
    

 

 

 

PRICING POWER DERIVATIVES: A TWO-FACTOR 

JUMP-DIFFUSION APPROACH 

 

Pablo Villaplana 
 

Universitat Pompeu Fabra 
Department of Economics and Business  

Ramon Trias Fargas, 25-27, 08005 Barcelona (Spain) 
pablo.villaplana@upf.edu 

 

 

Work in Progress 

 

Abstract 

We propose a two-factor jump-diffusion model with seasonality for the valuation of electricity 

future contracts. The model we propose is an extension of Schwartz and Smith (Management 

Science, 2000) long-term / short-term model. One of the main contributions of the paper is the 

inclusion of a jump component, with a non-constant intensity process (probability of occurrence 

of jumps), in the short-term factor. We model the stochastic behaviour of the underlying 

(unobservable) state variables by Affine Diffusions (AD) and Affine Jump Diffusions (AJD).  

We obtain closed form formulas for the price of futures contracts using the results by Duffie, 

Pan and Singleton (Econometrica, 2000). We provide empirical evidence on the observed 

seasonality in risk premium, that has been documented in the PJM  market. This paper also 

complements the results provided by the equilibrium model of  Bessembinder and Lemmon 

(Journal of Finance, 2002), and provides an easy methodology to extract risk-neutral 

parameters from forward data, that may be used for calibration of real options models. 

The model may also be used for scenario generation, valuation of financial options (trough 

inversion of the characteristic function) and real options applications. 

 
 

 

 



  

PRICING POWER DERIVATIVES: A TWO-FACTOR JUMP-

DIFFUSION APPROACH 

 

1. INTRODUCTION 

During last years US and EU electricity supply industries are undergoing a process of 

fundamental change. The main characteristic of this deregulatory process is the creation 

of a Power Exchange, PX, with an optional or mandatory spot market. In the spot 

market suppliers and consumers determine market clearing prices and quantities through 

an auction mechanism. The fact that electricity cannot be stored, makes this commodity 

a peculiar one. Market-clearing prices are volatile and they are subject to upward and 

temporary spikes. As a consequence, a market for financial instruments has been usually 

created to allow the participants to hedge price risk, through a set of financial 

instruments (futures, forwards, options…). 

The main goal of this paper is to provide a model for the valuation of futures contracts, 

and a better understanding of the compensation agents in power markets require to bear 

price risk. Our proposed models are expressed in reduced-form and extend previous 

work by Schwartz and Smith1 (2000), Lucia and Schwartz (2002) and Deng (2001), we 

also take into account in the specification of the state variables the results obtained by 

Pirrong and Jermakyan (2000), Bessembinder and Lemmon (2002) and Escribano, Peña 

and Villaplana (2002) among others. 

We propose two different sets of two-factor jump-diffusion models with seasonality for 

the valuation of electricity derivative contracts depending if we ana lyse spot price or 

log-spot price. Both price and log-price models are two-factor jump-diffusion models. 

The models we propose are extensions of Schwartz and Smith (2000) and Lucia and 

Schwartz (2002), and both of them are special cases of some of the models we propose. 

The major extension is the inclusion of a jump component in the short-term factor, also 

allowing the intensity process (probability of occurrence of jumps) to be non-constant. 

This major extension follows the suggestions proposed by Schwartz and Smith (2000), 

Lucia and Schwartz (2002) and the results provided by, among others, Escribano et al. 

(2002). We have analysed two different types of jump components (Gaussian or 

Exponential jump size distribution). We also extend the specification for the long-term 

factor (equilibrium level), and specify the long-term factor either as an Arithmetic 

                                                 
1 Schwartz and Smith (2000) develops a two-factor model of commodity prices that allows mean-
reversion in short-term prices and uncertainty in the equilibrium model to which prices revert. 



  

Brownian Motion (like in the original work of Schwartz and Smith, 2000) or a Mean-

Reverting Process. Therefore, for each subset of models (spot price or log-spot price) 

we have four different models that are the result of combining the two different 

specifications for the jump component and the two different specifications for the long-

term factor. 

We model the stochastic behaviour of the underlying (unobservable) state 

variables by Affine Diffusions (AD) and Affine Jump Diffusions (AJD). With these 

specifications we are able to exploit the recent transform analysis of Duffie, Pan and 

Singleton (2000), and Chacko and Das (2002) and we obtain closed form formulas, for 

the price of futures contracts and options (trough inversion of the characteristic 

function, that is obtained in closed-form). 

One of the main goals of financial markets in general, and futures markets in 

particular is to facilitate the transfer of risk to those willing to bear it. The forward 

premium (defined as  the difference between the current futures price and the expected 

price on the delivery date) represents the compensation required in equilibrium by those 

who support the price risk of the underlying commodity. The sign and size of the 

forward premium should be, therefore, related to economic risks and the willingness of 

different market participants to bear these risks (Hirshleifer,1990; Longstaff and Wang, 

2002). Given the relative importance of spikes in  electricity prices (see for example 

Knittel and Roberts, 2001; Escribano et al., 2002; Geman and Roncoroni, 2003), 

different types of price risk seems to be at work in electricity forward contracts. 

Previous empirical evidence (at least for the PJM market) has provided evidence on the 

existence of an important risk premium with seasonal behavior (with significant 

differences in both size and sign), see Pirrong and Jermakyan (2000). Bessembinder and 

Lemmon (2002) present an equilibrium model and show the differences in SIZE and 

SIGN may exist in electricity markets (depending on the degree of skewness of 

electricity prices), see also Geman and Vasicek (2001). 

Some work has already been done on the valuation of electricity forward contracts. 

Lucia and Schwartz (2002) examine the importance of the regular pattern in the 

behavior of electricity prices and its implications for valuation of forward contracts. 

They analyse one and two-factor diffusion models, extending the long-term short-term 

model of Schwartz and Smith (2000) by incorporating seasonality (deterministic 

function) and applying the analysis to NordPool futures and forwards data. On the other 

hand, Pirrong and Jermakyan (2000), Bessembinder and Lemmon (2002) and Longstaff 



  

and Wang (2002) among others, deal with the valuation of forward contracts in the 

Pennsylvania- New jersey – Maryland market (PJM henceforth). Their findings show 

that electricity forward prices contain an important risk premium, that is, forward prices 

(expected spot price at maturity under the risk-neutral measure) differ from expected 

delivery date spot prices (under the objective probability function). Pirrong and 

Jermakyan (2000) (PJ henceforth) consider the difference as an endogenous market 

price of power demand risk. Bessembinder and Lemmon (2002) (BL henceforth) 

present an equilibrium model (with limited participation), their model predicts “forward 

power price is a downward biased predictor of the future spot price (negative forward 

premium) if expected power demand is low and demand risk is moderate. However, the 

equilibrium forward premium increases when either expected demand or demand 

variance is high, because the positive skewness in the spot power price distribution”.  

The empirical evidence (for the PJM market) provided by BL and PJ indicates the 

premium in forward markets is positive and greatest during summer months2, and 

negative or zero in the rest of the months. We will show this seasonal pattern in the risk 

premium can be captured by our model and may be interpreted as a jump risk premium 

related to the observed (under the objective probability measure) seasonal pattern of 

spikes in the PJM market (see also Escribano et al. (2002)). Lucia and Schwartz (2002) 

showed the pattern, size and sign of forward  risk premium in NordPool is not clear. In 

fact, even the sign of the market forward premium in NordPool is not clear. Their 

results for the one-factor model show the market price of risk is positive, so that the 

forward premium is negative, while in the results for the two-factor model the market 

price of risk is negative (for both the short and the long-term factor), so that the forward 

premium is positive (forward price larger than expected spot price at the delivery date, 

under the objective probability measure). However, their “quantitative” results should 

be considered as preliminary. The fact that, as Escribano et al.(2002) showed, jumps are 

comparatively less important in NordPool than in the PJM market may lie behind the 

differences in forward risk premium behavior. Lucia and Schwartz (2002) consider as 

an interesting line of research the inclusion of jumps and/or the possibility of seasonal 

risk premium. Here we follow this idea and show the existence of “seasonal skewness” 

under the objective probability measure, that may translate into “seasonal forward 

premium”. It also must be noted, by introducing the jump component we are able to 

                                                 
2 In the PJM market demand is higher during  summer months, and prices are also more volatile with 
spikes. See Escribano et al. (2002) for the seasonal behavior of spikes in this market. 



  

distinguish between short-term (and long-term) risk premiums and jump risk premium. 

It seems plausible that agents react in different ways to different types of uncertainty. 

Our specification is therefore more flexible than Schwartz and Smith (2000) and Lucia 

and Schwartz (2002), since we allow forward risk premium to be composed by different 

kinds of  risk premium. 

While PJ and BL provide empirical evidence and theoretical arguments for the existence 

and sign of a forward premium in electricity markets in general (and in particular in the 

PJM market) their practical implications for the valuation of derivatives contracts are 

limited. We provide a model that can be used for the valuation of derivatives contracts 

and is able to capture the salient features of forward curve in the PJM as documented by 

PJ, BL and Longstaff and Wang3 (2002). That is our specification captures the 

seasonality in jumps  (see Escribano et al., 2002) and in risk premiums (see 

Bessembinder and Lemmon (2002) and Pirrong and Jermakyan (2000)). 

For the NordPool market, we show the existence of a (seasonal) jump component under 

the objective probability measure (as has been already documented in Escribano et al. 

(2002)) and provide a model for forward valuation that allows for such component and 

therefore allows seasonal behavior of the risk premium. It must be noted, that 

seasonality in jumps in NordPool is smoother than in PJM and relatively less important. 

Since on one hand, there exist jumps in electricity prices in the NordPool and on the 

other hand Lucia and Schwartz (2002) is a special case of our model, it seems plausible 

our model should provide smaller valuation errors than theirs. 

The paper is organized as follows. Section 2 presents the mathematical preliminaries 

that allow us to derive closed-form formulas for the price of futures contracts when the 

underlying follows a jump-diffusion process. This section follows the presentation of 

Duffie, Pan and Singleton (2000). Section 3 presents the specification of the state 

variables under the objective probability measure. In Section 4 we present the 

specification under the risk-neutral measure and provide the price formulas for all the 

eight models we consider in this paper. Model’s calibration and empirical behavior of 

forward curves is provided in Section 5. Last section concludes and provides lines for 

future research. 

 

                                                 
3 Our model and our preliminary results also support the hypothesis analysed by Longstaff and Wang 
(2002) that “electricity forward prices are determined rationally by risk-averse economic agents”. 



  

2. MATHEMATICAL PRELIMINARIES 

The existence of spikes in deregulated electricity markets in almost all the countries that 

have created a PX (see Escribano et al., 2002), points out the importance of introducing 

jumps in a model for the pricing of contingent claims. That is, in order to obtain reliable 

estimates for the prices of contingent claims, we must move away from the diffusion 

assumption and we have to model the underlying state vector with a jump-diffusion 

process. An assumption that has been proved very useful in the finance literature is that 

the state vector X follows an affine jump-diffusion process (AJD). An AJD is a jump-

diffusion process for which drift vector, “instantaneous” covariance matrix, and jump 

intensities all have an affine (linear) dependence on the state vector. The affine jump-

diffusion processes have been recently synthesized and extended by Duffie, Pan and 

Singleton (2000) (DPS henceforth), see also Chacko and Das (2002). Affine diffusions 

(AD) and affine jump-Diffusion (AJD) are quite useful in modelling underlying state 

variable for several reasons. DPS have shown the close connection between the 

structure of this kind of models and some transforms (Fourier), and how from this 

transform we can obtain derivative prices4. We propose two two-factor model with 

jumps to model the underlying evolution of electricity spot prices in deregulated 

markets.  

2.1.- Affine and Affine Jump- Diffusions Processes 

We model the evolution of the underlying state variables with a general class of 

continuous time stochastic processes, the so-called affine jump-diffusion (AJD) 

processes. We follow here the presentation in Duffie, Pan and Singleton (2000), see also 

Chacko and Das (2002). Fix a probability space {Ω,F,P} and an information filtration 

(Ft) = { Ft : t ≥ 0}, and suppose that Xt is a Markov process in some state space D ∈ℜ n, 

following the stochastic differential equation (SDE): 

dXt = µ(Xt) dt + σ(Xt) dWt + JdN(λ)      (1) 

where Wt  is an (Ft)-standard Brownian Motion in ℜn, µ(⋅): D → ℜ n and σ(⋅): D → ℜn 

are respectively the drift and diffusion functions, and JdN(λ) is a pure jump process 

with intensity {λ(Xt): t ≥ 0}, and jump amplitude distribution J on ℜn. Intuitively, µ(⋅) 

and σ(⋅) are the drift and diffusion term of the process when no jump occurs, and the 

jump term captures the discontinuous change of the path with both random arrival of 

                                                 
4 Heston (1993) introduced the use of Fourier Transforms in derivative pricing. He showed call option 
pricing formulas can be computed by Fourier inversion of the conditional characteristic function, which 
has a closed-form for his particular affine stochastic volatility model. 



  

jumps and random jump sizes. That is, conditional on the path of X, the jump times of 

the jump term are the jumps times of a Poisson process with, possibly, time-varying 

intensity {λ(Xs) : 0 ≤ s ≤ t}, and the size of the jump of  at a jump time s’ is independent 

of {Xs : 0 ≤ s ≤ s’} and has the probability distribution J. 

Following Duffie, Pan and Singleton (2000) we impose an “affine” structure on the 

coefficients functions µ, σσ’ and  λ. Following DPS presentation, we have: 

 

µ(x) = K0 + K1 ⋅ x                                                                         (1a) 

(σ(x)σ(x)’)ij = (H0)ij +(H1)ij ⋅ x                                              (1b) 

λ(x) = l0 + l1⋅x                                                                               (1c) 

R(x) = ρ0 + ρ1⋅x                                                                           (1d) 

 

Where K = {K0, K1} ∈ ℜn × ℜn×n, H = {H0, H1} ∈ ℜn × ℜn×n×n, l = {l0, l1}∈ ℜ × ℜn, ρ = 

(ρ0, ρ1) ∈ ℜ × ℜn. Let θ(c) = ∫ℜn
  exp{c⋅z} dv(z), be the jump transform of the jump size 

distribution5. The function θ(•) completely determines the jump size distribution. We 

assume constant interest rates (ρ1 = 0 in equation (1d)), and therefore futures prices are 

equal to forward prices. Let ϑ ≡ (K, H ,l ,θ, ρ),  it captures both the distribution of the 

vector process X as well as the effects of discounting and determines a transform6 Ψϑ: 

Cn × D × ℜ+ ×ℜ+ → C of XT  conditional on corresponding filtration at t Ft,  t ≤ T,  by 

( )











⋅








−≡Ψ ∫ t

uX
T

t

s FedsXRETtXu T)(exp,,, ϑϑ    (2) 

where Eϑ denotes expectation operator under the distribution of X determined by ϑ. 

Note that the difference between Ψϑ and the conditional characteristic function of the 

distribution of XT is the discounting factor. 

Duffie, Pan and Singleton (2000) prove that the affine structure in (1) implies, under 

technical regularity conditions, ΨΨ (•) has the exponential-affine form: 

( ) ( ) ( ) xTtuTtueTtxu ⋅+≡Ψ ,,,,,,, βαϑ      (3) 

                                                 
5 Let v be the jump size distribution and let g(z) be the corresponding density function, then, θ ≡ ∫ exp(cz) 
dv(z) = ∫ exp(cz) g(z) dz. Therefore, θ is the characteristic function of the jump size distribution. Since we 
are going to deal either with normally or exponential distributed jump sizes, θ will be the characteristic 
function of Gaussian or Exponential distribution, depending of the assumptions of a particular model. 
6 In the general setting of DPS, u is an n-dimensional vector, belonging to the set of complex numbers. 
Along this paper is enough to consider u is a vector of real numbers. In fact, along all this paper, u will be 
at most a two-dimensional vector, with 1 or zero in its components. 



  

where α and β satisfy the complex-valued Riccati equations: 

( )( )1)()()(
2
1

)()( 0000 −−−−=
•

tltHttKt TT βθβββρα    (4a) 

( )( )1)()()(
2
1

)()( 1111 −−−−=
•

tltHttKt TT βθβββρβ    (4b) 

 

with boundary conditions, β(T) = u, α(T) = 0. 

For the log-spot price models we show futures price formula is completely determined 

by ΨΨ (u,X,t,T) with u = (1,1), (see Appendix A). However for price- level models we 

have to calculate a simplified version7 of the “extended” transform. Again, following 

DPS we define the “extended” transform ΦΦ ϑ: ℜn × Cn × D × ℜ+ ×ℜ+ → C of XT 

conditional on corresponding filtration at t Ft,  t ≤ T,  by 

( ) ( ) 









⋅








−=Φ ⋅∫ t

Xu
T

T

t

s FeXvdsXRETtXuv T)(exp,,,,ϑ   (5) 

Again, under technical conditions, including the differentiability of the jump transform 

θ, it may be shown: 

( ) ( ) ( )xtBtATtxuTtxuv ⋅+⋅Ψ=Φ )()(,,,,,,, ϑϑ    (6) 

where Ψϑ is given by expression (3) and where A and B satisfy the linear ordinary 

differential equations: 

( ) )()()()()()( 111 tBtltBHttBKtB TT βθβ ∇++=−
•

   (7a) 

( ) )()()()()()( 000 tBtltBHttBKtA T βθβ ∇++=−
•

   (7b) 

with the boundary conditions B(T) = v and A(T) = 0, and where ∇θ(c) is gradient of 

θ(c) with respect to c ∈ Cn. We show in Appendix A (see equation A.1 and A.2) the 

close connection between the expressions (3) and (6) and the futures price formula for 

log-price and level price models. 

 

3. SPECIFICATION OF STATE VARIABLES UNDER THE OBJECTIVE 

PROBABILITY MEASURE 

We have two different sets of models depending if we analyse spot price or log-

spot price. Traditionally, commodity price models have been stated in terms of log-

                                                 
7 In our applications the calculation of the extended transform will simplify since we will work with v = 
(1,1) and u = (0,0) 



  

prices (see e.g. Schwartz, 1997 and Schwartz and Smith, 2000), although we consider in 

the case of electricity prices, and because the existence of jumps, models for the 

valuation of electricity derivatives should be stated in price levels. The reason is log-

transformation affects the estimation of the jump component, in particular on those 

markets where jumps are relatively less important, logarithmic transformation may 

affect the estimation of the jump component. In particular, the log-transformation affect 

the skewness of the series (that in our model is controlled by the jump component). The 

empirical evidence presented by Lucia and Schwartz (2002) and by Escribano et al. 

(2002) also seems to favour price- level specification. In particular, Lucia and Schwartz 

(2002) found their price models fitted forward prices better than log-price models. 

Moreover, as has been pointed out by Bessembinder and Lemmon (2002) and Pirrong 

and Jermakyan (2000), the huge risk premium observed in summer months in PJM is 

closely related to “skewness” premium (i.e. “jump” risk premium). Therefore it may be 

the case, that in some markets log-prices are less skewed and the existence of skewness 

seasonality (or jump seasonality) exists in the price level series but is difficult to 

estimate empirically (under the objective probability measure) if the analyst uses log-

price series. In any case, we present both sets of models and derive the futures price 

formula for the spot price and the log-price case. However, we emphasize the use of  

price models, and in the empirical section we will show spot price models represent in a 

better way the characteristics of the market. We will also show, the qualitative behavior 

of forward contracts under log-price or price models is not too different. 

All of the specifications include a deterministic factor (sinusoidal function) that tries to 

capture the observed seasonality in electricity spot and futures prices. Both spot price 

and log-spot price models are two-factor jump-diffusion models. As we stated before, 

the two factors resemble partially the model proposed by Schwartz and Smith (2000). 

The major difference is that in our models, the mean-reverting (or short-term process) is 

allowed to jump (with non-constant intensity process). We have analysed two different 

types of jump components (Gaussian or Exponential jump size distribution). Another 

extension is to allow two different specifications for the long-term factor (Arithmetic 

Brownian Motion or Mean-Reverting Process).  

For each subset of models (spot price or log-spot price) we have four different models 

that are the result of combining the two different specifications for the jump component 

and the two different specifications for the long-term factor, so we are dealing with 



  

eight different models. Therefore the models we propose differ among them by three 

characteristics: 

a) Relevant variable: Price Level vs. Log-Price 

b) Jump Size distribution: Gaussian vs. Exponential Jumps 

c) Long-term factor: Arithmetic Brownian Motion vs. Mean Reverting process 

Table  1 and 2 summarizes the models we analyse. 

 

 

 

The first two models (Model 1a and Model 1b) resemble those proposed by Schwartz 

and Smith (2000) and Lucia and Schwartz (2002), without jumps. In both papers the 

first factor captures short-term movements and is modelled with an Ornstein-Uhlenbeck 

(OU) process while the second factor (long-term equilibrium) is modelled with an 

Arithmetic Brownian Motion (ABM). One of the main contributions of this paper is to 

introduce jumps in the short-term deviations factor χ. We analyze two different 

specifications for the jump component and allow the intensity process  to be non-

constant. We take into account two different specifications, in Model 1a and 2a we 

assume jump size distribution is Gaussian while in Model 1b and 2b we allow for two 

type of jumps (see also, Deng (2001)), each with exponential distributed jump 

magnitude. The Gaussian assumption imposes symmetry in the jump distribution while 

the exponential assumption allows for asymmetry and separates positive and negative 

jumps. Schwartz and Smith (2000) state the inclusion of jumps as a possible extension 

in order to deal with electricity prices but, to the best of our knowledge, no one has still 

Table 1: Summary of  the specifications of relevant state variables. 

Price / Log-Price Model 1ª  Model 1b Model 2ª  Model 2b 

Short-term factor (χχ ) 

with 

Jump component: 

seasonal intensity process 

size distrib.: Gauss./Exp. 

Ornstein- 

Uhlenbeck 

+ 

Gaussian 

Jump Size 

Ornstein- 

Uhlenbeck 

+ 

Exponential 

Jump Size 

Ornstein- 

Uhlenbeck 

+ 

Gaussian 

Jump Size 

Ornstein- 

Uhlenbeck 

+ 

Exponential 

Jump Size 

Long-term factor 

(equilibrium level) : ξξ  

Arithmetic 

Brownian 

Motion 

Arithmetic 

Brownian 

Motion 

Ornstein-

Uhlenbeck 

Ornstein-

Uhlenbeck 



  

pursued this line of research. This general model takes into account short term 

deviations from equilibrium prices (χ) and also big and short lived departures from it in 

form of jumps. At the same time since deregulation of electricity markets is recent, there 

could exist some uncertainty on the level of equilibrium prices (threat of new entrants, 

possibility of horizontal and vertical disintegration, regulatory risk,…) that is captured 

by allowing the equilibrium level to be stochastic. Schwartz and Smith (2000) originally 

assume long-term equilibrium follows8 an Arithmetic Brownian Motion (ABM). This 

assumption introduces a (positive or negative) trend in the futures price formula (see 

Table 3 and 4). We have introduced an alternative possible assumption, mean-reverting 

long-term factor9. This specification may be more interesting than the ABM, originally 

proposed by Schwartz and Smith (2000) and used by Lucia and Schwartz (2002). While 

the ABM specification introduces a deterministic time trend in the futures formula (both 

in the price level and log-price subsets of models), a mean-reverting equilibrium level 

may be more useful to capture transient (although long lasting) increases or decreases of 

the equilibrium level, that ultimately would revert to an average equilibrium level. For 

instance, in a system mainly driven by hydro resources, during years of low water 

reservoirs the equilibrium level could increase temporarily during few years because the 

change in the cost structure in the supply side. With the MR equilibrium level 

specification we do not force equilibrium level to increase or decrease systematically 

with time but allow equilibrium levels to be different during several years, if there exist 

some temporary change in the cost structure of the market, for instance because 

temporary smaller generation capacity. Which specification (ABM or MR) is the most 

adequate for each market requires an empirical answer.  

Although the inclusion of a long-term process may be interesting for some applications 

that need to take into account the long-run behavior of electricity prices (for instance 

real options valuation), it must be noted the long-term factor (independently of the 

specification we use) will not play a substantial role in the valuation of futures 

contracts, which usually have a maturity no longer than one year. As BL pointed out 

(and showed empirically at least for the PJM market) risk premium in forward contracts 

is due to the skewness (governed in our model by the jump component) of electricity 

                                                 
8 It should be noted, Schwartz and Smith (2000) dealt with oil forward contracts, and therefore the assumption for the 
long-term factor may be different depending the commodity we analyze. 
9 Mean-reverting equilibrium models have been used in the interest rate literature by Balduzzi et al. (1996, 1998, 
2000) and Jegadeesh and Pennacchi (1996), in models with a “stochastic central tendency”.  
 



  

price distribution at maturity. (It can be shown skewness of the distribution is mainly 

governed by the jump component, for instance by derivation of the characteristic 

function, that may be calculated using the ODE approach outlined in previous section).  



    

Table 2: Summary of theoretical models under the objective probability measure. 

Model Price Level Specification Log-Price Specification 

Short-term:  MR 

Long-term: ABM 

Jump: Gaussian 
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Long-term factor: MR 

Jump: Gaussian 
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Short-term factor: MR 
Long-term factor: ABM 
Jump: Exponential 
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Short-term factor: MR 
Long-term factor: MR 
Jump: Exponential 
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4. RISK NEUTRAL PROCESSES AND VALUATION 
In all the models we have proposed there are four sources of uncertainty, those 

generated by the diffusive factors (short term uncertainty and long term uncertainty) and 

two sources of uncertainty generated by the jump component. Jump risk is composed by 

jump-intensity risk and by jump-size risk. The risk-neutral10 parameters are therefore 

( )** ,,, Jµλφφ ξχ . The lack of liquidity in electricity forward contracts imply the 

observable forward contracts are those with the shortest maturities. Therefore, at this 

stage of development of electricity forward and futures markets, the most important risk 

components for the valuation of forward contracts would be the short-term risk premia 

and the jump risk premia. 

If we focus on the market prices of jump risks, we may allow the risk-neutral mean 

jump size *
Jµ  to be different from its data-generating counterpart Jµ , therefore we are 

incorporating a premium for jump-size uncertainty. On the other hand, we may 

incorporate a premium for jump-timing risk, if we allow the parameter λt
* for the risk-

neutral jump-arrival intensity to be different from its data-generating counterpart λt. 

Therefore, differences between Jµ  and *
Jµ  and between λt and λt

*, will be a measure of 

market risk premium for each source of jump uncertainty. We make the simplifying 

assumption (see also Pan, 2002) that all the risk premia is captured by jump-size risk, 

therefore we assume tt λλ =* . 

Once we have specified the models under the risk-neutral measure we have to apply the 

transform analysis to obtain electricity futures prices. Table 3 and 4 provide the risk-

neutral specifications and futures price formulas for price level and log-price models. 

We present some detailed derivation for the pricing formulas in the Appendix. 

 
 
 
 
 
 
 
 

                                                 
10 Under the objective probability distribution, φχ = φξ = 0, the intensity process (probability of jumps) is 
given by λt and the mean jump size is  µJ. 



    

Table 3: Summary of theoretical models and formulas. Price level specification. 

Model Risk-neutral specification Futures Price Formula 

Short-term:  MR 
Long-term: ABM 
Jump: Gaussian 
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Table 4: Summary of theoretical models and formulas. Log-Price specification. 

Model Risk-neutral specification Futures Price Formula 

Short -term:  
MR 
Long-term: 
ABM 
Jump: 
Gaussian 
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We will focus in Model 1a (price level specification) with more detail for exposition 

reasons. 

Model 1a (Price Level): 

Mean Reverting (MR) short term factor with Gaussian jump size + Arithmetic 

Brownian Motion (ABM) equilibrium level. 

For exposition reason we present again Model 1a (price level) under the 

empirical probability measure. That is in this model electricity price is assumed to be 

described  by the following specification: 
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In words, electricity price is given by the sum of three components. The first one is a 

deterministic seasonal function (e.g. sinusoidal specification), the second and third 

components are non-observable state variables. χ captures the short-term movements of 

electricity price, it is a mean-reverting process with jumps. Probability of occurrence of 

jumps is given by λt, and given a jump occurrence the jump size follows a Gaussian 

distribution, with mean µJ and standard deviation σJ. Finally, ξ  represents the long-term 

equilibrium level, and is given by an ABM, in this specification. 

In order to value derivatives one has to use risk-neutral processes to describe the 

evolution of the underlying state variables. In our model we have to introduce two 

addit ional parameters φχ and φξ that specify constant reductions in the drifts for each 

process. Moreover, the mean jump size (µJ) and the mean probability of observing a 

jump (λ) may also be different under the risk-neutral measure. As we stated before we 

assume the intensity process under the objective and risk-neutral measure are the same, 

therefore all jump risk premium will be “artificially” captured by jump-size risk 

premium. 

Specifically, we assume that under the equivalent (or risk-neutral) martingale measure 

the stochastic processes are of the form: 
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where φχ and φξ are the market prices of risk for short-term and long-term uncertainty, 

respectively. We assume both are constant 11. *
Jµ  is the mean jump-size under the risk-

neutral measure. As we stated before, it will capture jump risk premia, since we have 

made the simplifying assumption there is no jump risk intensity premia. 

By using the ODE approach (equations 7a-7b with u = (0,0) and v = (1,1)), the price of 

the future contract under this model is given by the following equation (detailed 

derivation in the Appendix): 

 

( ) ( ) ( ) ( )τττχ
ξ

µλξχ
φ

τµ kJ
tt

kk
t e

k
Ttee

k
TfSTtF −−− −+++−−+= 1,1)(,,

*
*   (9) 

 

where τ = T – t, ξξξ φµµ −=* is the risk-adjusted equilibrium drift, and λ(t,T) represents 

the stepwise intensity function, and is composed by four quarterly dummies (fall, 

winter, spring and summer). 

We may see the futures price is mainly composed by four components. The first term 

)(Tf is related to the seasonal (deterministic) beha viour of electricity prices, the second 

component captures the diffusive risk premiums (long-term and short-term uncertainty), 

and is given by ( )τχ
ξ

φ
τµ ke

k
−−− 1* , the third component captures the actual short-term 

deviation and equilibrium level ( )tt
ke ξχτ +− , and the last term captures the jump 

component. 

Bessembinder and Lemmon (2002)  predict in electricity markets should exist a 

seasonal risk premium12  related to the skewness of the underlying variable. In 

particular, with low demand risk (so low skewness) the risk premium should be negative 

while during periods of high demand risk (high skewness in the spot price) risk 
                                                 
11 Although alternative specifications could be included. 
12Risk Premium (RPt) is defined as the difference between the current futures price and the expected price 
on delivery date, i.e. RPt = F(t,T,S) - Et

P(ST), where expectation operator is calculated under the objective 
probability measure. 



  

premium is positive. Note that effectively our pricing formula is able to capture this 

pattern, given the relationship between jumps and skewness of the underlying 

distribution. During periods where the probability of jumps is zero (or in situations with 

JJ µµ ≈* ), the risk premium will be mainly driven by φχ. Given the empirical evidence 

reported by BL and PJ for the PJM market, our model is able to replicate that pattern if 

φχ > 0 and JJ µµ >* . This would imply producers are willing to sell forward during “low 

skewness periods”, ie. when the probability of jumps is low, while there is an important 

jump risk premium in the other periods, so distributors are willing to buy forward 

although they have to pay a big risk premium. 

In particular we are able to derive an explicit formula for the risk premium. In 

particular, the expected value of ST at t under the objective probability measure (P) is 

given by the following expression: 
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and therefore we can obtain an explicit formula for risk premium under Model 1a, and 

we can check the close connection between risk premium and skewness. In particular, if 

skewness is seasonal (through seasonality in jumps) we will have seasonality in risk 

premium (RPt). That is, 
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It must be noted the first part of the formula ( )





−+ − τχ

ξ

φ
τφ ke

k
1 corresponds to the risk 

premium for diffusive risk. This is the kind of risk premium that may be generated with 

the models proposed by Schwartz and Smith (2000) and Lucia and Schwartz (2002). It 

must be noted these models cannot generate seasonality in risk premium. Therefore, 

these models cannot generate the pattern of risk premium predicted by Bessembinder 

and Lemmon (2002) if skewness is non-constant. The last term of the equation, 

( ) ( )τµµ
λ kJJ e

k
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 is the one that corresponds to the jump effect, and is one of the 



  

main contributions of this paper. Therefore with our extension we are able to generate 

seasonality in risk premium as predicted by Bessembinder and Lemmon (2002). Again, 

the seasonality in risk premium following Bessembinder and lemmon (2002) is 

generated through “skewness risk premium”. 

In the next section we report an empirical analysis and we show the kind futures 

curve pattern our models may generate. We have to say the empirical section is still 

preliminary and at this stage the section tries to illustrate the kind of behavior futures 

curve may exhibit under our models. We have estimated some parameters from spot 

price series following the methodology proposed by Escribano, et al. (2002), and we 

have calibrated risk-neutral parameters from forward data.  

 

5. EMPIRICAL APPLICATION: PJM SPOT AND FORWARD DATA. 

In this section we provide an empirical application with data from the PJM market. The 

goal of this section is to show how futures contracts curves behave under our 

specifications (in particular under Model 1a, price level). Moreover, we show how to 

estimate risk-neutral parameters from traded contracts that could be useful for the 

valuation of other types of derivatives. We also analyse the relative importance of risk 

premium over forward price. 

The PJM (Pennsylvania-New Jersey-Maryland) market is among the most liquid and 

developed electricity markets. Moreover the rapid growing literature on electricity 

forward pricing has focused on a major extent on this market (Bessembinder and 

Lemmon, 2002; Longstaff and Wang, 2002; Pirrong and Jermakyan, 2000 among 

others). A detailed analysis of the behavior of electricity prices (under the empirical 

probability measure) for this and other  markets has been done in Escribano et al. 

(2002). 

In Appendix A.2. we report some summary statistics for electricity price and log-price 

series. We also plot price series and the shape of the unconditional empirical 

distribution of price series. One of the first conclusions may be obtained, and outlined 

previously by Escribano et al. (2002) is the importance of spikes in the PJM market. We 

may see a high degree of skewness, that is generated by the occurrence of extreme 

observations (jumps) that are quite important in this market. We may also observe from 

the plot of spot price series, extreme observations have a seasonal pattern, and are 

concentrated in summer that is in those months with higher demand. We will 

corroborate this point with the formal estimation of the seasonal (through quarterly 



  

dummies) specification for λt, again see also results obtained by Escribano, Peña and 

Villaplana (2002). 

We have spot and forward data for the period January 1997 – March 2000. Data has 

been obtained through Bloomberg. This sample period is similar to the period analysed 

by Bessembinder and Lemmon (2002) and Pirrong and Jermakyan (2000) and allow us 

to compare the results with those obtained by these authors. 

5.1.- Estimation procedure  

The estimation procedure is performed in two steps. 

a) estimate the process under the empirical probability measure with spot data from 

January 1997 – December 1998 (we also have estimated the process with the 

sub-sample January 1998 – December 1998). 

b) estimate the remaining parameters (under the risk-neutral probability measure) 

with forward data for the period January 1999 – March 2000. 

 

We present results for Model 1a (price level). We have estimated the model following 

the methodology proposed in Escribano et al. (2002), see also Knittel and Roberts 

(2001), and Geman and Roncoroni (2003)13.  In this way we are able to obtain estimates 

for { }ξχ µσµλσ ,,,,,),( JJtktf . The remaining estimates needed to build the forward 

curve are those related to the market prices of risk { }*,, Jµφφ ξχ .  

With the first set of parameters (those that do not change under the objective and under 

the risk-neutral probability measure,) we may calculate the expected (under the 

objective probability measure) price on delivery (i.e. by fixing φχ = φξ  = 0 and 

JJ µµ =* in the price formula). Therefore we can analyse the behaviour of the risk 

premium in a clearer way. In other words, with the estimated parameters we calculate 

the price of the future contract under the objective probability measure (i.e. assuming no 

risk premium). So we may show how risk premium affect the behaviour of the forward 

curve, and we show that effectively our model captures the main characteristics 

presented in BL and PJ . Moreover, our model is much easier to estimate and is useful 

                                                 
13 Other approaches may be used in this first step. For instance, we could estimate the parameters 
applying the Kalman filter to the spot price series. We could “robustify” the use of the Kalman filter by 
detecting previously the “outliers” or by imposing some level (three standard deviations) and eliminate 
those observations above it.  
We want to emphasize there could be different econometric methodologies to estimate parameters in this 
first step. The results should not differ qualitatively on the exact econometric procedure the analyst uses 
in this first step. 



  

for extracting risk premium and for the pricing of European options (by inversion of the 

characteristic function). 

We provide a summary table with the estimated parameters. We have not provided in 

the table the parameters corresponding to the seasonal function f(t), but more detailed 

results about the estimated parameters are reported in Appendix A.4. 

 

Table 5. Summary estimated parameters14, PJM. (Jan. 1998 – Dec. 1998). (t-stat. in 

parenthesis) 

k σχ λsummer µJ σJ 

0.73 

(8.85) 

7.61 

(32.81) 

0.17 

(3.19) 

68.57 

(1.86) 

78.27 

(3.07) 

 

From the estimation results we have obtained µξ is not statistically significant. From the 

graphical representation of electricity prices we may see there was not a clear trend 

(upward or downward) so equilibrium price remains constant during the analysed 

period. We also may observe probability of observing jumps is only statistically 

significant for summer months. Finally we have obtained, a high degree of mean 

reversion, since k is 0.7, this imply a half- life of shocks of one-day approximately. This 

would be consistent with the results provided by Pirrong and Jermakyan (2000). They 

analysed load mean-reversion with hourly data and found half- life of load shocks to be 

10 hours. 

With the estimated parameters form electricity spot prices we perform the second step. 

We estimate the remaining parameters from daily one-month forward contracts for the 

period January 1999 – March 2000. Since µξ was not found to be statistically significant 

and since we just have one-month maturity contracts we have imposed φξ = 0.  

We performed estimation for two different specifications for the risk-neutral mean jump 

size parameter, *
Jµ . In the first one (specification A) the parameter is constant while in 

specification B we allow it to be seasonal. We allow risk-neutral mean jump size to be 

different for contracts with delivery in June, July and August, trough the following 

specifications, 
July

JulyJ
June

JuneJ
May

MayJJ DDD ⋅+⋅+⋅= *
,

*
,

*
,

* µµµµ  

                                                 
14 Although the intensity process is specified by quarterly dummies, we could use a more detailed 
specification, with monthly summer dummies. More detailed results upon  request. 



  

where iD  is a monthly dummy variable that takes value 1 if the observation is on the i-

month and zero otherwise. 

Estimation is carried out by minimising the squared error between observed forward 

prices and model’s prices. 

Summary results are reported in the following table: 

 

 

Table 6. Risk-neutral estimates. 

Parameter 

(std.error) 

φχ *
Jµ  *

,MayJµ  *
,JuneJµ  *

,JulyJµ  Sum Squared 

Residuals 

Specification A -2.34 

(0.39) 

174.18 

(5.17) 

- - - 18917.87 

Specification B -2.14 

(0.20) 

- 67.89 

(4.29) 

198.25 

(4.10) 

204.47 

(4.19) 

5709.00 

 

From this results we observe risk premium is clearly seasonal in PJM forward market. 

During all months but summer, forward price bias is positive and small, while for 

forward contracts with delivery in summer bias is much higher. This bias, or risk 

premium is concentrated on forward contracts for delivery in July and August. We also 

see the size of “forward premium” is very important during summer months, that is 

“jump risk premium” is one of the main determinants of forward prices for summer 

delivery months. In particular, we can explicitly calculate the relative importance of 

“jump risk premium” through equation (10) and the results provided in Table 5 and 6. 

From the estimated parameters. We may see “jump risk premium” represents 40% of 

the forward price in June and July (that is for those contracts with maturity in July and 

August). 

We see from  Figure A.4.1, our model is able to replicate the observed pattern in PJM 

forward contracts. During those months where there is a positive probability of 

observing a jump, jump risk premium is relatively more important, so distributors (i.e. 

those agents that are exposed to price spikes) are willing to buy forward, so there is 

demand pressure on forwards and the price of these contracts increases so futures 

market clears. 



  

An interesting point is that model’s futures prices are smoother than those observed in 

the market. We report model’s futures prices but imposing a lower degree of mean-

reversion (in particular we fixed k = 0.15). As may be seen from Figure A.4.2, the 

pattern of forward prices generated by the model and those observed in the market are 

more similar. There are two possible explanations for this result. On one hand, it may be 

argued that traders overestimate the persistence of shocks in the spot market. This 

argument has been advanced by Pirrong and Jermakyan (2000). Since we are analysing 

a immature market, one could think this behavior would disappear and agent will learn 

shocks in spot market die out very fast, so futures prices will not react so much to short-

term deviations in spot market. Another alternative argument is time-varying diffusive 

risk premium. We have imposed market price of diffusive risk is constant (φχ), but the 

model may be extended to allow short-term risk premium to be a linear function of the 

short-term deviations, this would introduce an additional degree of freedom in the 

pricing formula, that could capture the fact that futures prices “overreact” to shocks in 

the spot market.  

Which of the two possible explanations is behind the observed pattern of forward 

contracts in the PJM market is an open question that requires further research. 

 

6. CONCLUSIONS AND FURTHER RESEARCH 

We have a presented a new comprehensive set of models for the valuation of 

electricity futures contracts. The models (specified as log-price and price models) are 

extensions of Schwartz and Smith (2000) long-term short-term model. The paper 

extends the fast growing literature on electricity pricing both in a theoretical and 

empirical way. Major extensions are: 

a) the inclusion of jump component.  

b) the introduction of an alternative specification for the long-term state 

variable 

c)  the application of the model to the PJM market, 

d)  explicitly incorporate (and provide a method for estimation) “jump risk 

premia” as one of the major determinants of the previously observed 

“seasonal risk premium” in the PJM market,  

At the same time we extend the insights from Bessembinder and Lemmon (2002) 

equilibrium model and relate them to observable seasonal jump behavior (that generate 

non-constant skewness) and jump risk premium.  



  

Summarizing, we have provided a new set of models, and a new pricing formula 

for the valuation of electricity forward contracts. One of our main contributions is the 

introduction of a jump component. Given the characteristics of electricity prices, jumps 

do play a central role in the evolution of electricity spot prices and electricity forward 

prices. In particular we also have shown jump size risk premium represents 40% of 

summer delivery forward prices.Empirically we have also provided a methodology for 

obtaining risk-neutral parameters estimates. 

Since the model is specified in a jump-diffusion framework we can use the results from 

Duffie, Pan and Singleton (2000) for the pricing of European options (by inversion of 

the characteristic function). 

Although more work needs to be done, we consider this version of the paper is able to 

show the strengths of our approach. 

There also exist some possible extensions: 

On one hand, we plan to extend the empirical application of the model to other 

markets. Escribano, Peña and Villaplana (2002) shown jumps also play a role in 

explaining the behavior of electricity prices from Nordpool. Lucia and Schwartz (2002) 

applied the model of Schwartz and Smith (2000) to NordPool derivatives. Since 

Escribano, Peña and Villaplana (2002) found jumps are also important in NordPool, it 

seems natural to apply our new valuation formulas to NordPool, were probably we will 

be able to obtain better pricing results than the pure diffusion model of Lucia and 

Schwartz (2000). This is the focus of an ongoing research project. 

On the other hand, another interesting extension would be to include the 

possibility of time-varying (affine) diffusive risk premium. This alternative may be 

interesting in order to analyse if the volatility of forward prices is due to the 

overestimation of perisistence by traders in a new and immature market or is due to 

time-varying diffusive risk premium. 

 

 

 

 



  

APPENDIX 

A.1.- RELATIONSHIP BETWEEN FUTURES PRICES AND TRANSFORMS 

In this section we will show the relationship between the transforms Ψ(u,X,t,T) and 

Φ(ν,u,X,t,T) and the price of the futures contract. We will show that knowledge of Ψ 

and  Φ completely determines the price of the future contract. Therefore in this set up 

finding the pricing formula will be equivalent to solve the corresponding system of 

ODE (4a-4b) and (7a-7b) and depending on the assumption made about the evolution of 

the underlying state variables. 

Assuming constant interest rates, the futures (or forward) price of a contract with 

maturity T is equal to the expected price of the commodity at T where the expectation is 

taken under the equivalent martingale (or risk-neutral) measure. Therefore, the price of 

a futures contract at t, with maturity T is given by the following expression: 

( ) ( )T
Q
tT SESTtF =,,        

We can make use of DPS results if the variable of interest is linear in the state variables. 

We have two different sets of models depending if we model the spot price (St) or the 

log-spot price (log St). In any of both cases state variables enter in a linear way, so we 

have: 

1.-Log-spot price models:  ln St = f(t) + χt + ξt 

In this case we can re-express the futures price as a function of Ψ : 
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where u = (1,1) and X = (χ , ξ). Therefore for each of the four models we have proposed 

(Model 1a, 1b, 2a, 2b) we have to derive the corresponding transform since once we 

know it we can derive in a straightforward way the price of the future contract, see 

Table 3 for the future pricing formula for each of the four models. 

2.- Spot price models St = f(t) + χt + ξt 

In this case we can re-express the futures price as a function of Φ : 
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where in this case v = (1,1), u = (0,0),  and X = (χ , ξ). And again as in the case of log-

spot price models, in order to derive the pricing formulas for the four models (see Table 

4) we have to find the corresponding “extended” transform. 



  

 

A.2.- SUMMARY STATISTICS AND GRAPHS 

 

We provide summary statistics for daily spot price and log-price series of PJM market 

(Pennsylvania – New Jersey – Maryland (PJM)). Period: January 1997 – March 2000 

 

 

Table A.2.1: Summary Statistics for Price and Log-Price PJM spot prices.  

Series N. Obs. Mean Med. Min. Max. Std.Dev. Skew. Kurt. 

Price 822 30.39 23.42 10.56 573.18 39.89 8.42 81.46 

Log-Price 822 3.23 3.15 2.36 6.35 0.45 2.98 14.12 

 



  

Figure A.2.1: Price series PJM market. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2.2: Empirical distribution, PJM Price Series. 
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Figure A.2.3: Daily Observations One-Month Forward Price. PJM. 

January 1997 – March 2000 (822 observations) 
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A.3- DETAILED DERIVATION FUTURES PRICING FORMULA: TWO-

FACTOR MODELS WITH GAUSSIAN JUMPS. PRICE LEVEL MODEL. 

For expositional reasons we provide the detailed derivation for Model 1a, price level. 

We outline the “ODE approach” presented in equations (7a-7b). Details for the other 

models may be obtained from request. 
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where 
k

χλ
α

−
≡* and ξξξ λµµ −≡* . Since we are dealing with a price model in order to 

calculate the futures price we have to calculate the “extended” transform with v = (1,1) 

and  

u = (0,0). It can be shown, )0,0(),()0,0( 21 =⇒= uuu β . 

Therefore we have the following system of ODE: 
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and by equation (A.2) we have: 
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A.4.- ESTIMATION RESULTS: PJM  

In order to obtain the values for the empirical exercise we have estimated an AR(1) 

process with deterministic seasonality and jumps. We have followed the estimation 

methodology proposed by Escribano et al. (2002). We have introduced a deterministic 

time trend, the estimated parameter (B2) is the one corresponding to µξ. It must also be 

noted the relationship between the autoregressive parameter (φ ) and k, i.e. 1-φ = k. 

Autoregressive (AR(1)), pure jump model, intensity of the Poisson process time 

dependent. 

Pt = f(t) + Xt 

φ Xt-1+σ ·ε1t; prob. 1- λt 

Xt = 

φ Xt-1+σ ·ε1t+µJ+σJ ·ε2t ; prob.  λt 

λt  = L1 · fallt + L2 · wintert + L3 · spring t + L4 · summert 

ε1t , ε2t ~ i.i.d. N(0,1) 

 

In particular, we have specified the seasonal function f(t) by means of monthly 

dummies, so the specification we have used is the following: ∑
=

⋅=
12

1

)(
i

M
ii DMtf , where 

M
iD  is a monthly dummy that takes value 1 if the observation lies in the ith-month and 

zero otherwise. iM  are the corresponding coefficients. 

On the other hand we have allowed the intensity process to have a seasonal structure. In 

particular we allow the probability of observing a jump to be different depending on the 

season. Winter is defined as months December, January and February. The other 

seasons are defined using consecutive three-month periods. 

 

   



  

Table A.4.1.- Estimated parameters PJM. 

 Sample  01/97- 12/98 Sample 01/98-12/98 

Parameter Coeff. Std. Error Coeff. Std. Error 

φ 0.28 0.03 0.23 0.03 

M1 24.52 1.40 22.39 2.41 

M2 20.55 2.69 19.46 4.59 

M3 24.26 1.79 22.27 3.52 

M4 22.42 2.70 23.38 3.81 

M5 26.24 1.59 32.47 1.54 

M6 23.04 2.01 22.71 2.41 

M7 26.61 1.90 29.99 2.12 

M8 25.65 2.32 28.95 2.75 

M9 27.64 1.71 30.38 1.34 

M10 27.33 1.75 22.75 3.52 

M11 25.29 2.47 21.14 4.71 

M12 20.80 2.74 19.23 5.76 

σ 7.11 0.16 7.61 0.23 

L4 0.17 0.04 0.17 0.05 

µJ 48.97 28.34 68.57 36.94 

σJ 61.26 12.37 78.27 25.53 

 

We have just reported the parameter estimate L4 since the other parameters L1, L2, L3 

of the seasonal intensity specification were not statistically significant.



  

  

Table A.4.2 

 Sample  01/97- 12/98 Sample 01/98-12/98 

Parameter Coeff. Std. Error Coeff. Std. Error 

φ 0.28 0.028 0.22 0.026 

M1 25.25 1.26 22.39 2.41 

M2 20.40 2.66 19.46 4.59 

M3 24.08 1.72 22.27 3.52 

M4 22.22 2.61 23.38 3.81 

M5 26.02 1.24 32.46 1.55 

M6 22.87 1.81 22.73 2.45 

M7 26.33 1.56 29.98 2.11 

M8 25.39 2.10 28.96 2.72 

M9 27.33 1.05 30.38 1.34 

M10 27.01 1.42 22.75 3.52 

M11 24.93 2.10 21.14 4.71 

M12 20.32 2.44 19.23 5.76 

σ 7.15 0.16 7.61 0.23 

L4 0.17 0.04 0.17 0.06 
june

Jµ  38.33 50.00 53.38 100.07 

augjuly
J

,µ  52.80 25.68 76.27 33.70 

σJ 60.98 11.06 77.55 24.46 

 



  

Figure A.4.1: One-month observed forward prices and estimated model.  

January 1999 – March 2000 
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Figure A.4.2.:  One-month forward contract, Model implied forward series (with k 

= 0.7 , estimated from spot prices), Model implied forward prices with low mean-

reversion (k = 0.15) 
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