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Abstract

In order to perform a Real Option evaluation some variables have to be es-
timated. One of the main variables to estimate is the volatility of the variable
underlying the option. With respect to the financial options, because of the dif-
ferent objects of the evaluation, the available data can need a specific kind of
analysis.

In this document we consider the case of a crude oil producing company that
collected data about the past costs of drilling wells and now wants to evaluate
the real option of starting drilling new wells: we need to estimate the volatility
of the drilling costs.
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1 Brief Introduction

A real option differs from a financial option because of the underlying variable and
because it can provide an evaluation of the upside potential of a real project; so leading
to an optimal strategy in terms of timing of development, Sick [5] and [6]. In particular,
when we consider the option of developing a new project that requires an investment
(both initially or during the life of the project), an important element of the analysis
is given by the volatility of the cost of development.
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The main source of data for the cost of development of a project is probably given
by the companies involved in that kind of industry. In this case, especially if we are
dealing with one company only, the data set has peculiar characteristics and a peculiar
analysis is required.

We consider the case, quite frequent, in which the available data do not show the
same frequency within each month of observation and are not always generated by the
observation of the same phenomenon.

The next section illustrates in detail the characteristics of the problem we are facing;
section 2 focuses on the characteristics of the analyzed data; section 3 illustrates the
characteristics of the technique we decide to use, given the problem we want to solve;
finally section 4 shows the results of our estimations.

2 Data Description

The object of our study is the data-set collected by a Petroleum Company1 from January
1990 to March 2000. The database we use reports, for every well drilled by the company:
the serial identification number, the drilling starting and ending or abandoning date,
the total cost of drilling, the geographic location, the type and the total length of the
perforation.

From the available data we can calculate, for each well, both a cost per foot and
a cost per day of drilling. Since the data are referring to different kind of wells - we
can in fact distinguish between vertical and horizontal wells, directional and re-entry
wells - we decide to refer to the cost per day of drilling, since the comparison of costs
per food can be misleading when different kind of wells are considered. We refer to the
cost per day of drilling as the drilling day rate: we calculate it as the ratio between the
total cost of drilling a specific well and the number of days necessary to complete the
perforation.

The extraction activity, as results from the database, concern many different areas.
Nevertheless we concentrate our first analysis on the data referred to one of this areas
since it generates 1413 observations for 123 months, more than 50% of the available
data.

The data that we analyze have three main characteristics:

• first of all, every observation in the data series concerns a different well; therefore
the costs are not homogenous and part of the volatility of the registered costs
depends on the different characteristics of every single well;

• secondly, what we observe are the costs of drilling wells that have been finally
chosen by the managers of the company; we have no knowledge of the true process
that drives the costs;

1The source of the data cannot be disclosed for privacy reasons.
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• finally, the observations are distributed on an horizon of more than nine years,
the average time for drilling a well is one month, but we have more than one
observation for every month.

From the first characteristic arises that we are facing some sort of panel data and
one of our objective must be that of estimating a volatility that that does not include
the volatility due to the different characteristics of every considered well. From the
second characteristic comes the necessity of using some particular technique for the
variance estimation of an hidden process. Finally, the last characteristic suggests that
we can use the available data on a monthly base only if we can take into account that
every month we have a different number of observations.

Figure 1 shows the number of wells drilled in the considered region in every month
of the considered period.

Figure 1: Number of drilled wells per month in the considered area.

Figure 2 reports the scatter plot of the drilling day rates on the months of observa-
tion; the line is the average per month of the same drilling day rates. There are some
evidences:

• first of all, from August 1996 the dispersion around the mean is much higher and
the cost level shows a pick in the period August 1996 - December 1998; after that
however, the average seems to go back to the preceding level;

• secondly, the costs clearly show to be cyclical in the period that approximately
goes from May 1991 to December 1997; this coincide with the period in which
more observations are available;
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• finally, some outliers are present for the dates of May 1990, October 1991 and
January 1993, we do not consider this values for the estimation.

Figure 2: Cost of drilling per day for every well in the considered region: 1413 data
points from Jan-1990 to Mar-2000. The line is the average drilling day rate per month.

Finally, Figure 3 reports the length in feet of the vertical section of each well drilled
in the considered region, together with the rescaled2 cost per foot of perforation. As
point out by the circle in the graph, during the period Jan-1998 to Jul-1999 the wells are
characterized by a much smaller depth and at the same time by a quite high volatility in
cost per feet of perforation. Refereing back to Figure 2 we notice that in the same period
also the drilling day rate is characterized by a higher volatility: we can deduce that,
during this period, the firm is drilling wells that implies bigger difficulties, probably
because of the characteristics of the ground.

In Figure 4 we plot the length of the vertical sections alone to have a more readable
graph. We can notice that the history of drilling for the firm is definitely increasing,
except for the already cited period Jan-1998 to Jul-1999. We deduce that the firm
had the possibility to chose, among wells, to drill where the perforation was presenting
less difficulties, leaving last the wells that required a higher cost for a small length of
perforation.

2We rescaled the cost per foot of perforation multiplying the vector by a factor of 10, to have a
readable graph
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Figure 3: Vertical section depth and cost per foot (rescaled multiplying by a factor of
10) of drilling, for every well in the considered region: 1413 data points from Jan-1990
to Mar-2000.

3 Estimation of Volatility with the Kalman Filter

To estimate the volatility of the drilling day rate we need to solve the particular esti-
mation problem that arises from the characteristics of the data we are considering; we
develop the following approach: we model the process for the cost of every single well
as function of a true underlying cost process. We give to the underlying cost process,
which can be defined as hidden, the form of an auto-regressive process with trend µ.

The state-space representation of the dynamics of this model, in a general formula-
tion, is given by the following system of equations:

Ci,t = Ztct + dt + εi,t (1)

ct = µct−1 + at + ξt. (2)

Where Ci,t is the cost registered for every single well i in the month t; ct is the
hidden cost at time t. dt and at are the intercepts of the model; εi,t and ξt are vectors
of white noises realizations with mean zero and matrix of covariance respectively Ht

and Qt. For the generic element of the row r we have

E(ε̃r
i,tε̃

r
j,t) =

{
0 if i 6= j
σ2

h,t if i = j,
(3)

E(ξ̃r
t ξ̃

r
τ ) =

{
0 if t 6= τ
σ2

q,t if t = τ.
(4)
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Figure 4: Vertical section depth of drilling, for every well in the considered region: 1413
data points from Jan-1990 to Mar-2000.

To carry the estimation of the volatility, crucial for our analysis, we observe that
the equations 1 and 2 form a state space representation of our model, where the first
equation is known as observation equation and the second equation is known as state
equation; therefore, to estimate the model, we use the Kalman filter technique. The
Kalman filter, is a recursive algorithm which allows one to upgrade the model estimates
using new information and to estimate the value of an unobservable variable, Hamilton
[3] and Harvey [4].

Through the Maximum Likelihood technique, the Kalman filter returns the estima-
tion of the underlying cost value ct, for every time t, of all the parameters Zt, dt, µ and
at, of the covariance matrixes of the two error terms.

For our application we mainly need to determine the covariance matrix Q.

3.1 Standard Kalman Filter

What follows is a general description of the Kalman filter, as described in from Harvey
[4] and Hamilton [3].

The state space representation is given by observation (or measurement) equation
and by state (or transition) equation, whose dimension is specified in the following
expressions:

y
(N×1)
t = Z

(N×m)
t x

(m×1)
t + d

(N×1)
t + ε

(N×1)
t , (5)
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x
(m×1)
t = T

(m×m)
t x

(m×1)
t−1 + a

(m×1)
t + ξ

(m×1)
t , (6)

where yt is the vector of observations and xt is the vector of unobservable state variables;
Zt is a matrix of known or unknown, constant or time varying coefficients; matrix Tt

is the state transition matrix; dt and at are known or unknown vectors. Finally εt is
a vector of serially uncorrelated disturbances with mean zero and covariance matrix
Ht, and ξt is identified with a vector of serially uncorrelated disturbances with mean
zero and covariance matrix Qt. The unobservable process, the elements of the matrices
and the variances of the noise processes, are estimated by maximizing the likelihood
function

log L = −NM

2
log 2π − 1

2

M∑
t=1

log Ft −
1

2

M∑
t=1

v′tvt

Ft

(7)

where vt is the one-step ahead residual at time t, vt = yt − ŷt, Ft is its variance, N
is the length of the vector of observations yt and M is the length of the vector of the
unobservable state variables. The system is recursively updated using the following
equations

xt|t−1 = Txt + a (8)

Pt|t−1 = TPtT
′ + Q (9)

vt = yt − Ztxt|t−1 − d (10)

Ft = ZtPt|t−1Z
′
t + H (11)

xt = xt|t−1 +
Pt|t−1Z

′
tvt

Ft

(12)

Pt = Pt|t−1 −
Pt|t−1Z

′
tZtPt|t−1

Ft

. (13)

Equations 8-13 are known as the Kalman filter. They are a series of regressions
that generate an estimate of the state vector, xt, and its covariance matrix, Pt. Given
estimates of the starting values of these two variables, x0 and P0, an estimate of the
unknown regression coefficient and then parameters of the model are derived.

Once these estimates have been obtained, we have an estimate of the state vector,
the recursive residuals and their variance, and can also generate an estimate of the
updated residual vector et = yt − Ztxt − dt.
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3.2 Kalman Filter for Incomplete Panel Data

In our particular setting, we apply the Kalman filter for incomplete panel-data, as in
Harvey [4]. To apply the Kalman filter in fact it is not necessary to have the same
number of observations at each time t.

The observation and state equations do not change with respect to the standard
formulation given in equations 5 and 6 but the dimension of the vectors yt, xt, dt, εt

and of the matrix Zt change with time:

y
(Nt×1)
t = Z

(Nt×m)
t x

(m×)
t + d

(Nt×1)
t + ε

(Nt×1)
t , (14)

x
(m×1)
t = T

(m×m)
t x

(m×1)
t−1 + a

(m×1)
t + ξ

(m×1)
t . (15)

The covariance matrix of the error term εt also change with time (Ht).
In a recent paper Cortazar, Schwartz and Naranjo [2] apply this technique to the

estimation of current term structure of interest rates and its dynamic, having sparse
bond prices.

We use this technique since we have a different number of observations for every
month; we interpret them as different realizations of the same underlying process.

4 Results

In our application, yt is the drilling day rate and xt the hidden cost. We fix Zt to be a
vector of ones, dt to be a vector of zeros, Tt to be zero and at to be zero; the matrix of
covariance of the error terms are respectively: the matrix H

(Nt×Nt)
t and Q

(1×1)
t , which

is the parameter objective of this application. An important assumption is that the
matrix H is diagonal and all the elements on the diagonal are equal.

The unobservable process ct, the variance of this estimation, the coefficients of the
model, the covariance matrixes of the noise processes, are estimated maximizing the
likelihood function shown in equation 7.

The estimation is run using a moving window of 24 months (even if this means to
consider the two preceding years of observation, it allows to avoid some of the numerical
problems we had to face); this window in fact is moved one step ahead maintaining the
same dimension. The procedure results in 99 estimations of the unobservable cost and
of variances of the error terms.

In figure 5 we report the estimation of the unobservable costs (blue line), obtained
with the Kalman filter estimation technique, for incomplete panel data. The same
figure also reports the average of costs per month (pink line) as a term for comparison.
The results go from January 1992 to March 2000.

The estimated costs show a much smoother dynamic with respect to the average
per month of costs. This is due to the fact that the Kalman filter identify which part of
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Figure 5: The blue line shows the unobservable cost estimated with the Kalman filter
for incomplete panel data; the pink line reports the monthly average of costs.

the variation in the data is to be attributed to the observation process and which part
is to be attributed to the underlying process. More, since we adopted the procedure
for incomplete panel data, we can interpret the consistent reduction of variance to the
attribution of part of the volatility to the variation among the data grouped per month,
which represent different realizations of the phenomena.

In figure 6 the pink line represent the estimation of the volatility σq of the error
term of the state equation (as defined in equation 4); the blue line is the volatility of
the estimated parameter for the hidden cost. This volatilities and the one presented in
the following figure are monthly volatilities.

It is clear from the graph that there are problems of estimation for the sub period
May 1995 - May 1997. However we can notice that, out of this sub-period, the volatility
of the hidden process is much lower than the volatility of the average per month of the
drilling costs that moves around the value of 16.69% on a monthly base.

Finally, figure 7 shows the variance σh of the error term for the measurement equa-
tion. This is considerably higher than the volatility of the state equation, making think
to the need of better specifying the model.

The estimation has been carried in Matlab environment.
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Figure 6: The pink line shows the estimated volatility of the error term of the state
equation; the pink line reports the volatility of the estimation of the hidden cost.

Figure 7: estimated volatility of the error term of the measurement equation.
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5 Further Developments

The first targets are: generate an estimation with no numerical problems, maybe devel-
oping this approach in a different programming environment; test different specifications
for the model of costs.

Second, from figure 2 we notice that there probably is a seasonal component in
the data we are using. The next target will be that of modifying the state space
representation in order to take seasonality into consideration.

Finally, we would like to develop a model of investment for the considered com-
pany, in order to verify the goodness of the fit of the estimated data as instruments to
determine the policy of the company.
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