
 

 

 

 Operating Options and Commodity Price Processes  

 

 

(Draft) 

 
 

Manle Lei                                   Glenn Fox 

Department of Economics            Department of Agricultural  

                                                   Economics & Business 

               University Of Guelph                     University Of Guelph 

              Guelph, ON N1G 2W1                   Guelph, ON N1G 2W1 

mlei@uoguelph.ca                       fox@agec.uoguelph.ca

Phone: 519-824-4120, ext.52764       Phone: 519-824-4120, ext.52768 

 

 

April 2004 

 

 

 

mailto:mlei@uoguelph.ca
mailto:fox@agec.uoguelph.ca


Abstract  

This paper discusses the short-run dynamics of commodity prices. It deals with the 

interrelationships between price, inventory and price volatility as well as the effects of 

inventory and the producers’ operating flexibility on the dynamics of price in the short-

run. It also illustrates how to model and estimate the stochastic process of commodity 

prices. We conclude that, in the short-run, producers’ operating flexibility reduces price 

volatility when the spot price is higher than the threshold price causing expansion in the 

scale of operations. However, we also conclude that operating flexibility can increase 

price volatility when the spot price is lower than the threshold price resulting in a 

contraction of operations. We demonstrate the failure of currently used parametric 

models in describing the stochastic process of commodity prices and suggest using non-

parametric methods. We also recommend including the time trend in such a model. 
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1. Introduction 

The stochastic behavior of commodity prices plays an important role in models used to 

evaluate resource investments1. Usually we represent the underlying price as a 

continuous-time diffusion process, satisfying a time-homogeneous stochastic differential 

equation2, 

                                              dZPdtPdP )()( σµ +=                                            (1.1) 

where )(Pµ is the drift function, )(Pσ is the diffusion function and Z is a standard one- 

dimensional Brownian motion. Here we assume that both the drift term and the diffusion 

term are functions only of the underlying price. Equation (1.1) can be estimated by either 

parametric or non-parametric methods. However, in the real options literature, most 

studies have been conducted using parametric methods. 

In resource economics, the most popular models used to describe the stochastic process 

of commodity prices are the geometric Brownian motion model and mean reverting 

model. For example, Clarke and Reed (1989) derived an optimal harvesting rule for the 

single rotation problem when price is assumed to follow geometric Brownian motion. 

Insley (2001) estimated the optimal cutting time assuming the lumber price are mean 

reverting. Recent studies also introduced some alternative models3, such as stochastic 

volatility process4 and Schwartz and Smith (2000)’s two-factor model. 

One advantage of parametric models is that it may be possible to obtain analytical 

solutions for optimal investment rules. However, not all parametric models have such 

                                                           
1 See Schwartz and Smith (2000). 
2 See Stanton (1997). 
3 Since most jumps have been smoothed out in monthly or quarterly data, we do not use jump models in 
this paper. The discussion on the time smoothing effect can be found in Ait-Sahalia (2003). 
4 See Deng (1999). 
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analytical solutions. In any case, our objective is not to find an analytical solution, but a 

solution that is reliable. Thus, a question arises: are the prices of resource commodities 

and other goods best modeled as geometric Brownian motion, mean – reverting 

processes, or some alternative processes? A good parametric model describing the 

stochastic process of commodity prices should reflect the dynamics of commodity prices. 

To answer the above question, a detailed analysis on the dynamics of commodity prices 

is necessary5. 

Pindyck (2001) studied the short-run dynamics of resource commodity spot markets and 

explained the interrelationships among prices, rates of production and inventory levels. 

However, Pindyck did not consider the effects of producers’ operating flexibility on price 

volatility. To evaluate resource investments, we usually use monthly or quarterly data. In 

some industries, a month or a quarter is a period long enough for producers to begin the 

adjustment of their operating scales, i.e., producers can expand, contract, and temporarily 

shut down and restart their production. Thus, producers’ operating flexibility should be 

considered in the short-run dynamic analysis.  

The main purposes of this paper are to analyze the short-run dynamics of resource 

commodity prices for the evaluation of resource investment and to provide a theoretical 

foundation for modeling and estimating the stochastic process of resource commodity 

prices. The outline of this paper is as follows: Section 2 describes the interrelationship 

between price, inventory and price volatility. Section 3 discusses producers’ operating 

flexibility. Section 4 illustrates the short-run dynamics of commodity prices. Section 5 

discusses the performance of parametric models in describing the stochastic process of 

                                                           
5 This paper only concerns storable resource commodities such as lumber, woodpulp, and rubber.. Since 
electricity is non-storable, it is not included here. Readers interested in the stochastic models of electricity 
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commodity prices and implications on the modeling of price process. Section 6 presents 

conclusions. 

 

 

 2. Pindyck’s Model of Commodity Price Dynamics 

Pindyck (2001) studied the short-run dynamics of commodity spot markets6. He 

explained how prices, rates of production and inventory levels are interrelated and that 

they are determined via equilibrium in two interconnected markets: a cash market for 

spot purchases and sales of the commodity and a market for storage.  He also showed 

how equilibrium in these markets affects and is affected by changes in the level of price 

volatility. In this section, we will review Pindyck’s model of the short–run dynamics of 

commodity spot markets.  

 

2.1. Inventory and Net Demand for Inventory 

Pindyck (2001) explained the function of inventories: In a competitive commodity 

market, both producers and industrial consumers hold inventories in order to mitigate the 

impacts of stochastic fluctuations in production and consumption.  Producers can use 

inventory changes to smooth production and reduce adjustment cost, such as costs of 

hiring and training new or temporary workers, leasing additional capital, etc. and also to 

reduce the risk of being unable to satisfy unexpected customer orders.    

Pindyck (2001) illustrated how price volatility and price affect the demand for inventory. 

An increase in price volatility implies an increase in the demand for inventory. Other 

                                                                                                                                                                             
can see Deng (1999). 
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things equal, market participants will want to hold greater inventories when prices are 

more volatile in order to buffer the effects of fluctuations in production and consumption. 

Denote as the demand for inventory, DN σ as the price volatility, and then . 0/ >∂∂ σDN

   The demand for inventory also depends on the spot price of the commodity. Other 

things equal, one should be willing to pay more to store a good when its price increases 

than one would be willing to pay if its price decreased, i.e., .  Thus we can 

write the demand of inventory as 

0/ >∂∂ PN D

),;( N
DD zPNN σ=                                         (2.1) 

Where P is the spot price, is the vector of variables that can affect the demand of 

inventory other than spot price and price volatility

Nz

7. 

When inventory can change, production in any period need not equal consumption. As a 

result, the market-clearing price in the spot market is determined not only by current 

production and consumption, but also by changes in inventory holdings. Denoting “net 

demand” as the difference between production and consumption, Pindyck(2001) 

characterizes the cash market as a relationship between the spot price and “net demand”. 

Writing the demand function and supply function for the cash market as: 

  ),;( DDzPDD ε=                                                 (2.2) 

And                         ),;( SSzPSS ε=                                                  (2.3) 

where P is the spot price,  is a vector of demand-shifting variables,  is a vector of 

supply-shifting variables and 

Dz Sz

Dε and Sε  are random shocks. 

                                                                                                                                                                             
6 Pindyck (2001) also studied futures market, which is not in the scope of this paper. 
7 For example, includes the current inventory level. Nz
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Letting Nt denote the inventory level at time t. The change in inventory at time t is given 

by the accounting identity: 

),;(),;( 2 DtDtttSSttt zPDzPSdN εε −=                        (2.4) 

where dNt  is net demand, i.e., the demand for production in excess of consumption. Thus 

this equation implies that the cash market is in equilibrium when net demand equals net 

supply. Rewriting equation 2.4 as and inverse net demand function: 

),,,;( StDtStDttt zzdNPP εε=                                     (2.5) 

Market clearing in the cash market therefore implies a relationship between the spot price 

and the change in inventories.   

Because and 0/ >∂∂ PS 0/ <∂∂ PD , the inverse net demand function is upward sloping 

in N, i.e., a higher price corresponds to a larger S and smaller D, and thus a larger N. 

 

2.2. Price Volatility 

Pindyck (2001) pointed out that price volatility is inversely related to inventory level, i.e., 

an increase in inventory level can reduce price volatility. Suppose a shock causes the 

price level to rise. Such shock, either a temporary increase in demand or a temporary 

decrease in supply, will also cause a decrease in the inventory level8. So a price increase 

always accompanies with a decrease in inventory level. Thus, price volatility will be 

positive sloping on price. 

On modeling the commodity price, Pindyck concluded that, over the long run, price 

behavior seems consistent with a model of slow mean reversion, i.e.,   

                                                           
8 Producers have to judge whether the price increase is caused by a shock or by regular fluctuation. Thus, 
producers will not adjust their operation immediately, and production will increase later than price rises. 
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                                   tttt dZPdtPPBdP ⋅+⋅−⋅= σ)(                           (2.6) 

where B is the reverting rate, P is the mean of price and σ is a constant. 

 

 

3. Producers’ Operating Options and Market Supply 

Pindyck (2001) did not consider the effects of producers’ operating flexibilities on price 

volatility. Management is not passive. In the marketplace, producers have operating 

flexibilities, that is to say, they do not have to operate continuously at their base scales. 

As new information arrives, uncertainty about market conditions is gradually discovered, 

management may have valuable flexibility to alter its initial operating strategy. For 

example, in natural resource industries, producers may have the option to alter operating 

scales, i.e., to expand, to contract, to shut down and restart operations at various stages of 

the firm’s useful operating life9. Such changes of operating scales do not have to happen 

immediately. Firms can wait till new information arrives to justify such changes. If 

market conditions are more favorable than expected, producers can expand the scale of 

production or accelerate resource use. Conversely, if conditions are less favorable than 

expected, producers can reduce the scale of operations. In extreme cases, production may 

be shut down and restarted. 

In the following section, we will first explain the effects of these operating options on the 

supply of the underlying commodities at firm level. Later, we will derive the market 

supply curve from the individual producer’s supply curve.  

 

                                                           
9 Trigeorgis (1996) explained these managerial flexibilities in detail. 
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3.1. Producers’ Operating Options 

To simplify the illustration, we assume that at any operating scale, the individual 

producer’s production is less elastic. Initially, the market price is P*, and the base scale of 

the producer is Q*, as shown in Figure 3-1. 

 

Option to expand 

  If the market conditions turn out more favorable than expected, i.e., the commodity 

price increases significantly (above Pe in Figure 3-1), then producers can expand the 

scale of production by incurring a follow-on investment, Ie. This managerial flexibility is 

similar to a call option to acquire an additional part of the base-scale project, paying Ie as 

the exercise price. If we denote V as the present value of the complete project’s expected 

operating cash flow, x as the percent rate of increase of the production scale, then the 

investment opportunity with the option to expand can be viewed as the base-scale project 

plus a call option on future investment, i.e., )0,max( IexVV −+ .  

 

Option to Contract 

If market conditions are weaker than originally expected, i.e., the commodity price drops 

below the average total cost of production (below Pc in Figure 3-1), then the producer 

can reduce the scale of operations to save part of the planned investment outlays. This 

flexibility to mitigate loss is analogous to a put option on part of the base-scale project, 

with exercise price equal to the potential cost savings, Ic. If we denote c as the percent 

rate of decrease of the production scale, then the investment opportunity with the option 

 9



to contract can be viewed as the base-scale project plus a put option on future investment, 

i.e., . )0,max( cVIcV −+

 

Option to shut down and restart operations 

Producer does not have to operate in each and every period. In case the price drops such 

that cash revenues are not sufficient to cover variable operating costs (below Ps in Figure 

3-1), it might be better not to operate temporarily - Producers can restart operations later 

once prices rise sufficiently. If we denote R as the annual cash revenues, Iv as the 

variable costs of operating, then operation in each year is similar to a call option to 

acquire that year’s cash revenues by paying the variable costs of operating as exercise 

price, i.e., .  )0,max( IvR −

 

3.2. The Market Supply Curve 

Figure 3-1 is the individual producer’s supply curve. Usually, a natural resource industry 

consists of many competitive producers. Although these producers may have similar 

supply curves, their operating scales and production costs may not be identical, so 

different producers may have different threshold prices to expand, contract and 

temporarily shut down their production. Thus, the market supply curve will be smoother 

than the individual producer’s supply curve. 

The market supply curve is shown in Figure 3-2. Note that Figure 3-2 is based on the 

assumption that producers have all the operation options mentioned above. This 

assumption is reasonable for the forestry industry, but might not be completely correct for 

other natural resource industries, such as some mine industries in which the option to 
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expand seems to be not available. Thus, the dynamics of commodity prices and price 

volatility might not be identical for all commodities. 

 

 

4. Dynamics of Commodity Price 

To evaluate resource investment, we usually use monthly or quarterly data. Usually a 

resource investment will last for several decades, even over a hundred years, thus we 

need to consider the evolution of commodity price over a long period, say, several 

decades. In such a long period, most often only monthly or quarterly data are available.  

For producers, a month or a quarter is a period long enough to begin the adjustment of 

their operating scales. Thus, the producers’ operating flexibility should be considered in 

the short-run dynamic analysis. In this reason, this paper will use ‘short-run’ to denote the 

period in which the producers face only one shock and have time to adjust their 

production.  

In order to analyze the short-run dynamics of commodity prices in more detail, I will 

consider how inventory, price and price volatility change in response to a small or large 

exogenous shock10. Define a shock as positive if it raises price and negative if it 

decreases price. Both positive and negative shocks can originate either on the supply or 

the demand side of the market. For example, country M’s high economic growth rate 

increases the demand for lumber. A forest fire in country N reduces the lumber supply. 

Both events will raise the lumber price, so they are positive shocks. On the contrary, if a 

                                                           
10 Pindyck (2001) did not consider the issue of the magnitude of shocks. We differentiate between small 
and large shock. Small shocks do not change the price enough to cause producers to change operating 
scales, while large shocks do. 
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new material is invented to replace lumber in furniture, or a new biotechnology can be 

applied to significantly increase the growth rate of trees, then the lumber price will be 

pushed down. These events are called negative shocks in this paper. 

 To illustrate the dynamics of commodity prices, I will analyze the evolution of 

commodity price when the commodity market faces a positive shock and a negative 

shock, respectively, and then provide some empirical examples. 

 

4.1. Positive Shock11

Small Positive Shock 

       Suppose there is a small positive shock on the market. According to Pindyck (2001), 

the dynamics of price and change of inventory can be expressed by the inverse net 

demand function, , as shown in Figure 4-1. Initially, the net demand function is 

, and net demand is zero. Denote the current spot price as P*. A small positive 

shock will immediately push up the spot price. The inverse net demand function  

will shift upward to . Before the producers can respond to the shock, the 

inventories will decrease (dN1 < 0), and this will limit the size of the price increase (from 

P* to P1 in Figure 4-1).  

)(dNP

)(1 dNP

)(1 dNP

)(2 dNP

Point B is not a steady state, (because inventory must be positive, it cannot keep 

decreasing. The new equilibrium can only occur when the net demand curve crosses the 

                                                           
11 The definition of “shock” in this paper is different form Pindyck (2001). Pindyck analyzed the overall 
effects of a temporary event on the dynamics of commodity price. We find that it is more convenient to use 
two separate shocks to describe an event: one shock at the occurrence of the event, and one shock when the 
effect of the event disappeared. It is useful when the effect of a “temporary” event might last several years.  
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vertical axis and dN = 0), so price will move along the curve upward to P**, the 

new equilibrium price. 

)(2 dNP

Since the price does not rise over the threshold price to expand, Pe, the producer will not 

change the scale of the operation, but will adjust its production at the base – scale level. 

As the production increases, the inventory level increases. Since the inventories will be 

re-accumulated12, production will have to exceed consumption (i.e., dN > 0). Thus in 

Figure 4-1, the spot price rises from P1 to P2 > P**(from B to C in Figure 4-1). (The 

increase in the balanced spot price is due to the increase of marginal cost.) This 

accumulation of inventories will continue until the inventory level reaches , 

the new balanced inventory level, i.e., . When there is no further 

accumulation of inventories, the spot price will fall to P** (from C to P** in Figure 4-1).  

*)*(PN D

0*)*( =PdN D

Figure 4-3 shows the short-run behavior of price volatility, which is indicated by mean-

reversion model (equation (2.6)).. Initially, correspond to spot price , the price 

volatility is E. If producers have no operating options, the diffusion curve will be the 

ABECD line in Figure 4-3. A small positive shock raises the price, and causes the price 

volatility go upward along the EC line. 

0P

 

Large Positive Shock 

When the shock is large, i.e., the shock pushes the price to rise above the threshold to 

expand, the consequence of such a shock is not like that of small shock. First, the shock 

will immediately push up the spot price. The inverse net demand function  will 

shift upwards to in Figure 4-2. If we neglect producer’s option to expand, we 

)(dNP

)(2 dNP LP
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would think that the inverse net demand function stay at , and conclude that, 

similar to the small positive shock case, the market will return to equilibrium at price .  

)(2 dNP LP

2P

However, since at , , the producer will choose to expand the scale of 

operation. Before spot price reaches Pe, the producer will not exercise the option to 

expand, and the inventories will decrease (dN1 < 0). When the spot price reaches Pe, the 

producer will expand the scale of operation, and the inverse net demand function will 

shift downwards to . Thus, in Figure 3-2, instead of , the 

dynamics of commodity price will be .  

0=dN ePP >2

)(3 dNP LP
2* PBAP →→→

*** PDCP →→→

What is the effect of operating options on the price volatility curve? When a positive 

shock pushes the spot price over Pe, producers will expand operating scales. Since 

production increases with operating options is greater than production increases without, 

the inventory level with operating options will be higher than the inventory level without. 

Thus, the expansion of operating scale will reduce the price volatility level, and bend the 

volatility curve downward from  to  or  shown in Figure 4-3. CD 1CD 2CD

 

 

4.2. Negative Shock 

Small Negative Shock 

The consequence of a small negative shock is similar to that of a small positive shock, 

but in the opposite direction. The small negative shock will immediately push down the 

spot price. The inverse net demand function  will shift downwards. (In Figure 4-4, )(dNP

                                                                                                                                                                             
12 To mitigate the positive shock, inventory has been reduced to the required level.  
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this is shown as a shift from  to .) Before the producers can respond, the 

inventories will increase (dN1 > 0), and this will limit the size of the price decrease (from 

P0 to P1”  in the figure).  

)(1 dNP )(3 dNP

Since the price does not drop below the threshold price to contract, Pc, the producer will 

not change the scale of operation, but will adjust its production at the base – scale level. 

As the production decreases, the inventory level decreases. Since the inventories will be 

cut down, production will have to be less than consumption (i.e., dN < 0). Thus, in Figure 

4-4, the spot price drops from P1 to P3 < P**. This de-accumulation of inventories will 

continue until the inventory level reaches , which is less than . At point 

, there will be no further de-accumulation of inventories, and the spot price will rise 

to P**. 

*)*(PN D
0N

DN

As shown in Figure 4-3, a small negative shock raises the price, and causes the price 

volatility to go downward along the EB line. 

 

Large Negative Shock 

A large negative shock will immediately push up the spot price. The inverse net demand 

function  will shift downwards to  as in Figure 4-5. If the producer does 

not have the option to contract, the inverse net demand function will stay at . 

Then similar to the small negative shock case, the market will return to equilibrium at 

price P2. 

)(dNP )(2 dNP LN

)(2 dNP LN

However, since at , 0=dN cPP <2 , the producer will choose to contract the scale of 

operation. Before the spot price reaches Pc, the producer will not exercise the option to 
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contract, and the inventories will increase (dN1 > 0). When the spot price reaches Pc, the 

producer will contract the scale of operation, and the inverse net demand function will 

shift upwards to . Thus, instead of , the dynamics of 

commodity price will be in Figure 3-5.  

)(3 dNP LN
2* PKJP →→→

**** PMLP →→→

If the negative shock is so large that the spot price may be less than some producers’ 

threshold price to temporarily shut down at some point before the market reaches a new 

balance, then these producers will choose to suspend production for a while, and resume 

operations later when the spot price rises again. Since the effect of the operating option to 

temporarily shut down on the commodity market is similar to the effect of the operating 

option to contract, I will not talk about this process in detail. 

A large negative shock pushes down the spot price for P0 to Pc, and increases the 

inventory level. Since production with operating options decreases more than without, the 

inventory level with operating options is lower than the inventory level without. Thus, the 

contraction of operating scale will raise the price volatility level and bend the diffusion 

curve upward from to  or  shown in Figure 4-3.   AB BA1 BA2

 The locus of the bended price volatility depends on the property of the commodity 

market. Of course, producers’ managerial flexibility will depend on the characteristics of 

the industry so it is not surprising to see that different commodities have differently 

shaped diffusion curves.  

 

4.3. The Dynamics of Commodity Spot Price 

Mean Reverting Property 
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Market uncertainty can be regarded as the result of a sequence of positive and negative 

shocks, no matter whether these shocks are caused from the shift in the supply function or 

demand function. A temporary exogenous effect can be regarded as consisting of two 

shocks with opposite directions. As the exogenous effect disappears, production, 

consumption and inventory, as well as commodity price and price volatility, will return to 

the initial level. A permanent exogenous effect will change these market variables 

permanently and these market variables will not return to the initial level. However, if 

there is no long term upward or downward trend, we can assume that the permanent 

exogenous effects have been symmetric and have neutralized each other. Thus, in the 

long run, the process of commodity spot prices expresses the mean reverting property. 

 

Time Trend of Commodity Spot Price 

For some commodities, however, and for some longer time periods, long term upward or 

downward trends have been observed.  The existence of a time trend will change the 

reverting target, and consequently shift the price volatility function, thus, when we have 

data for a long period, it may be necessary to include a time trend when we model the 

process of a commodity spot price13. 

 

4.4. Empirical Examples 

Figure 4-6 and 4-7 present time series data of real Canadian softwood lumber prices and 

real US lumber prices, respectively. The Canadian softwood lumber price data are a 

Monthly Price Index for Canadian softwood lumber from January 1956 to December 

                                                           
13 The discussion of long-run trend is beyond the scope of this paper. 
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2003. The original series is a nominal price index, defined so P1997=100.  We deflated this 

index by the monthly Canadian Consumer Price Index14. The U.S. lumber price data, 

ranged from January 1947 to December 2003, were obtained by deflating monthly 

nominal price index of U.S. lumber by the monthly U.S. Consumer Price Index.  

Figure 4-8 and Figure 4-9 compare estimations of drifts and diffusions of real prices of 

Canadian softwood lumber and U.S.  lumber estimated by a non-parametric method and a 

mean reverting model15. For non-parametric estimation, we employed a local linear 

method and choose bandwidth , where n is the number of 

observations. The drifts of both Canadian price and US price show mean-reverting 

property – the expected change of price has downward sloping on price. The Figures of 

price volatility indicate that both curves estimated by non-parametric method are roughly 

in line with the approximate S-shape shown in Figure 4-3 and break the 95% confidence 

intervals of estimations using mean-reverting model

)(**6 9/2 Pstdnh −=

16. These Figures indicate that 

estimation by mean-reverting model might give us biased results on the diffusion 

estimation. 

An Additional example, the comparison of estimations of diffusions of real prices of U.S. 

Crude Oil estimated by a non-parametric method and a mean reverting model, is 

presented in Figure 4-10, in which the curve estimated by non-parametric method also 

                                                           
14 It seems that choosing different deflators does not have significant effect on the results. If we use 
industrial price index to be the deflator, we can get similar curves. 
15 Mean Reverting Model: tdZPdttPPtdP ⋅⋅+⋅−⋅= ση )(  
16 Some researches pointed out that non-parametric estimation of price volatility might cause spurious non-
linearity. (See Fan and Zhang, 2001). To test the hypothesis that the non-linearity of the volatility is 
spurious, I estimate the price process and use Monte Carlo method to generate 500 simulations with same 
size. The quantiles of estimations seem to indicate that the S shape of volatility curve cannot be explained 
only by non-linearity. The results of the test can be seen in Appendix I. 
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breaks the 95% confidence intervals of mean-reverting model, and indicates that 

estimation by mean-reverting model might give us the wrong result. 

 

 

5. Implications on Modeling the Commodity Price Process 

A good parametric model describing the stochastic process of commodity prices should 

capture the characteristics of the evolution of commodity prices. In this section, we  

examine whether those currently used parametric models can reflect the dynamics of 

commodity prices. 

 

5.1. Parametric Models 

The most popular parametric models describing the stochastic process of commodity 

prices in the real options literature include the geometric Brownian motion (GBM) and 

mean reverting motion (MR),  

GBM    tttt dZPdtPBdP ⋅+⋅⋅= σ                                     (5.1) 

MR       tttt dZPdtPPBdP ⋅+⋅−⋅= σ)(                           (5.2) 

Other parametric examples used in finance include models from Vasicek (VAS) (1977), 

Cox, Ingersoll and Ross (CIRSR) (1985), Cox, Ingersoll and Ross (CIRVR) (1980), and 

Chan, Karolyi, Longstaff and Sanders (CKLS) (1992).  

VAS  ttt dZdtPBAdP ⋅+⋅⋅+= σ)(                                  (5.3) 

CIR SR tttt dZPdtPBAdP ⋅⋅+⋅⋅+= σ)(                      (5.4) 

CIR VR                                                   (5.5) ttt dZPdP 2/3⋅= σ
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CKLS                             (5.6) tttt dZPdtPBAdP γσ ⋅+⋅⋅+= )(

In model (5.3) – (5.6), γσ ,,, BA are constant. Comparing model (5.3) – (5.6), we can find 

that model (5.1) – (5.5) are generalized by model (5.6). 

Can these models correctly reflect the dynamics of the price process? The diffusion term 

in all these parametric models assume a constant functional form,  Such 

functional form indicates that in the whole domain, the curve is concave or convex. 

However, the S shape of the volatility curve requires that the change of concavity or 

convexity within the domain. Thus, this functional form cannot describe the S shape of 

the volatility curve. Even though the dynamics of price shows mean reverting property, 

since the producers have the operating options to expand or contract, the reverting rate at 

different price level might be different. Thus, these models might be oversimplified

γσσ tP⋅=•)( .

17.  

Some studies have considered alternative models. One is the stochastic volatility model. 

For ease of illustration, consider a simple stochastic volatility model, i.e., assuming that, 

for geometric Brownian motion        

                                  ttttt dZPdtPBdP ⋅+⋅⋅= σ                                                (5.7) 

σ  in the diffusion term follows Brownian motion 

              tt dWdt ⋅⋅+⋅= υκσ                                                 (5.8) 

where B, κ and υ  are constants and W is a standard one- dimensional Brownian motion.  

Another one is Schwartz and Smith (2000)’s two-factor model. Schwartz and Smith 

(2000)’ developed a two-factor model of commodity prices that allows mean-reversion in 

short-term prices and uncertainty in the long-term equilibrium level to which prices 

revert. In their parametric model, the long-run equilibrium price is assumed to evolve 
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according to geometric Brownian motion with drift reflecting expectations of the 

exhaustion of existing supply, improving technology for the production and discovery of 

the commodity, inflation, as well as political and regulatory effects. The short-term 

deviations, defined as the difference between spot and equilibrium prices, are expected to 

revert toward zero following an Ornstein-Uhlenbeck process. These deviations may 

reflect short-term changes in demand resulting from variations such as intermittent 

supply disruptions, and are tempered by the ability of market participants to adjust 

inventory levels in response to changing market conditions. 

However, both stochastic volatility model and Schwartz and Smith’s two-factor model 

indicate the positive relationship between price volatility and price. Thus, they cannot 

explain the S shape of the volatility curve.  The proof is provided in Appendix I.   

 

5.2. Impact of Misspecification on Investment Decisions  

All parametric estimators have some model assumptions. Inaccurate assumptions can 

lead to model misspecification. Model misspecification can lead to biased estimators.   

Misspecification might also cause bias in investment decisions. For example, suppose we 

want to determine the entry and exit threshold prices of an industry. Figure 5-118 shows 

the entry and exit threshold prices curves as functions of the price volatility of the 

underlying commodity. The entry threshold price has positive relationship with the price 

volatility, while the exit threshold price has a negative relationship with the price 

volatility. (The intuition here is that, the higher the volatility, the greater the option value 

to enter or to exit, and the later the producer will exercise the option. Thus, a higher 

                                                                                                                                                                             
17 Empirical examples will be provided later in this section. 
18 See Dixit & Pindyck (1994), p.226. 
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volatility will be accompanied by a higher entry threshold price and a lower exit 

threshold price.) 

Assume the real volatility curve is ABCD in Figure 5-2, which is derived from Section 3. 

However, we impose an assumption that the diffusion term has a functional form as 

P⋅=• σσ )( , where σ is constant. The estimated diffusion curve is OE in Figure 5-2.  

Suppose the entry threshold price is , and the exit threshold price is . In the 

neighborhood of , the estimated price volatility is lower than the real value, so the 

estimated entry threshold price, , will be lower than ; In the neighborhood of , 

the estimated price volatility is higher than the real value, so the estimated exit threshold 

price, , will also be lower than . We can see that, in this special case, 

misspecification might cause investors to enter too early or to exit too late. 

HP LP

HP

*
HP HP LP

*
LP LP

 

5.3. Estimation Using Non-parametric Method  

In general, we do not know the exact functional form of the drift term and 

diffusion term. We test hypotheses on the functional form of the commodity price 

process. However, based on the analysis on the dynamics of commodity prices in section 

2, it seems that the functional form might be very complicated, so it is logical to ask 

whether or not a specific functional form is necessary. 

Consider the value of a contingent claim, , which is a function of an 

underlying commodity price, P, and time, t, only. To evaluate the contingent claim, we 

need to solve the partial differential equation satisfied by the value function: 

),( tPF
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=⋅−
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+⋅
∂
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∂
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t
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where )(Pσ is the diffusion function, )(Pµ is the drift function, and ρ  is constant. To 

solve the partial differential equation (5.9) numerically, we only need to know the 

conditional value of the drift function and diffusion function on price. However, we can 

use a non–parametric method to obtain the conditional value of the drift and diffusion. 

Re-stating equation (1.1), the time-homogeneous stochastic differential equation that 

represents the underlying prices as a continuous-time diffusion process: 

                                       dZPdtPdP )()( σµ +=                                            (5.10) 

Where )(Pµ is the drift function, )(Pσ is the diffusion function, and Z is a standard one- 

dimensional Brownian motion. Here we assume that both drift and diffusion terms are 

determined only by the underlying price. The drift )(Pµ  and the diffusion )(Pσ  can be 

identified by: 

         )()(1lim
0

PPPdPE
dt tdt

µ==
→

                                  (5.11) 
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                                         (5.12)                                       

Equation (5.11) and (5.12) can be estimated by Kernel methods19. Kernel estimators of 

the  conditional moments are: )2,1( =jj th
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where is the optimal bandwidth in the  estimator. Thus, a functional form of drift or 

diffusion is not necessary.  

jh thj

                                                           
19 See Fan and Zhang (2001). 
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One advantage of non-parametric estimators is that they relax model assumptions, so the 

possible modeling biases are reduced. Because nonparametric estimators require little 

prior information relating to the functional form of the conditional expectations, it is very 

convenient to employ these non-parametric estimators. 

 

 

6. Conclusions 

This paper discusses several aspects of the short-run dynamics of commodity prices and 

the interrelationships between price, inventory, and price volatility. The paper analyzes 

the effects of inventory and the producers’ operating flexibility on the dynamics of price 

in the short-run. The paper also examines the performance of currently used parametric 

models of commodity price processes in the real options literature, and illustrates how to 

model and estimate the stochastic process of commodity prices. Some conclusions can be 

made from the above discussion: 

• Our model of inventories, price and operating flexibility indicates that producers’ 

operating flexibility reduces price volatility when the spot price is higher than the 

threshold price for expanding operating scales, but raises price volatility when 

spot price is lower than the threshold price for contracting operating scales. Data 

for several commodities support the conclusions of this model. 

• Currently used parametric models to describing the stochastic process of 

commodity prices, including geometric Brownian motion or mean reverting 

processes fail to reflect the dynamics of commodity prices. 
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• To evaluate the underlying contingent claim, we need to obtain the conditional 

value of the drift term and the diffusion term of the commodity price process, 

which can be estimated by non-parametric methods. However, it is not necessary 

to find the specific functional form of the commodity price processes. 
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Appendix I 

Some researches pointed out that non-parametric estimation of price volatility might 

cause spurious non-linearity. (See Fan and Zhang, 2001). To test the hypothesis that 

whether the S shape of the volatility curve can be explained only by spurious non-

linearity caused by non-parametric estimation, I estimate the price process using mean –

reverting model, use Monte Carlo method to generate 500 simulations with same size, 

and then use non-parametric method to estimate the quantiles of the simulations.  

The estimations of real prices of Canadian softwood lumber and US softwood lumber 

using non-parametric method and using mean-reverting model, as well as the quantiles of 

simulation estimations are shown in Figure A-1 and Figure A-2, respectively, from which 

we can that, in some area, the estimated curve using non-parametric method breaks the 

boundaries – the 5% and 95% quantiles of the simulation estimations. It seems to indicate 

that the S shape of volatility curve cannot be explained only by non-linearity.  
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Figure A-1 Simulation Estimations 
on Real Price of Canadian Softwood Lumber 

 
 
 

Figure A-1 Simulation Estimations 
on Real Price of US Softwood Lumber 
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Appendix II 

The simple stochastic volatility model: 

                                  ttttt dZPdtPBdP ⋅+⋅⋅= σ                                                (I.1) 

σ  in the diffusion term follows Brownian motion 

              tt dWdt ⋅⋅+⋅= υκσ                                                 (I.2) 

where B, κ and υ  are constant and W is a standard one- dimensional Brownian motion. 

The second order conditional moment of price increment in equation (I.1) can be written 

as 

  2
0

22
0

2
00 ])[(]))([()(2 PPPPEdtPPPdPEPPM ttttttt ⋅==⋅=⋅=−== υσµ    (I.3) 

Equation (I.3) indicates positive relationship between price and the second order 

conditional moment, which implies positive relationship between price and price 

volatility. 

Schwartz and Smith (2000) developed a two-factor model of commodity prices 

that allows mean-reversion in short-term prices and uncertainty in the long-term 

equilibrium level to which prices revert. Let denote the spot price of a commodity at 

time t.  Schwartz and Smith decompose the spot price into two stochastic factors as  

tS

                                     tttS ξχ +=)ln(                                                           (I.4) 

where tχ is referred to as the short-term deviation in prices and tξ the long-term 

equilibrium price level.   

In their parametric model, the short-term deviations, defined as the difference between 

spot and equilibrium prices, are expected to revert toward zero following an Ornstein-

Uhlenbeck process:   
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     χχσχκχ dzdtd tt ⋅+⋅⋅−=                                  (I.5) 

The long-term equilibrium price is assumed to evolve according to geometric Brownian 

motion:                 

                  ξξξ σµξ dzdtd t ⋅+⋅=                                        (I.6) 

In equation (I.5) and (I.6), and are correlated increments of standard Brownian 

motion processes with 

χdz ξdz

dtdzdz ⋅=⋅ χξξχ ρ , and ξξχ σµσκ ,,, are constants. 

The expectation of logarithm of price increment in equation (I.4) can be written as: 
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                      (I.7) 

The variance of logarithm of price increment in equation (I.4) can be obtained by: 

            (I.8)        
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Equation (I.8) indicates that the variance of logarithm of price increment is a constant. 

Since , we have ttt SdSSd /)ln( = )ln( ttt SdSdS ⋅= . Thus, the second order conditional 

moment of price increment can be expressed by: 

                  
)2(

))ln(()(2
222
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0
2
00

ξχχξξχ σσρσσ ⋅⋅⋅++⋅=

=⋅==

S

SSSdVarSSSM ttt                                                  (I.9) 

Equation (I.9) indicates that, according to Schwartz and Smith’s model, over a long 

period, variance of price increment will be expected to increase as the price rises, which 

also implies a positive relationship between price volatility and price.   
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Figure 3-1: Individual Producer’s Supply Curve 
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Figure 4-1: Effects of Small Increase in Net Demand 
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Figure 4-2: Effects of Large Increase in Net Demand 
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Figure 4-3: Effects of Operating Options on Price Volatility 
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Figure 4-4: Effects of Small Decrease in Net Demand 
 
                                                        Price                 
                                                           Pe                                   )(1 dNP
 
                                                              P*                                                          
 
                                                                                                        )(3 dNP
                                                                       1P
                                                                       
                                                                      P**                                                       
                                                                       3P
 
 
                                                               Pc                                                   
 
 
                                                                    0                         1N∆       Change of Inventory 

 34



Figure 4-5: Effects of Large Decrease in Net Demand 
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Figure 4-6: Monthly Time Series Data 
- Real Price of Canadian Softwood Lumber20

 
 

Figure 4-7: Monthly Time Series Data 
- Real Price of US Lumber21

 
 
                                                           
20 Source: Statistics Canada 
Monthly nominal Price Index for Canadian softwood lumber: Cansim II Series V1575009 (Jan. 1956 – 
Dec. 2003) 
Monthly Canadian Consumer Price Index: Cansim II Series V735319 
21 Source: US Bureau of Labor Statistics  
Monthly Nominal Price Index of US Lumber:  Producer Price Index WPU081 (Jan 1947-Dec.2003) 
Monthly US Consumer Price Index: All Items (1982-84 = 100) 
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Figure 4-8: Comparison of Estimations 
- Real Price of Canadian Softwood Lumber22 

 
(A) Estimations of Drift 

 
 

(B) Estimations of Diffusion  

 
 

  

                                                           
22 Mean Reverting Model: tdZPdttPPtdP ⋅⋅+⋅−⋅= ση )(  

In Non-parametric estimation: bandwidth )(*9/2*6 Pstdnh −= , where n is the number of 
observations. 
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Figure 4-9: Comparison of Estimations   
– Real Price of US Lumber23 

 
(A) Estimations of Drift 

 
 

(B) Estimations of Diffusion 

 
 
 
 
 
 
                                                           
23 Mean Reverting Model: tdZPdttPPtdP ⋅⋅+⋅−⋅= ση )(  

In Non-parametric estimation: bandwidth )(*9/2*6 Pstdnh −= , where n is the number of 
observations. 
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Figure 4-10: Comparison of Estimations   
– Real Price of US Crude Oil24 

 
(A) Monthly Time Series Data 

 
(B) Estimations of Diffusion 

 
                                                           
24Source: US Bureau of Labor Statistics  
Monthly Nominal Price Index of US Lumber:  Producer Price Index WPU0561 (Jan 1947-Dec.2003) 
Monthly US Consumer Price Index: All Items (1982-84 = 100) 

 Mean Reverting Model: tdZPdttPPtdP ⋅⋅+⋅−⋅= ση )(  

In Non-parametric estimation: bandwidth )(*9/2*6 Pstdnh −= , where n is the number of 
observations. 
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Figure 5-1: Entry and Exit Threshold Prices  
as Functions of Price Volatility25
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Figure 5-2: Impact of Misspecification on Option Evaluation 
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25 Copy from Dixit & Pindyck (1994) p.226 
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