cost of the incumbent, vINC
, 

is a constant. Given the prices of the incumbent and first-follower, p
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andp
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one period of the game are given by 
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Under both realizations of Φ t  the Bertrand-Nash Equilibrium (BN) prices, quantities and 
payoffs (Sing & Vives, 1984; Vives, 2001) are as follows.  
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Under certain combinations of the first-follower’s investment strategies, one of q
N

up
, q

Coop

up
, 

qN

dn
or qCoop

dn
, on one hand and demand state realizations together with cooperativeness of the 

incumbent on the other, the first-follower is capacity constrained in the first year of the second-
stage. That is, the first-follower is not able to play the NE as afforded by the demand state-
competitor disposition realization, because the installed capacity is lesser than the equilibrium, or 
potential, quantities. Equilibriums under capacity constraints were studied by Edgeworth (1925), 
and this class of games in price competition is called Bertrand-Edgeworth (Vives, 2001). The 
conditions under which the first-follower will be capacity constrained in the first year of the 
second stage of the game can be got from the following inequality. 

qqqq
Coop

dn

N

dn

Coop

up

N

up
, >>  …(10) 

Depending on levels of volatility, elasticity and level of collusion the first-follower quantity 
under up-state-demand with collusion may be greater or less than down-state-demand with pure 

competition; qq
N

dn

Coop

up
<> .  

Let C be the production capacity of the first follower and let this constraint be binding – that is, 

the equilibrium quantity (either competitive or cooperative) to the first-follower is greater than 
the first-follower’s installed capacity. Following Froeb et al. (2003), we solve the payoffs in such 
cases by making sure that the slack variable - the difference between the potential quantity and 
the capacity, is zero – resulting in the first derivative of the unconstrained profit function of the 
first-follower to be less than zero. The constrained equilibrium prices are given by the two 
equations below, from which given the demand functions (equations 1, 2) and profit functions 
(equations 4, 5); the payoffs to the incumbent as well as the first-follower can be calculated. 
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Collusion 

Let us consider an outcome which pareto-dominates the NE by the factor of β (β > 1). The 

payoffs to the incumbent and the first-follower in this case are given by JCoop

INC
( = βΠN

INC
) 

andJCoop

FF
(= βΠN

FF
). Let pCoop

INC
and qCoop

INC
be the corresponding prices and quantities for the 

incumbent and pCoop

FF
and qCoop

FF
be the corresponding prices and quantities for the first-follower, 

which support this cooperative outcome. The values ofpCoop

INC
, qCoop

INC
, pCoop

FF
and qCoop

FF
can be 

obtained by solving the following two equations,  
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The above two equations can be converted into a quartic, an equation with non-zero coefficient of 

^4 term and no higher powers, in pCoop

INC
or pCoop

FF
terms and as far as there are real solutions 

(Abramowitz & Stegun, 1972), collusion to the degree β is possible and we get the 

corresponding prices and quantities. Interestingly, for each degree of collusion there are two 
possible sets of prices which will result in quantities ultimately achieving the degree of collusion 
(subject to finding real roots to the quartic equations). We call these two possible sets of points 
‘high price points’ and ‘low price points’. The capacities required to play the ‘high price point’ 
collusive price is typically half or less of the capacities required to play the ‘low price point’ 
collusive price at each level of collusion degree, β . Note that the quantities required to follow 

both the high-price point and low-price point collusive strategies is less than the NE quantities. 
We run our experiments for low price point and high price point collusive possibilities, 
separately. 

Were the incumbent to deviate from the collusive price point and maximize current-period 
profits, then the incumbent’s price on the reaction function can be found using the following 
reaction function equations. 
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When the first-follower establishes a cooperative production capacity, the incumbent may not 
always respond to the cooperative pricing scheme. The first-follower may price cooperatively, 
but the incumbent may respond competitively and price at the incumbent’s reaction function. In 
the infinitely repeated Bertrand game that we are considering, we assume that the first-follower 
responds to such deviation from the agreed upon collusive price by reverting to the realized 
demand level’s NE subsequently. This behavior of the first-follower is also common knowledge.  
Whether the incumbent will stick to the collusive outcome is a function of how heavily the 
incumbent discounts future earnings.  

When the incumbent deviates from the (agreed upon) pricing strategy, we assume that the first-
follower responds by increasing the capacity to the appropriate demand level’s NE (if the 
capacity set up in the first period turns out to be lesser) and then setting the NE price in all 
subsequent periods of the second stage. The only case when the first-follower does not invest in 
the second stage of the game in the face of the incumbent following a purely competitive strategy 
is when the cost capacity enhancement is not covered by the difference between the NE payoffs 
to infinity and constrained equilibrium payoffs to infinity.  

q RF,Coop

FF
andq RF,Coop

INC
are the quantities when the first-follower’s cooperative price is met with a 

competitive response from the incumbent (incumbent follows a pricing strategy on the 
incumbent’s reaction function). The resulting prices, quantities and payoffs can be obtained from 
the equations 15, 16 (price reaction functions); equations 1, 2 (quantities) and equations 4, 5 
(payoffs). 
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The above condition ensures that the incumbent has a short-term incentive to deviate from the 
cooperative pricing strategy and that the first-follower’s threat of following up any deviation 
from the pricing strategy with subsequent NE price is credible. The value of the discount rate 
where the incumbent is indifferent between cooperating and following a purely competitive 
pricing strategy is given by δ* (the indifference discount rate), obtained by equating the payoffs 
from the two strategies,  
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Under each combination of the first-follower investment strategy and demand state realization, 
the first-follower estimates a probability of δINC

exceedingδ*

INC
. We specify this probability with 

the function 
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Under risk-neutrality, the expected value of each combination of first follower investment 
strategy and demand state realization is found out. When the first-follower sets up competitive 
capacities, there is no chance of the incumbent playing cooperatively. For each volatility, 

elasticity and degree of collusion (β ) , whether q
Coop

up
> qN

dn
or q

Coop

up
< qN

dn
; the incumbent is 

open to collusion as far the first-follower sets up a capacity which is lesser thanq
N

up
. If the first-

follower sets up capacities larger than greater ofq
Coop

up
andqN

dn
, the incumbent is not open to 

collusion and the second stage of the game is characterized by NE payoffs summed to infinity.  

First Stage 

In the first stage of the game, the expected payoffs from each realization of the demand parameter 

is calculated and the present value of investing in each of the quantity levels;q
N

up
, q

Coop

up
, qN

dn
or 

qCoop

dn
 is found. We have computed these payoffs for two volatility levels, two levels of the first-

follower’s elasticity, high price point versus low price collusion; as well as for two levels of 
‘incremental capacity addition penalties’. The option-game is evaluated under 24 scenarios, 
arising out of combination of 2 volatility levels, 2 levels of elasticity of the first-follower, high 
and low price point collusive possibilities and two levels of the ‘incremental capacity addition 
penalty’. For each of the scenarios, the NPVs of the four investment strategies are calculated for 
7 degrees of collusion (β ) up to the maximum possible degree beyond which real solutions do 

not exist for price combinations yielding the collusive payoffs.  

The risk-neutral probability associated with the ‘up’ state of demand is given by (Smit & 
Trigeorgis, 1997; Smit & Trigeorgis, 2004; Trigeorgis, 1996) 
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δFF
is the first-follower’s risk-adjusted rate of return. The cost of investment in the first stage of 

the game has two components. The first component is a factor ‘I’ which is a per unit capacity 
investment cost. In the second stage of the game under certain combinations of first-stage 
investment decision, demand state realization and incumbent’s cooperativeness; it may become 
necessary for the first-follower to add capacities incrementally. The second component of 
investment cost penalizes this incremental capacity addition – smaller the increment, greater is 



the penalty. This mirrors the real life cost implication of incremental capacity additions, which 
emerged from discussions with R&D and Production personnel at FSM.  

Scenario Analysis 

Experimental runs were carried out using the following data. Price and cost values are in 
multiples of Rs.1000/- whereas the quantity figures are in multiples of 10. The complex algebraic 
form of the existence conditions of collusive price pairs is an impediment to the direct analysis of 
the partial derivates of the payoffs under different investment scenarios. This leads us to generate 
some scenarios and test the stability of our findings.  

Discussions with the top management of FSM yielded the following values of the parameters of 
the demand function, variable costs and investment costs. Price Cross Elasticity is taken to be 
equal for the incumbent and the first-follower ( 6.0=α ). The price-elasticity of demand for the 
incumbent, 6.0k INC

= . Since the incumbent has a stronger brand position, the price-elasticity of 
demand of the first-follower is higher than the incumbent. We have investigated the effect of two 
levels of price-elasticity of the first follower – first, 0.1kFF

= and second, 8.0kFF
= . The 

intercept term of the linear demands is the same for both the incumbent and the first-follower; 
and in the first period of the game, its value is uncertain. In one set of scenarios, the intercept 
term of the demand function Φ t

takes the values 125
up

=Φ and 80
dn

=Φ , giving the up-state 

factor, u, of 1.25 and the down-state factor, d, of 0.80. In another set of scenarios, the intercept 
term of the demand function takes the values 150

up
=Φ and 67

dn
=Φ , giving the up-state factor, 

u, of 1.5 and the down-state factor, d, of 0.67. The variable cost of the incumbent, 50vINC
= units 

(that is, Rs.50, 000/-). For each volatility-elasticity combination (total of 4), we inspect both the 
low level collusive price pair and the high level collusive price pair; at different degrees of 
collusion. In the base case, all 8 scenarios have a per-unit capacity investment cost of 400 units 
and the ‘incremental capacity addition penalty of 100 units. We rerun all the eight scenarios with 
higher incremental capacity addition penalty of 400 units. 

From the experimental results presented in Appendix (graphs 1 through 8), we see that the ‘one-

go’ investment, corresponding to putting up capacity of q
N

up
 has a negative NPV, at per-unit 

capacity investment cost of 400 units. The ‘option to play the competitive strategy’ has 
significant value at all degrees of collusion, β . The optimal decision is, in most of the cases, to 

go in for either qCoop

dn
or the minimum of qN

dn
and q

Coop

up
. These results are stable in each of the 

scenarios evaluated, as well as in the 8 scenarios where the incremental capacity addition penalty 
is 4 times that of the base cases. 

The benefits out of going in for a smaller capacity accrue from limited exposure, in case the 
down-state of the demand fructifies as well as the increased payoffs from the possibility of 
maintaining collusive price levels. The costs of smaller capacity, apart from the incremental 



capacity addition penalties, arise from up-state of demand fructifying and from the incumbent 
being purely competitive. In such a case, the first-follower becomes capacity constrained, thus 
hurting the payoffs in the initial year of the second stage. 

As is intuitive, the range of capacities to be considered is larger under high-price point collusion 
and the range of capacities to be considered is smaller under low-price point collusion. At low 

degrees of collusion (where β is low), the NPV of establishing qCoop

dn
or the minimum of qN

dn
and 

q
Coop

up
, through collusion on the high-price point are lower than the payoffs through collusion on 

the low-price point. Perhaps, collusion at the high-price point exposes the first-follower to being 
heavily capacity constrained should the incumbent turn out to be purely competitive, or the 
demand-state turns out to be ‘up’ or both. However, at higher degrees of collusion (where β is 

high), this difference between the NPVs of low-price point and high-price point collusion are 
much less pronounced. 

Under high-price point collusion, the difference between NPV of qCoop

dn
and NPV of minimum of 

qN

dn
and q

Coop

up
is large under smaller degree of collusion and as the degree of collusion increases, 

this gap in the NPV between these two strategies decreases. Under low-price point collusion, the 

difference between NPV of qCoop

dn
and NPV of minimum of qN

dn
and q

Coop

up
. Unlike the high-price 

collusion case, NPV is maximum for capacity corresponding to minimum of qN

dn
andq

Coop

up
, and 

not corresponding to qCoop

dn
. However, in the case of low-price point collusion at a larger degree, 

the maximum NPV is the one associated withqCoop

dn
. In the cases with high volatility, the 

maximum NPV is for the investment in the capacity corresponding to minimum ofqN

dn
and 

q
Coop

up
and no reversal in this result occurs even at larger degrees of collusion. 

Limitations, Extensions, Contributions 

The first order derivatives of collusion payoffs with respect to key model variables have a 
complicated structure (Abramowitz & Stegun, 1972), due to the quartic equation solutions 
underlying identification of the possible collusion prices. Generation of scenarios and their 
analysis is a way around this problem, but the same level of confidence cannot be had. 
Addressing this issue is an important planned research work. The second stage of game is 
modeled as having only on demand shock, and then payoffs computed to infinite periods. A 
much more realistic approach and filled with better insights is to consider 3-5 years in the second 
stage of the game, with a demand shock at each of the years; and then analysis of the game-
theoretic Equilibria and collusion opportunities (Rosenthal, 1981; Trigeorgis, 1996; Grenadier, 



R., 1996). Such an extension could provide valuable insights into the industry structure evolution, 
as well. In this work, the main focus has been to emphasis the real option to revert to the 
competitive strategy, arising due to collusion possibilities also requiring lesser capacities; and 
therefore a more realistic approach to modeling the development of the duopoly has been 
sidestepped. There is a chance that the incumbent engages in a pricing strategy which heavily 
discourages the first-follower from entering the market. In the drugs sector, while such behaviour 
is unlikely to be allowed affect market participants by the regulator, inclusion of a ‘blocking out’ 
pricing by the incumbent would enrich the analysis greatly. The analysis in each of the scenarios 
assumes complete and perfect information available to both players. Lack of complete and 
perfect is an area for extending this work. 

Option-games literature is surprisingly biased towards the examination of investments where 
both players are in a race to develop cutting edge technology, investing in process improvements, 
etc. Almost no attention is paid to the problems of first-followers, which is very important from 
the point of view of Indian industry as well as companies originating in other parts of the third-
world. The price collusion – lesser capacity requirement – hence option to scale up capacities 
contingent on market demand and competitor type is a hitherto unexplored linkage in option-
games literature. The current work addresses this gap in the literature and is line with the manner 
in which the investment problem is perceived in practice. It also gives rise to problems of a 
technical nature like solving for potential collusion price-pairs which leads us to the solution of 
quartic equations, the conditions for existence of real price points and corresponding reaction 
function options. Though the idea of collusion is widely discussed in game-theoretic literature, 
this idea has to my knowledge not been incorporated in option-game and dealt with in Cournot 
game setting, our work brings out the possibility of two collusion points in price competition 
between differentiated products. Focus on the collusion aspects also reveals the algebraic 
complexity involved in finding out potential collusive price points. 

This work is a first step in bringing to bear on the first-follower capital investment problems of 
firms, the idea of option-games in general and the possibility of the ‘real option to revert to the 
competitive strategy’ in particular. Firms in capital intensive industries could find that this 
analysis approach enriches their decision analysis process. 

 



Graph 1 
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Graph 2 
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Graph 3 
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Graph 4 

NPV - Low Volatility, Low Price-Elasticity of FF, Low Price Point Collusion; IC - 400, ICAP - 
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Graph 5 
NPV - High Volatility, High Price-Elasticity of FF, High Price Point Collusion; IC - 400, ICAP- 

100

-25,000.00

-20,000.00

-15,000.00

-10,000.00

-5,000.00

0.00

5,000.00

10,000.00

15,000.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00

Capacity

N
P

V

� 1.7
� 1.6
� 1.5
� 1.4
� 1.3
� 1.2
� 1.1

 

Graph 6 
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Graph 7 
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