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Abstract 

The value of a gas fired power plant depends on the spark spread, defined as the difference 

between the unit price of electricity and the cost of gas. We model the spark spread using 

two-factor model, allowing mean-reversion in short-term variations and uncertainty in the 

equilibrium price to which prices revert. We analyze two types of gas plants. The first type is 

a base load plant, generating electricity at all levels of spark spread. The second type is also a 

base load plant from the outset, but can be upgraded, at a cost, to a peak load plant 

generating electricity only when spark spread exceeds emission costs. We compute optimal 

building and upgrading thresholds for such plants when the plant types are mutually 

exclusive. Our results indicate that selecting a project which is first profitable leads to a non-

optimal investment policy, and that increase in short-term volatility preempts upgrading 

whereas increase in equilibrium volatility delays upgrading. 
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1 Introduction 

We study flexibility in choice of technology regarding investments in gas fired power plants. 

The model is motivated by the advances in combined cycle gas turbine (CCGT) technology, 

and the emergence of energy commodity markets worldwide. It has been customary for 

investors holding licenses to build such plants to plan as if the plants are to be run around 

the clock, year round. The reason for this is that gas is purchased on long-term physical take-

or-pay contracts. The gas market is being liberalized, however, and in the future we expect a 

more market-oriented and flexible gas supply system. 

 

The value of a gas fired power depends on the spark spread, defined as the difference between 

the price of electricity and the cost of gas used for the generation of electricity. The stochastic 

process governing the evolution of the spark spread can be inferred from electricity and gas 

forward prices. The cash flows of an operating gas fired power plant are given by the spark 

spread less nonfuel variable costs, emission costs and fixed costs. If the emission costs exceed 

the spark spread some losses can be avoided by ramping down the plant. When the plant is 

ramped down only fixed costs remain. 

 

We assume that there are two technologies for a gas fired power plant. A base load plant 

produces electricity independent of the spark spread and emission costs. A peak load plant is 

ramped up and down according to price changes. A base load plant has a constant gas 

consumption, whereas the gas consumption of a peak load plant varies. Thus, the nonfuel 

operational costs of a base load plant are lower. There are various alternatives in the design of 

CCGT plants, e.g. the steam cycle can be modified. Often base load plants can be upgraded 

into peak load plants. We calculate thresholds for building and upgrading a base load plant. 

We also study how the investment decision is changed when there is a possibility to build a 

non-upgradeable base load plant. The upgradeable and non-upgradeable base load plants are 

mutually exclusive alternatives. 

 

The spark spread based valuation of power plants is studied in Deng, Johnson, and 

Sogomonian (2001). He and Pindyck (1992) study the output flexibility for a firm having two 

possible products to produce. Brekke and Schieldrop (2000) study the input flexibility in a 

2 



power plant when the plant can be either gas or oil fired. Often the commodity prices are 

described by geometric Brownian motion. A number of authors have argued that mean-

reverting models are more appropriate for commodities (see, e.g., Laughton and Jacoby 1993 

and 1995, Cortazar and Schwartz, 1994, and Smith and McCardle, 1999). Schwartz and Smith 

(2000) develop a two-factor model where the short-term deviations are modeled with a mean-

reverting process and the equilibrium price evolves according to a Brownian motion. We use 

similar two-factor model for the spark spread. The short-term deviations reflect non-persistent 

changes, for example, changes in demand resulting from variations in the weather or in the 

current supply system. The equilibrium price reflects fundamental changes that are expected 

to persist, for example, expectations of the discovery of natural gas. Other two-factor models 

with long- and short-term factors include, among others, Ross (1997) and Pilipović (1998). 

 

Our results indicate that selecting a plant type which is first profitable leads to a non-optimal 

investment policy. The investment option value must be calculated for the maximum value of 

all possible projects. This result applies to the situation of choosing among mutually exclusive 

projects more generally. It is customary to think that uncertainty postpones investment 

decisions (see, e.g., Dixit and Pindyck, 1994). In this particular case increase in short-term 

volatility makes the investments to peak load plants more attractive and thus preempts 

investment to such plants. 

 

The paper is organized as follows. We derive the basic valuation formulas in Section 2. 

Boundary conditions are used to solve the model in Section 3. The model is illustrated with 

an example in Section 4. Section 5 concludes the study. 

 

2 Mathematical model  

Our analysis is based on electricity and gas forward prices. In describing the probabilistic 

structure of electricity and gas markets, we will refer to a probability space , where 

 is a set,  is a 

( , , )PΩ F
Ω F σ -algebra of subsets of Ω , and P is a probability measure on . We 

denote the T-maturity forward prices, at time t, on electricity by  and on gas by 

. By allowing T to vary from t to 

F
( TtSe , )

( Tt, )Sg τ  we get forward curves [ ]→ +R⋅ τ,: t),(tSe  and 

[ ] +→ R⋅ τ,t:),(tS g . Seasonality in electricity and gas supply and demand combined with 

limited storage opportunities causes cycles and peaks in the forward curves. 
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2.1 Spark spread process  

Spark spread is defined as the difference between the price of electricity and the cost of gas 

used for the generation of electricity. Thus, the T-maturity forward price on spark spread is 

  S ,  (1) ),(),(),( TtSKTtSTt gHe −=

where heat rate  is the amount of gas required to generate 1 MWh of electricity. Heat rate 

measures the efficiency of the gas plant: the lower the heat rate, the more efficient the 

facility. The efficiency of a gas fired power plant varies slightly over time and with the output 

level. Still, the use of a constant heat rate is considered plausible for long-term analyses (see, 

e.g., Deng, Johnson, and Sogomonian, 2001). Note that the value of the spark spread can be 

negative as well as positive. 

HK

 

When the electricity and gas derivative markets are free of arbitrage, the value of all 

derivative instruments are given by the expected value of future cash flows with respect to an 

equivalent martingale measure Q (see e.g. Schwartz, 1997). Since electricity and gas are non-

storable commodities their expected returns under Q are not usually equal to the risk-free 

rate, but the electricity and gas forwards are financial assets, and thus their expected returns 

under Q are equal to the risk-free interest rate. As the value of a forward contract when 

initiated is defined to be zero, the T-maturity forward price on spark spread at time t is 

  S ,  (2) [ t
Q FTSETt |)(),( = ]

where  is the spark spread at time T. Thus, the dynamics of the spark spread process 

under the pricing measure Q can be can be inferred from forward prices. The seasonality in 

electricity and gas forward curves have similar characteristics, as electricity and gas are often 

used to same purposes, such as heating. Thus, the seasonality in electricity and gas forward 

curves decays from the spark spread forward curve. Motivated by this, we ignore the 

seasonality in the spark spread. We give an example process of spark spread in Section 4. The 

following assumption describes the dynamics of the spark spread process. 

)(TS

ASSUMPTION 1. The spark spread is a sum of short-term deviations and equilibrium price 

  S t( ) ( ) ( )t tχ ξ= +   (3) 

where the short-term deviations ( )χ ⋅  are assumed to revert toward zero following an Ornstein-

Uhlenbeck process 
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  d t( ) ( ) ( )t dt dB tχ χχ κχ σ= − +   (4) 

and the equilibrium price ( )ξ ⋅  is assumed to follow a Brownian motion process 

  ( )d ( )t dt dB tξ ξ ξξ µ σ= +   (5) 

where , κ χσ , ξµ , and  ξσ  are  constants. ( )Bκ ⋅ and ( )Bξ ⋅  are standard Brownian motions, 

with correlation dt dB dBχ ξρ =  on the probability space ( )Q,,FΩ , along with standard filtration 

. [ ]{ }TtFt ,: ∈ 0

 

When the spark spread increases, high cost producers will enter the market putting downward 

pressure on prices. Conversely, when prices decrease some high cost producers will withdraw 

capacity temporarily, putting upward pressure on prices. As these entries and exits are not 

instantaneous, prices may be temporarily high or low, but will tend to revert toward 

equilibrium price ( )ξ ⋅ . The mean-reversion parameter κ  describes the rate at which the 

short-term deviations ( )χ ⋅  are expected to decay. The uncertainty in the equilibrium price is 

caused by the uncertainty in the fundamental changes that are expected to persist. For 

example, advances in gas exploration and production technology, changes in the discovery of 

natural gas, improved gas fired power plant technology, and political and regulatory effects 

can cause changes to the equilibrium price. Other models where the two-factors are 

interpreted as short- and long-term factors are, for example, Schwartz and Smith (2000), Ross 

(1997), and Pilipović (1998). The decreasing forward volatility structure typical for 

commodities can be seen as a consequence of mean-reversion in commodity spot prices (see, 

e.g., Schwartz, 1997).  

 

The following corollary states the distribution of the future spark spread values. 

COROLLARY 1. When the spark spread has dynamics given in (3)-(5) the prices are normally 

distributed, and the expected value and variance are given by 

   (6)

 

[ ] ( )( ) | e ( ) ( ) ( )T t
tE S T F t t T tκ

ξχ ξ µ− −= + + −

( ) ( ) ( )
2

2 ( ) 2 ( )( ) 1 e ( ) 2 1 e
2

T t T tVar S T T tχ χ ξκ κ
ξ

σ ρ
σ

κ κ
− − − −= − + − + −

σ σ
  (7) 

PROOF: See, e.g., Schwartz and Smith (2000). 
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The short-term deviations in the expected value decrease exponentially as a function of 

maturity, whereas the equilibrium price changes linearly. The time in which a short-term 

deviation is expected to halve is given by 

  
( )

1 2

ln 0.5
κ

T = −   (8) 

Also the spark spread variance decreases as a function of mean-reversion . Neither the 

short-term deviations 

κ

( )tχ  nor the equilibrium price ( )tξ  are directly observable from market 

quotas, but they can be estimated from forward prices. Intuitively, the long-maturity 

forwards give information of the equilibrium price, whereas the short-term dynamics can be 

estimated from the short-maturity forwards. The estimation of the spark spread process 

parameters will be considered in Section 4. As the spark spread values are normally 

distributed the values can be negative as well as positive. 

 

2.2 Plant values 

The following assumption characterizes the two technologies for a gas fired power plant. 

ASSUMPTION 2. A base load plant produces electricity with constant capacity. A peak load 

plant can be ramped up and down without delay. The costs associated with starting up a peak 

load plant can be amortized into fixed costs. 

A base load plant will produce electricity even if it turns to be unprofitable, whereas a peak 

load plant can be ramped down whenever it is unprofitable to use the plant. In a gas fired 

power plant, the operation and maintenance costs do not vary much over time and the 

response times are in the order of several hours. Thus, we are assuming that the peak load 

plant is more flexible than it really is, but for efficient plants the error in the long-term 

valuation analysis will be small (see, e.g., Deng and Oren, 2003). The inflexibility of a base 

load plant can be caused by constraints in the gas inflow. If a peak load plant is ramped 

down, but the gas inflow cannot be changed the gas will be lost. Thus, it is never optimal to 

ramp down a plant with rigid gas supply. Such delivery agreements are typically part of the 

take-or-pay contract that the power plant needs to secure its physical gas deliveries. 

 

For simplicity, we assume that the (nonfuel) operational costs are deterministic, i.e. they can 

be amortized into investment costs. We use a constant risk free interest rate r. For every unit 

of electrical energy generated, the plant must pay environmental taxes due to emission of 
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greenhouse gases and other pollutants. This is represented by the emission cost E. The 

following lemma gives the value of a base load plant. 

LEMMA 1. The base load plant value, at time t, is 

 ( )( )
( )

1 2 2

( ) 1( ) ( ) e ( ) ( )( , ) e
T t

r T t r T tt t E t t E
r r r r r r

κ
ξξ µµχ ξ χ ξχ ξ

κ κ

− −
− −

  − +− − = + + − + +   + +  
V C   (9) 

where T is the lifetime of the plant, and C  is the capacity of the plant. 
_

PROOF: The base load plant value is the present value of expected operating cash flows, i.e., 

  
[ ]( )

( )

( )
1

( ) ( )

( , ) ( ) |

( ) ( ) ( )

T
r s t

t
t

T
r s t s t

t

V C e E S s F E ds

C e e t t E s t dsκ
ξ

χ ξ

χ ξ µ

− −

− − − −

= − =

= + − +

∫

∫ −

  (10) 

integration gives (9). Q.E.D. 

 

The base load plant value is affected by the expected value of spark spread, but not by the 

short-term and equilibrium volatility parameters χσ  and ξσ . A base load plant cannot 

exploit unexpected changes in the spark spread, thus the value of a base load plant is just the 

discounted sum of expected spark spread values less emission costs.  

 

A peak load plant operates only when the spark spread exceeds emission costs. The following 

lemma gives the value of a peak load plant. 

LEMMA 2. The peak load plant value, at time t, is 

 ( )
2

2
( ( ))

2 ( )( )
2

( ) ( )( , ) ( ) 1
2 (

E sT
v sr s t

t

v s E sV C e e s E
v s

µ
µχ ξ µ

π

 −  −   − −  
     −   = + − −Φ           

∫ )
ds

]

  (11) 

where  is the normal cumulative distribution function. The expected value 

 and variance 

( )Φ ⋅
( )S[( ) | ts E s Fµ = ( )2 ( ) ( )Var S s=v s  for the spark spread are given with Corollary 

1. 

PROOF: See Appendix A. 

A peak load plant value increases as a function of the spark spread variance, as an owner of a 

peak load plant can avoid losses caused by unexpected changes in the spark spread by 
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ramping down the plant. The peak load plant value is the discounted sum of expected spark 

spread values less emission costs plus the option value of being able to ramp down. 

 

2.3 Investment options  

The following assumption characterizes the variables affecting the building and upgrading 

decision. 

ASSUMPTION 3. The thresholds for building and upgrading are calculated for the equilibrium 

price assuming that the current short-term deviation is zero. When the investment decisions 

are made it is assumed that the lifetime of the plant is infinite. 

 

Assumption 3 states that when the investments in gas fires power plants are considered the 

investment decisions are made as a function of the equilibrium price ( )ξ ⋅ . Thus, neither 

building nor upgrading is started due to the current realization of short-term deviations. The 

short-term dynamics still affect the value of a peak load plant, and thus they also affect the 

building and upgrading decisions. In other words, the short-term dynamics are important in 

the investment decisions, even though their current realization is ignored when the 

investment decisions are made. The omission of the current short-term realization is 

motivated by the fact that gas fired power plants are long-term investments, and thus a gas 

plant investment is never commenced due to the current spike in the short-term deviations. 

This is realistic as long as the expected lifetime of the short-term deviations is considerably 

smaller than the expected lifetime of the plant. In Section 4 we estimate that, in our example 

data, the mean-reversion parameter  is 8.1. Equation (8) gives that, in this case, short-term 

variations are expected to halve in about one month. Usually, the life time of a gas fired 

power plant is assumed to be around 25 years. Thus, the ignorance of the current short-term 

realization is realistic. The infinite lifetime assumption is motivated by the fact that the 

plant’s lifetime is often increased by upgrading and reconstructions. 

κ

 

The following lemma gives the value of the build option when it is not optimal to exercise the 

option (i.e., when 0Hξ ξ< ). 

LEMMA 3. The value of an option to build a base load plant is 

  1
0 1( ) 0HF Ae whenβ ξξ ξ ξ= < ,  (12) 
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where  is a positive parameter. Parameter 1A 1β  is given by 

  
2 2

1 2

2
0

rξ ξ ξ

ξ

µ µ σ
σ

− + +
β = .  (13) >

PROOF: See Appendix B. 

 

The build option value increases exponentially as a function of the equilibrium price. The 

parameter  depends on what type of plant is optimal to built. Method to solve the 

parameter  will be studied in the next section. When a decision to build an upgradeable 

base load plant is made the investor receives both the upgradeable base load plant and the 

option to upgrade the base load plant. The upgrade option value is given by the following 

lemma when it is not optimal to exercise the upgrade option (i.e., when 

1A

1A

1Hξ ξ> ) 

LEMMA 4. The value of an option to upgrade a base load plant into a peak load plant is 

  2
1 2( ) 1HF D e whenβ ξξ ξ ξ= >   (14) 

where  is a positive parameter. Parameter 2D 2β  is given by 

  
2 2

2

2
0

rξ ξ ξ

ξ

µ µ σ
σ

− − +
2β = .  (15) <

PROOF: The proof is similar to that of the build option (Appendix A) but now the option 

becomes less valuable as the spark spread increases. On the other hand, it becomes more 

valuable as spark spread decreases. Q.E.D. 

 

The upgrade option value decreases exponentially as a function of the equilibrium price. The 

parameter  depends on the difference of plant values and upgrading costs. Method to solve 

the parameter  will be studied in the next section. The value of an upgradeable base load 

plant’s owner is the value of a base load plant plus an option to upgrade (i.e. V F

2D

2D

1 1( , ) ( )χ ξ ξ+ ), 

whereas the value of a non-upgradeable base load plant’s owner is V1( , )χ ξ . The values will be 

illustrated with an example in Section 4. 

 

3 Solution method 

In this section we compute the optimal investment strategy. First, we consider investment in 

an upgradeable base load plant. We compute optimal thresholds for building and upgrading. 
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Second, we assume that there is also an opportunity to build a non-upgradeable base load 

plant. In this case both timing and optimal investment type will be decided. 

 

The holder of a license to build a power plant does nothing as long as the equilibrium price is 

below building threshold 0Hξ . It is optimal to exercise the build option when the option value 

becomes equal to the values gained by exercising the option, i.e. 

  F V0 0 1 0 1 0( ) (0, ) ( )H H HF Iξ ξ ξ= + − ,  (16) 

where I  is the investment cost of an upgradeable base load plant. Once a base load plant is 

built the owner has a base load plant, whose value is V1( , )χ ξ , and an option to upgrade the 

base load plant into a peak load plant. The owner of an upgradeable base load plant does 

nothing as long as the equilibrium price is above upgrading threshold 1Hξ . An upgrade is 

commenced when the upgrade option value is equal to values gained by upgrading the base 

load plant. The values gained are the difference of peak and base load plant values minus 

upgrade cost I∆ . Thus, upgrading is optimal when 

  F V1 1 2 1 1 1( ) (0, ) (0, )H H HV Iξ ξ ξ= − −∆ .  (17) 

Also the smooth-pasting conditions must hold when the options are exercised (for an intuitive 

proof see, e.g., Dixit and Pindyck, 1994 and for a rigorous derivation see Samuelson, 1965) 

  0 0 1 0 1 0( ) (0, ) (H HF V F )Hξ ξ ξ
ξ ξ

∂ ∂ ∂
= +

∂
  (18) 

ξ∂ ∂

  1 1 2 1 1 1( ) (0, ) (0,H HF V V )Hξ ξ ξ
ξ ξ

∂ ∂ ∂
= −

∂
.  (19) 

ξ∂ ∂

Equations (16)-(19) give four equations for four unknowns ( 1Hξ , 0Hξ , , ). The equations 

cannot be solved analytically, but a numerical solution can be attained. The properties of the 

solution will be discussed in the example Section 4. 

1A 2D

 

So far we have studied a base load plant upgradeable into a peak load plant. Next we 

consider the case where there is a choice between an upgradeable and non-upgradeable base 

load plant. It is more expensive to build and operate an upgradeable plant, and we let  

represent the investment cost of a non-upgradeable base load plant.  
0I
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There are two mutually exclusive investments opportunities: the option to invest in an 

upgradeable plant, and the option to invest in a non-upgradeable plant. It is optimal to 

exercise the build option when the most valuable investment opportunity becomes profitable. 

Thus, the optimal plant type and the building threshold are chosen by 

  ma 1 0 1 0 1 0 0 0x( (0, ) ( ) , (0, ) ) ( )H H HV F I V I F 0Hξ ξ ξ+ − − = ξ

H

,  (20) 

which can be written as 

  ma 1 0 0 0 0 1 0x( ( ) , ) ( ) (0, )H HF I I F Vξ ξ ξ− − = − .  (21) 

From (21) it follows that if the solution of (16)-(19) satisfies 

  F1 0( )H I 0Iξ > −   (22) 

the upgradeable choice is optimal. The extra investment cost associated with choosing an 

upgradeable plant are 0I I−

0

, which can be interpreted as the cost of acquiring the upgrade 

option. If the upgrade option is worth more than its cost then the upgradeable plant is 

chosen. If the threshold Hξ  is very high, the option to upgrade will be of little value, and an 

inflexible plant will be chosen. If upgrading is cheap (i.e. 0I I−  is low) it is more likely that 

an upgradeable plant will be chosen. 

 

If condition (22) is not satisfied the non-upgradeable base load plant is optimal. When the 

non-upgradeable choice is optimal there is no upgrading threshold and the value matching 

and smooth-pasting conditions are 

  I F0 0 0 1 0( ) (0,H V )Hξ ξ+ =   (23) 

  0 0 1 0( ) (0,HF V )Hξ ξ
ξ ξ

∂ ∂
=

∂ ∂
.  (24) 

The following proposition summarizes the investment decision. 

PROPOSITION 1. For an upgradeable plant the build and upgrade thresholds 0Hξ  and 1Hξ  as well 

as the option values, i.e. parameters  and , are given by 1A 2D

  F I0 0 1 0 1 0( ) (0, ) (H HV F )Hξ ξ ξ+ = + ,  (25) 

  F I1 1 2 1 1 1( ) (0, ) (0, )H HV V Hξ ξ+ ∆ = − ξ .  (26) 

  0 0 1 0 1 0( ) (0, ) (H HF V F )Hξ ξ ξ
ξ ξ ξ

∂ ∂ ∂
= +

∂ ∂ ∂
  (27) 

  1 1 2 1 1 1( ) (0, ) (0,H HF V V )Hξ ξ ξ
ξ ξ

∂ ∂ ∂
= −

∂ ∂ ∂ξ
.  (28) 
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When there is a possibility to build a non-upgradeable plant, if the solution of (25)-(28) 

satisfies 

  F1 0( )H I 0Iξ > − ,  (29) 

the upgradeable plant is optimal. If condition (29) is not satisfied the non-upgradeable plant is 

optimal and the building threshold and the build option value are given by 

  I F0 0 0 1 0( ) (0,H V )Hξ ξ+ =   (30) 

  0 0 1 0( ) (0,HF V )Hξ ξ
ξ ξ

∂
=

∂ ∂
∂ .  (31) 

PROOF: Follows directly from (16)-(24). Q.E.D. 

 

Qualitative properties of the solution will be discussed in the context of an example in the 

next section. 

 

4 Example 

In this section we illustrate our model with a simple example. The example consists of three 

parts. First, we introduce the data, including methods to estimate the parameters. Second, we 

calculate the threshold and option values with our parameter estimates. In part three we 

analyze the sensitivity of the results to some key parameters. 

 

We study building of a gas fired combined cycle power plant in Northern Europe, thus we use 

electricity data from Nord Pool (The Nordic Power Exchange) and gas data from 

International Petroleum Exchange (IPE). We use daily forward quotas from the years 1998-

2002. The spread process is calculated from electricity and gas prices by adjusting the gas 

prices with the heat rate so that a unit of gas corresponds to 1 MWh of electricity generated. 

The efficiency of a combined cycle gas fired turbine is estimated to be 58.1%, thus the heat 

rate  is 1.72. The currency used in Nord Pool is Norwegian krone (NOK). We use an 

exchange rate of 7 NOK/$. 
HK

 

We use Kalman filtering techniques (see, e.g., Harvey, 1989 and West and Harrison 1996) to 

estimate the volatility and mean-reversion parameters from the short-maturity (seasonal 
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contracts with 1-year maturity) forwards. The Kalman filter facilitates the calculation of the 

likelihood of observing a particular data series given a particular set of model parameters, 

thus we use maximum likelihood method to estimate the volatility and mean reversion 

parameters, i.e. , κ χσ , and ξσ . For more about the estimation procedure see Schwartz and 

Smith (2000). The equilibrium drift ξµ  is estimated with linear regression from long-maturity 

forward prices. In Figure 1 the seasonal quotas used for the volatility and mean-reversion 

estimation are illustrated together with the expected value and 68% confidence interval for 

the years 2002-2008. The expected value and confidence intervals are given by Corollary 1. 

[Figure 1 about here] 

 

We assume that the CO2 emission costs are 8 $/ton and ignore possible uncertainty regarding 

future levels (or whether such taxes will be introduced at all). The uncertainty in emission 

costs could be modeled by increasing the uncertainty in the equilibrium price. The CO2 

production of a combined cycle gas fired power plant is 363 kg/MWh, thus an CO2 emission 

cost of 8 $/ton corresponds 20.3 NOK/MWh. Our estimates for the spread process parameters 

and emission cost are summarized in Table 1. The risk-free interest rate is 6%. 

Table 1: Spark spread parameters 

Parameter κ  E  ξµ  ρ  χσ  ξσ  r  

Unit  NOK/MWh NOK/MWh  NOK/MWh NOK/MWh  

Value 8.1 20.8 0.2 -0.3 42.1 9.6 6% 

 

We study a gas plant whose maximum capacity is 415 MW. The utilization rate of the plant 

is approximately 90%. Thus, the production capacity is C= 3.27 GWh/year. It is estimated 

that building an upgradeable base load plant costs about 1620 MNOK. The maintenance costs 

for such a plant are approximately 50 MNOK/year. By summing the building costs and 

discounted maintenance costs we get that the investment costs are 2450 MNOK. The costs to 

upgrade a base load plant into a peak load plant are about 5% of the investment costs, i.e. 

I∆ = 122.5 MNOK. A non-upgradeable base load plant is cheaper to build and operate. We 

assume that the investment costs of a non-upgradeable plant are 1% lower than for an 
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upgradeable plant, i.e. = 2425.5 MNOK. The cost estimates are based on Undrum, Bolland, 

Aarebrot (2000). The gas plant parameters are summarized in Table 2. 
0I

Table 2: The gas plant parameters 

Parameter _
C  I  I∆  0I  

Unit GWh/year MNOK MNOK MNOK 

Value 3.27 2450 122.5 2425.5 

 

The plant and option values as a function of equilibrium price for the upgradeable plant are 

illustrated in Figure 2. Also the investment thresholds are given. The thresholds and option 

values are given by Proposition 1. In Figure 2 the grey lines are the option values. The 

dashed gray line is the upgrade option and the solid gray line is the build option. The plant 

values are illustrated with the black lines. The solid black line is the peak load plant and the 

dashed black line is the base load plant. Naturally, the peak load plant is always more 

valuable than the base load plant.  

[Figure 2 about here] 

 

In the upper picture of Figure 3 the value of an upgradeable base load plant’s owner 

1 1(0, ) ( )V Fξ ξ+  is compared with the value of a non-upgradeable plant’s owner V1(0, )ξ . The 

owner of an upgradeable plant is always more valuable, but the difference becomes smaller 

and smaller as the spark spread increases. In the lower picture of Figure 3 the adjusted 

present value of the upgradeable base load plant, i.e. V V2 1 1(0, ) (0, ) ( )F Iξ ξ ξ− − −∆ , is presented. 

Adjusted present value of the upgradeable plant is the value gain obtained by upgrading a 

base load plant into a peak load plant. As spark spread decreases, and approaches the 

upgrade trigger 1Hξ  the adjusted present value, V V2 1 1, ) (0, ) ( )F I(0 ξ ξ ξ− − −∆ , approaches zero 

from below. Upgrading commences when adjusted present value equals zero. 

[Figure 3 about here] 

 

Proposition 1 states that it is optimal to build an upgradeable base load plant when the value 

of the build option at the building threshold is greater than 49 MNOK (i.e.  > 2450-(1 0HF ξ )
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2401 MNOK). In Figure 2 the value of the upgrade option at the building threshold is 

 = 43.5 MNOK, thus it optimal to build a non-upgradeable plant if there is a 

possibility to build such a plant. The building threshold for a non-upgradeable plant is given 

by Proposition 1. The thresholds for different types of plants are summarized in Table 3. 

(1 0HF ξ )

Table 3: Thresholds  

 upgradeable non-upgradeable 

Variable 0
U
Hξ  1Hξ  N

HOξ  

Unit NOK/MWh NOK/MWh NOK/MWh 

Value 90.2 23.2 91.2 

 

The building threshold for the non-upgradeable plant N
HOξ  is greater than the building 

threshold for the upgradeable plant 0
U
Hξ , even though the non-upgradeable plant is optimal 

choice. In this example case, the investment opportunity that first becomes profitable, when 

the equilibrium price reaches that level from below, is not optimal. In other words, it is not 

optimal to invest in the project with the lowest threshold. 

 

In Figure 4 we illustrate the adjusted present values for both types of base load plants. The 

black dashed line is the adjusted present value, V F
01 1(0, ) ( ) ( )UFξ ξ ξ I+ −

1 0 0(0, ) ( )N Iξ ξ

− , of an investment 

without the possibility to build a non-upgradeable plant. The adjusted present value of an 

opportunity to build a non-upgradeable plant, V F− − , is given by the solid black 

line. Note that the adjusted present value of an investment without the possibility to build a 

non-upgradeable plant can be higher than the adjusted present value of an investment with 

the possibility to choose between the two possibilities. Thus, the optimal plant type cannot 

either be decided by considering the adjusted present values. 

[Figure 4 about here] 

 

Let us analyze the sensitivity of the investment decision when there are the two possibilities. 

In Figure 5 the thresholds as a function of the upgrade costs I∆  are illustrated. The black 
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lines are the thresholds for an upgradeable plant, while the gray lines are for non-upgradeable 

plant. The solid lines represent the optimal choice. In Figure 5 it is optimal to build an 

upgradeable plant when the upgrade costs I∆  are below 35 MNOK. The building threshold 

for non-upgradeable plant does not change when the upgrade costs are changed because 

upgrade costs do not affect the value of a non-upgradeable base load plant. The building 

threshold for an upgradeable plant is only slightly affected by the changes in the upgrade 

costs, whereas the upgrading threshold is more sensitive. Also Figure 5 indicates that when 

the project with lowest threshold is not optimal. 

χσ

[Figure 5 about here] 

 

In Figure 6 the thresholds as a function of equilibrium uncertainty ξσ  are illustrated. It is 

optimal to build a non-upgradeable plant when the equilibrium volatility ξσ  is below 10 

NOK/MWh. Thus, if the equilibrium volatility ξσ  increases from current value 9.6 to 10 it is 

optimal to build an upgradeable plant and the building threshold increases to 92.4 

NOK/MWh. In Figure 6 the building thresholds increase and the upgrade threshold decreases 

as a function of equilibrium volatility, i.e. uncertainty in equilibrium price postpones 

investment decisions. 

[Figure 6 about here] 

 

In Figures 7 and 8 we analyze the sensitivity of the thresholds to the short-term dynamics of 

the spark spread. In Figure 7 the thresholds as a function of short-term volatility χσ  are 

analyzed. In Figure 8 the sensitivity to the mean-reversion of short-term variations, i.e. κ , 

are illustrated. In both figures the building threshold for a non-upgradeable plant is the gray 

line, and the thresholds for the upgradeable plant are the black lines. Lemma 1 states that 

the value of a base load plant is not affected by the short-term variations in the spark spread 

and by Assumption 3 the investment decisions are made as a function of equilibrium price. 

Thus, the building threshold for a non-upgradeable plant does not change as the short-term 

dynamics of the spark spread are changed. In Figures 7 and 8 the optimal choice is indicated 

with a solid line. Thus, the changes in  and κ  do not make the upgradeable choice 

optimal. 
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In Figure 7 increase in short-term volatility preempts the upgrade decision, whereas in Figure 

6 increase in equilibrium volatility postpones the upgrading. In other words, short-term and 

equilibrium volatility have an opposite effect on the timing of upgrading. Increase in short-

term volatility increases the value of a peak load plant, and thus makes earlier upgrading 

more favorable. Correspondingly, increase in equilibrium volatility increases also the build 

and upgrade option values, and thus postpones the investment decision. 

[Figure 7 about here] 

 

Figure 8 indicates that increase in the mean reversion κ  postpones the upgrade decision. By 

Corollary 1, increase in mean reversion κ  decreases the variance of the spread process, i.e. 

decreases the value of a peak load plant. Thus increase in the mean-reversion postpones the 

upgrade decision. 

[Figure 8 about here] 

 

 

5 Conclusions 

We use real options theory for investments in gas fired power plants. Our analysis is based on 

electricity and gas forward prices. The decision maker is assumed to have an exclusive right 

to invest, for example in the form of a previously acquired license. We derive a method to 

compute thresholds for building and upgrading, when a base load plant can be upgraded into 

a peak load plant. We also analyze how the investment decision is changed when there is a 

possibility to build a non-upgradeable plant. 

 

Our numerical example illustrates that when the option to build is valued the interaction of 

possible investment opportunities needs to be considered. By considering the options to invest 

independently, and selecting the project which is first profitable, the result is a non-optimal 

exercise policy of the investment option. This result applies of course to the situation of 

choosing among mutually exclusive projects more generally. The optimal decision rule 

regarding investment timing cannot be found just by considering the threshold boundaries or 

adjusted present values of the individual projects. One has to calculate the investment option 

value for the maximum value of all possible projects. 
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In this particular case increase in short-term volatility preempts the upgrade decision, as the 

value of a peak load plant increases as a function of short-term volatility. Thus, the short-

term and equilibrium volatility have an opposite effect on the upgrade decision. This 

contradicts the traditional thinking in real options literature that uncertainty postpones the 

investment decisions. 
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Appendix A 

As a peak load plant operates only when the spark spread exceeds emission costs, the peak 

load plant, at time s, can be replicated with C  European call options on the spark spread 

with strike price equal to the emission costs E. At time t, the value of such an option, 

maturing at time s, is 

( ) ( )( ) ( )( ) max ( ) ,0 | ( )r s t r s t
t

E

c s e E S s E F e y E h y dy
∞

− − − −
   = − = −    ∫   (A1) 

where  is a normally distributed variable with mean  and variance v .  is the 

density function of a normally distributed variable y. The integration gives 

y ( )sµ 2 ( )s ( )h y

 ( )
2

2
( ( ))

( ) 2 ( )( ) ( )( ) ( ) 1
2 (

E s
r s t v sv s E sc s e e s E

v s

µ µµ
π

−−
− −

    −   = + − −Φ            )
 ,  (A2) 

where  is the normal cumulative distribution function. The value of a plant with lifetime ( )Φ ⋅
T  is given by 

  2( , ) ( )
T

t

c sχ ξ = ∫V C   (A3) ds

which gives 

 ( )
2

2
( ( ))

2 ( )( )
2

( ) ( )( , ) ( ) 1
2 (

E sT
v sr s t

t

v s E sV C e e s E
v s

µ
µχ ξ µ

π

 −  −   − −  
     −   = + − −Φ           

∫ )
ds   (A4) 
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Appendix B 

When it is not optimal to exercise the build option (i.e., when 0Hξ ξ< ), the option to build 

 must satisfy following Bellman equation 0F

  [ ]0 0( ) ( ) ,Q
0HrF dt E dF whenξ ξ ξ= ξ< ,  (B1) 

where QE  is the expectation operator under the pricing measure Q. Itô’s lemma gives 

following differential equation for the option value 

  
2
0 0

02

( ) ( ) ( ) 0,
2

21
0H

F F rF when
S S
ξ ξσ α ξ ξ∂ ∂

+ − = <
∂ ∂

ξ

0

.  (B2) 

A solution to a differential equation is a linear combination of two independent solutions. 

Thus, the value of the option to build is 

  1 2
0 1 2( ) e e , HF A A whenβ ξ β ξξ ξ ξ= + < ,  (B3) 

where ,  are unknown parameters and 1A 2A 1β  and 2β  are the roots of the fundamental 

quadratic equations given by  

  
2 2

1 2

2
0

rξ ξ ξ

ξ

µ µ σ
σ

− + +
β =   (B4) >

  
2 2

2

2
0

rξ ξ ξ

ξ

µ µ σ
σ

− − +
2β = .  (B5) <

The value of the option to build approaches zero as the spark spread decreases (i.e. 02 =A ), 

and thus 

  1
0 1( ) e , 0HF A whenβ ξξ ξ ξ= < .  (B6) 

Figures 

Figure 1: Example realization of spread process and a future estimate 

Figure 2: Plant and option values 

Figure 3: Values of plants’ owners and incremental value of the upgradeable base load plant 

Figure 4: Adjusted present values of different investors 

Figure 5: Thresholds as a function of upgrade costs 

Figure 6: Thresholds as a function of equilibrium volatility 

Figure 7: Thresholds as a function of short-term volatility 

Figure 8: Thresholds as a function of mean-reversion 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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