
Valuing Real Options without a Perfect Spanning Asset

Vicky Henderson 0

Princeton University

PRELIMINARY VERSION

May 2004

0ORFE and Bendheim Center for Finance, E-Quad, Princeton University, Princeton, NJ. 08544. USA.
Email: vhenders@princeton.edu
The author thanks Thaleia Zariphopoulou, Stewart Hodges and David Hobson for insightful comments leading
to improvements in the paper. Thanks also to seminar participants at the University of Texas at Austin, Kings
College London, the Cornell Finance Workshop at Cornell University, and at the Oxford-Princeton Finance
Workshop at the University of Oxford.



Valuing Real Options without a Perfect Spanning Asset

The real options approach to corporate investment decision making recognizes a firm
can delay an investment decision and wait for more information concerning project cash-
flows. The well known models of McDonald and Siegel (1986) and Dixit and Pindyck
(1994) value the investment decision as a perpetual American call option on the project
value. The former specifies the equilibrium return via CAPM, whilst the latter, along with
much of the literature, uses a replicating portfolio argument. This involves identifying a
perfect spanning asset for the project value, often called a “twin security”.

In this paper, we instead assume only a partial spanning asset can be found which
is imperfectly correlated with project value. This is more realistic, as most real projects
can only be partially hedged by traded securities and private risks are common. We find
the value of the option to invest and the trigger level are both lowered (compared to the
complete model) when the spanning asset is less than perfect, although the option to
invest still has value even when there is no spanning asset at all. This implies the firm
should wait to invest, but invest earlier than the complete real options model suggests.
Investment should also take place earlier under our partial spanning model than under
the model of McDonald and Siegel (1986).

Both the McDonald and Siegel (1986) and complete models are special cases of our
model, obtained when risk aversion tends to zero and when correlation approaches one,
respectively. Despite this, we conclude that approximating via these classic models when
correlation is high (or risk aversion is low), may lead to an incorrect investment decision.
Thus, by taking private risks into account, the partial spanning model gives a much richer
model of corporate investment decisions.

Key words: Real options, partial spanning, perpetual American options, non-traded as-
sets, investment decisions, investment trigger, incomplete model, net present value
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1 Introduction

The real options theory of corporate investment, dating back to Myers (1977), recognizes a
firm has the option to delay an investment decision and undertake it at some point in the
future. When the investment is undertaken, the option to wait is extinguished. However,
prior to the decision, the firm has an opportunity cost equal to the value of the option to
wait. This way of thinking about corporate investments has received much attention in the
last decade with applications to internet and telecommunications, pharmaceutical research
and development, energy, investment banking, venture capital and accountancy to name a
few. The real options approach was developed by McDonald and Siegel (1986), Dixit (1989),
Trigeorgis and Mason (1987), Pindyck (1991) amongst others, and was applied by Brennan
and Schwartz (1985) to natural resource investments. These models and many extensions
are in the classic text of Dixit and Pindyck (1994). More recently, game theory techniques
have been used in real options modeling to account for strategic interactions, see Smit and
Trigeorgis (2004).

Some criticism has been directed at the real options theory of investment in recent years
due to its unrealistic modeling assumptions. Leppard and Morowitz (2001) claim the real
options approach is not yet widely accepted in industry particularly because of the difficulty
creating useful and accurate pricing models. Pinches (1998) highlights some of the problems,
one of which is that real assets are generally not traded in most real option situations. He
suggests that “one avenue for significant future research is that of valuation of options in
incomplete markets”. This observation is also made by many authors including Amram and
Kulatilaka (1999), Borison (2003), Brealey and Myers (2000), Lander and Pinches (1998),
Mayor (2001), Myers and Majd (1990) and Dunbar (2000), although these papers do little to
address the difficulty. In fact, Myers and Majd (1990) observe that their abandonment option
valuation relies on the fact that “capital markets are sufficiently complete...”. This paper
attempts to address this limitation of the classic real options valuation models and extend
real option theory to include incompleteness. We do this by developing a partial spanning
model.

The classic continuous time real options models of irreversible investment fall into two
main categories. One class of models assumes the existence of a perfect spanning asset,
perfectly correlated with the real asset, and therefore assumes a complete market. This is
often termed the contingent claims approach, as standard options theory is invoked to obtain
the valuation. Models of this type include those of Amram and Kulatilaka (1999), Brennan
and Schwartz (1985), Dixit and Pindyck (1994), Mason and Merton (1985), Pindyck (1991)
and Trigeorgis and Mason (1987). The second class of models (beginning with McDonald
and Siegel (1986)) value the option to invest via an equilibrium style argument, and therefore
do not require a perfect hedge, but instead assume equilibrium rates of return are given via
the CAPM. Both styles of model can be analyzed with either a finite or infinite investment
horizon, although closed form solutions are usually available only for the infinite case. We
will discuss only the infinite horizon model here for that reason, see the conclusion of the
paper for further discussion concerning the finite case.

It is only under the complete markets assumption of the first class of models, that Black
Scholes option theory can be invoked and real options valued as perpetual options on a
traded asset. However, there is little evidence in practice that such a perfect spanning asset
is available, and little theoretical justification given in the literature for such an assumption.
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In this paper, we recognize that perfect spanning assets are a theoretical ideal which often
cannot be found in practice, and instead assume only that there is a partial spanning asset
available. That is, we assume that there is a traded asset whose returns are partially correlated
with those of the real asset.

The partial spanning asset approach implies that the investment comprises both market
and private risks, and recognizes that private risk cannot be hedged away via the traded
security. Inherent in taking private risks into account in our model is the introduction of risk
preferences. A limiting case of our model will recover the complete market style valuation.
As the correlation between the traded asset and project tends to one, the valuation under
partial spanning approaches the well known perfect spanning valuation.

Returning to the second class of models, the model of McDonald and Siegel (1986) gives a
valuation using the correlation between the possibly non-traded project value and the market
asset in combination with the CAPM to quantify the difference between the required return
in equilibrium and the actual return on the project.1 Our partial spanning model is also a
generalization of their approach, in that we recover the valuation of McDonald and Siegel
(1986) when we let risk aversion tend to zero. We do not however require consideration of
equilibrium or the CAPM to hold.2

As mentioned earlier, risk preferences must be described in our partial spanning model.
We assume exponential utility, which allows for a closed form solution for the value of the
option to invest and the investment trigger level in our model. Issues of how to value cashflows
at intermediate times via utility functions arise and we consider time consistency properties
of utilities to arrive at a sensible formulation.3 A Bellman equation is derived and via
a transformation, non-linearities can be removed. The resulting second-order differential
equation subject to boundary, value matching and smooth pasting conditions, has a power
type solution, in a similar fashion to the complete models of Dixit and Pindyck (1994). Again,
similarly to the classic models, we obtain the optimal investment time as the first time the
discounted project value reaches a constant level.

The value of the option to invest is found by a certainty equivalence argument. This
represents the compensation the firm would require to give up the right to the option. In
common with the complete and McDonald and Siegel (1986) models, the value depends on
the investment costs and trigger level, which in turn depends on the Sharpe ratios of the
project and partial spanning asset. However, unlike the classic models, the partial spanning
model valuation depends on risk aversion.4 In contrast to the complete model, the correlation
between the project value and partial spanning asset also impacts on the value of the option
to invest. As is the case in the classic models, we can express the option value in our partial
spanning model as the solution of an optimal stopping problem. The distinction is that our
new representation involves a non-linear function of the option payoff and the expectation

1It is also shown in Proposition 4.4 that their valuation is exactly that arising from a particular pricing
measure, namely the minimal martingale measure.

2In a related literature, Rubinstein (1976) and Brennan (1979) show risk-neutral valuation relationships
hold in a discrete model without assumptions on hedging if strong assumptions are made on the aggregate
wealth process and investor preferences. We are not required to model aggregate wealth and thus do not make
such strong assumptions.

3Other related methods for infinite horizon models are those which maximize the growth rate of a portfolio
using the Kelly criterion, see Hakansson (1970).

4Note that the model of McDonald and Siegel (1986) assumes CAPM to introduce an aversion to risk. This
is different to our useage of risk aversion in the sense of concave utility functions.
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involved is no longer risk neutral, both features due to the presence of risk aversion.
We examine the effect of risk aversion and correlation on the value of the option and

the investment trigger level in our partial spanning model. Via comparative statics we find
that both the investment trigger level and the value of the option to invest are decreasing in
risk aversion. A higher risk aversion level encourages earlier investment as the risky option
has less value. Comparative statics also shows that as (the absolute value of) correlation is
reduced from one, the investment trigger and option value fall. Since private risks exist if
correlation is not perfect, risk aversion causes the firm to invest sooner. The option to invest
has less value than it would have if correlation were perfect. Even in the limiting case of zero
correlation (corresponding to no spanning asset at all), the option to invest still has value
and the firm should still wait to invest, in contrast to the recommendation of the NPV rule.
The limiting cases of perfect correlation, zero correlation and zero risk aversion obtain the
models of Dixit and Pindyck (1986), Kadam et al (2003b) and McDonald and Siegel (1986)
respectively. All of these features are illustrated in numerical examples of the option value
and investment trigger level in Section 5.

Under the partial spanning model, similarly to the classic real options models, investment
will only occur if the project’s Sharpe ratio is lower than some critical value. In this case,
the value of the option to invest and the investment trigger level are finite. If the Sharpe
ratio is large enough, it is optimal to postpone investment and equivalently never exercise
the option. Here the value and trigger would be infinite. A striking feature of the partial
spanning model is that this critical value differs from those found in the complete model and
the McDonald and Siegel (1986) model. The partial spanning asset model is richer because a
wider range of parameter values results in a finite investment trigger level and option value,
see Theorem 4.4, and how much wider this range is depends on the volatility of the project
value. In particular, there are situations where the complete model recommends the firm
postpones investment forever, whereas if a highly (but not perfectly) correlated asset were
used, the firm should invest at a certain trigger level. Likewise, risk aversion can lead to a
finite investment trigger under the partial spanning model, in a situation where the McDonald
and Siegel (1986) model would recommend postponing investment indefinitely. In this new
region, the value of the option to invest no longer need be everywhere convex in the project
value, see Figures 2 and 3. This is caused by the risk aversion dominating the usual option
convexity effect.

The main conclusion we can draw from this analysis is first that the use of complete mod-
els, or models with a “twin security” for corporate investment decision making is overstating
the worth of the option and leading to underinvestment. Likewise, incorporating risk aversion
in the partial spanning model leads to a lower valuation and earlier investment time than the
model of McDonald and Siegel (1986). Moreover, we conclude that the seemingly common
practice of approximating option value and investment decisions via the complete model can
lead to the wrong conclusion on investment timing. Our results show that if the complete
model concludes the firm should postpone investment, then it not possible to conclude that
it is optimal to postpone investment in the partial spanning model. Rather, it may in fact be
optimal to invest at some finite trigger level. Similarly, the CAPM style model of McDonald
and Siegel (1986) is not a good approximation if risk aversion is not small and again, leads
to incorrect investment timing decisions.

A powerful feature of our model is the fact that we can solve explicitly for the value of the
option to invest and the optimal investment trigger level. This is useful in a number of ways.
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Solving in closed form enables us to characterize situations where it is optimal for the firm
to invest at a certain time, and those where investment is postponed indefinitely. This has
particular relevance in our partial spanning model since we characterize additional situations
in terms of the project’s Sharpe ratio leading to a finite investment trigger level and option
value. In these situations, if correlation were perfect or risk aversion were negligible, there
would be no solution and the firm would wait forever. As mentioned previously, our closed
form solutions also allow us to recover the classic valuations as limiting cases.

In addition to the now classic approaches to real option valuation outlined, there are a
number of related approaches in the literature. First, dynamic programming and decision
trees are popular approaches in industry, however, suffer from the disadvantage that the
appropriate discount rate is not specified. Another strand of the literature attempts to justify
the use of the complete markets approach, albeit with subjective inputs for the market value
of the traded security. Copeland et al (2000) call this the “marketed asset disclaimer”, similar
arguments are used by Mason and Merton (1985) and Trigeogis (1996). This argument entails
using the NPV of the project itself, without flexibility, as an estimate of the market value of
the project. The option value using this NPV is claimed to represent the value the project
would have if it were traded. Ultimately, this argument is finessing the problem of non-
tradability away since completeness is implicitly assumed in using the NPV approach in the
first place. Our model provides a framework for dealing with private risks and in doing so,
chooses an appropriate discount rate.

The work of Smith and McCardle (1998) building on ideas of Smith and Nau (1995)
(and related to the earlier ideas of Constantinides (1978)) is closer in spirit to our partial
spanning model. They propose an integrated approach using the hedging arguments of option
pricing for risks that are spanned perfectly by traded assets, and decision analysis to value
risks that are not spanned. Exponential utility and valuation via certainty equivalence are
used in common with our model. That is, both models acknowledge that recognizing private
risks introduces risk preferences. However, Smith and McCardle (1998) set up their model
in discrete time and study an abandonment problem with a different objective function to
ours. A further important distinction is that Smith and McCardle (1998) solve their model
numerically in the interesting case where there are private risks. In contrast, we analyze
an infinite horizon problem and thus can solve for a closed form expression for the option
value and investment trigger, as is the case in the models of McDonald and Siegel (1986)
and Dixit and Pindyck (1994). Our partial spanning method, together with the dynamic
programming approach and that of Smith and Nau (1995), all recognize the value obtained
no longer represents a market valuation, but is the investment’s certainty equivalent value
based on management’s risk preferences.

The issue of valuing options on non-tradable assets has been addressed in the mathemat-
ical finance literature recently, although these papers do not typically focus on real options.
European style options on non-traded assets are treated by Henderson (2002), Henderson
and Hobson (2002a, 2002b) amongst others. Since these models consider options with a
fixed expiry, they cannot give any information about the optimal investment trigger level
for the firm. Such information requires American style options. Musiela and Zariphopoulou
(2003) examine finite horizon American style options on non-traded assets, however there
are no closed form solutions for the option value or exercise boundary and numerics must be
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carried out.5 Recently Kadam et al (2003a) valued a perpetual American option under the
assumption that no trading could be done in the real asset. Their model assumes there is
no correlated traded asset. Values are calculated under power utility with constant relative
risk aversion R. The special features of their model forces them to consider only R < 1
which is unrealistic in most settings (see Cochrane (2001)). Using this model in practice with
R > 1 will imply the option to invest has no value. In the context of executive stock options,
Kadam et al (2003b) treat the perpetual American option, this time under the assumption
of exponential utility and again with no spanning asset. We obtain the valuation of Kadam
et al (2003b) as a special case in our model.6

This paper combines elements of each of these approaches to value the option to in-
vest. Unlike Henderson (2002), Henderson and Hobson (2002a, 2002b) and Musiela and
Zariphopoulou (2003), we value a perpetual American option enabling us to draw conclu-
sions on the optimal timing of investment and to obtain the option value in closed form. In
contrast to Kadam et al (2003a), we assume the existence of a correlated traded asset with
which partial hedging can be performed. As such, a number of limiting cases can be con-
sidered. The case of perfect correlation gives back the complete model of Dixit and Pindyck
(1994). Risk aversion tending to zero recovers the McDonald and Siegel (1986) valuation and
finally, taking correlation to be zero gives the results of Kadam et al (2003b). In extending
these existing frameworks, we obtain a much richer model of corporate investment decisions.
Our partial spanning model highlights completely new situations where the firm should in-
vest rather than wait indefinitely. More seriously, the simpler classic models are not good
approximations in the realistic cases of only highly correlated assets or risk aversion, and can
lead to incorrect investment timing decisions.

The paper is structured as follows. The investment problem considered and our modeling
assumptions are outlined in Section 2. In Section 3, two classic approaches to valuing the
option to invest are discussed, the perfect spanning approach and the setup of McDonald
and Siegel (1986). Our partial spanning asset model is developed in Section 4. The main
result is that there are situations where the firm should invest under the partial spanning
model, whereas the classic models would recommend postponing investment. We consider
three special cases of the partial spanning model, recovering the valuations in the complete,
McDonald and Siegel (1986) and Kadam et al (2003b) models. Section 5 analyzes the par-
tial spanning asset model and its implications for investment via comparative statics and
numerical examples.

2 The Investment Problem and Modeling Assumptions

Consider a firm facing an irreversible investment decision7 of when to invest in a single
project. The traditional net present value approach to investment concludes a firm should
invest immediately if the present value of cash flows from investment exceed investment
costs. However, the firm also has the option to wait. Real options theory acknowledges the

5Rogers and Scheinkman (2003) also study the finite horizon American option but without a traded corre-
lated asset. Their focus is on the dependence of the optimal exercise policy on the number of options.

6In Section 4.4, we show the Kadam et al (2003b) valuation obtains when the correlation between the
project value and partial spanning asset tends to zero.

7This assumption applies to most firm and industry-specific investments but also arises because of govern-
ment regulations or institutional arrangements, see Dixit and Pindyck (1994).
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possibility of waiting, whereby the decision is delayed until some time in the future. The
act of waiting is thought of as an option, and if the investment is eventually undertaken,
the option is exercised. The basic message is that there is value to waiting as uncertainty
concerning the project’s value is being resolved over time.

Following a real options approach, if the investment is undertaken at a future time τ ≥ t,
the company pays an amount Ker(τ−t) to invest in project with cashflows Vτ and so receives
Vτ−Ke

r(τ−t). Since it only makes sense to invest if this is a positive amount, (Vτ−Ke
r(τ−t))+

is the option payoff if investment takes place at time τ . The problem is to find the value of
this option to invest and the optimal investment time.

We assume, in common with the continuous time, irreversible investment models we
extend, that the firm has an infinite horizon. This will afford us the luxury of closed form
solutions and a clear comparison with the classic models of McDonald and Siegel (1986) and
Dixit and Pindyck (1994). As mentioned above, we assume the investment cost grows over
time at the riskfree rate, from a constant K. Growth of investment costs at the riskfree rate
is also assumed by, amongst others, Trigeorgis and Mason (1987), Copeland et al (2000) and
Smith and Nau (1995). This also represents a special case of the setup of McDonald and
Siegel (1986) who allow for the possibility that investment costs follow a stochastic process.
A simplification of our setup is that used by Dixit and Pindyck (1994)[Chapter 5] where
investment costs are constant over time.

We assume the value of the project V follows8

dV

V
= η(ξdt+ dW ) + rdt (1)

where ξ = ν−r
η

and ν is the total expected return on the project, η is the volatility of project
value and W is a standard Brownian motion. We assume that V is non-traded, however its
value is observable.9 In Section 3, V should be interpreted as the present value of future
cashflows from the project. In Section 4, we cannot interpret V in this way since the model is
incomplete. We have to make there the assumption that when the firm invests, they receive
the value of the project, V at that date, rather than the right to a future stream of cashflows.

Our second modeling assumption is that there is a traded asset P which is correlated with
the project value. We call this the partial spanning asset, partial because the correlation
may be less than perfect and hence the project cash flows are not spanned. In applications
where the investment produces a single commodity and there is a futures market for the
commodity, the correlation could be very high between the futures price and the cash flows
from the investment, given the quantity of the commodity is known. In such a case, the perfect
spanning asset assumption of the standard real options theory may be a good approximation.
For an example applying the classic model to commodity futures see Brennan and Schwartz
(1985). In general however, a partial spanning asset may be an individual stock, a basket
of stocks or relevant industry index, for example. In such cases, there will not be perfect,
or even necessarily high, correlation between the asset and the project value. The extreme

8The form of our results will hold also for more general models for V of the form

dV

V
= η(t, Vt)(ξ(t, Vt)dt + dW ) + rdt

although we concentrate on the lognormal model for simplicity and comparison purposes here.
9Knowledge of the value of V is essentially assumed in the models with a perfect spanning asset for sizing

the project compared with the spanning asset.
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case where there is no relevant spanning asset for the project at all is covered in our partial
spanning model by taking correlation equal to zero.

The partial spanning asset follows a lognormal process

dP

P
= σ(λdt + dB) + rdt (2)

where λ = µ−r
σ

is its Sharpe ratio. The two driving Brownian motions B and W are correlated
with correlation −1 ≤ ρ ≤ 1. If |ρ| = 1, the asset P is a perfect spanning asset for the project
value. This will be the case in the complete market model of Section 3. If |ρ| < 1, P is a
partial spanning asset and there is a component of private risk remaining after P is used to
hedge the project. In the McDonald and Siegel (1986) equilibrium model of Section 3, P
will be interpreted as the market asset, with market Sharpe ratio λ and correlation |ρ| ≤ 1
between the market and project. In Section 4, we will build a model to value the investment
option under the partial spanning assumption of |ρ| < 1.

3 Classic Real Options Models: The McDonald and Siegel

(1986) model and the perfect spanning model

In this section we consider the value of the option to invest under the setup and assumptions
of Section 2. We consider two well known approaches to this problem, firstly, the complete
markets approach, and secondly, the approach of McDonald and Siegel (1986). The com-
plete markets approach assumes the spanning asset P is perfectly correlated with V (hence
ρ = 1) or equivalently, V itself is traded. In this case, the option to invest can be valued via
risk neutral pricing, see amongst others, Brennan and Schwartz (1985), Dixit and Pindyck
(1994), Trigeorgis and Mason (1987), Mason and Merton (1985), Pindyck (1991) and Tri-
georgis (1996). In a second approach, McDonald and Siegel (1986) present a valuation of
the investment option, drawing on the CAPM to relate the equilibrium Sharpe ratio on the
project to the Sharpe ratio of the market. This approach is valid when V is not traded, and
therefore is a way of obtaining an option value in this more realistic situation. Of course, one
is relying on equilibrium CAPM relationships called upon in their model.

First consider the perfect spanning method whereby the existence of a “twin security”
is assumed. This twin security, P , is perfectly correlated with the project value, V . The
perfect spanning assumption ensures the market is complete and the investment opportunity
is analogous to a perpetual American call option on a dividend paying asset.10 The value
of the option p(1)(v) can be expressed as the expectation of the discounted value of the
payoff under unique risk neutral probabilities (denoted by expectation EQ), maximized over
investment times τ :

p(1)(v) = sup
t≤τ

E
Q
t [e−r(τ−t)(Vτ −Ker(τ−t))+|Vt = v]. (3)

10This problem was first solved by McKean (1965) in an appendix to Samuelson (1965). The investment
decision is simply the exercise decision in the financial option. Implicit in valuing real options via a contingent
claims approach is the fact that the company should be hedging in the perfect spanning asset. Only then does
the value obtained via a contingent claim approach truly represent the value of the investment opportunity,
in the same way that a financial option is only worth the Black and Scholes (1973) value if delta hedging is
taking place.
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The corresponding Bellman equation is given by

1

2
η2v2p(1)

vv (v) + η(ξ − λ)vp(1)
v (v) = 0 (4)

with boundary, value matching and smooth pasting conditions

p(1)(0) = 0 (5)

p(1)(Ṽ (1)) = Ṽ (1) −K (6)

p(1)
v (Ṽ (1)) = 1. (7)

The optimal investment time τ∗ is given by

τ∗ = inf
{

u ≥ t : Vu = Ṽ (1)er(u−t)
}

, (8)

the first time the project value reaches a level given by an exponential boundary, starting
at the constant level Ṽ (1) today. Equivalently, it is the first time the discounted value Su =
Vue

−r(u−t) reaches the constant level Ṽ (1). We characterize Ṽ (1) shortly.
Proposing a solution of the general form L(1)vβ

(1)
, (where L(1) is a constant to be deter-

mined), results in the quadratic

1

2
η2β(1)(β(1) − 1) + η(ξ − λ)β(1) = 0 (9)

with solutions11

β
(1)
1 = 1 −

2(ξ − λ)

η
, β

(1)
2 = 0.

Given (5), the choice β
(1)
2 = 0 can be rejected, and the solution is of the form p(1)(v) =

L(1)vβ
(1)
1 . There are two possibilities. If β

(1)
1 ≤ 1 (corresponding to ξ ≥ λ), smooth pasting

fails and there is no solution. The firm always postpones investment in this case. Otherwise,

if β
(1)
1 > 1 (corresponding to ξ < λ),

p(1)(v) = (Ṽ (1) −K)

(

v

Ṽ (1)

)β
(1)
1

(10)

and

Ṽ (1) =
β

(1)
1

β
(1)
1 − 1

K. (11)

The model leads to a decision rule whereby: if ξ ≥ λ always postpone investment whereas
if ξ < λ, investment occurs when V reaches a threshold level Ṽ (1)er(u−t) which starts at the
constant Ṽ (1) today and grows over time by the riskless rate. It can be seen from (11) that
the threshold Ṽ (1) is in excess of K. Thus, in contrast to the NPV rule, uncertainty drives a
wedge between Ṽ (1) and K.

The condition β
(1)
1 > 1 or ξ < λ says the Sharpe ratio on the spanning asset is greater

than that on the project and thus there is an opportunity cost to keeping the option alive

11In the case where (9) has repeated roots at zero, the solutions to (4) are p(1)(v) = B + L(1) ln v. In this
case it is not possible to achieve a smooth fit.
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represented by λ − ξ > 0. If λ = ξ (or ξ > λ) then there is no such opportunity cost and
the option should be kept alive whilst the firm keeps waiting. This interpretation is found in
Dixit and Pindyck (1994)[Chapter 5].12

Now consider the second approach. Under the modeling assumptions in Section 2 and
with the interpretation that P is the market asset, McDonald and Siegel (1986) value the
option using a CAPM approach. Our exposition in this section agrees with the special case
of McDonald and Siegel (1986) where the investment costs are growing at the riskfree rate
over time. In this case, the value of the option to invest, p(ρ)(v) is expressed as

p(ρ)(v) = sup
t≤τ

Et[e
−µe(τ−t)(Vτ −Ker(τ−t))+|Vt = v] (12)

where µe is the equilibrium expected rate of return on the investment. The equilibrium
approach requires the option earns a rate of return commensurate with the risk involved in
holding the option as an asset. The corresponding Bellman equation is given by

1

2
η2v2p(ρ)

vv (v) + (ν − r)vp(ρ)
v (v) + (r − µe)p(ρ)(v) = 0 (13)

with the same boundary, value matching and smooth pasting conditions as in the complete
model earlier. The optimal investment time τ∗ is given by the first time the discounted value
of V reaches a constant level Ṽ (ρ):

τ∗ = inf
{

u ≥ t : Vu = Ṽ (ρ)er(u−t)
}

, (14)

where again, we characterize this unknown constant level shortly.
Again, proposing a solution of the form L(ρ)vβ

(ρ)
gives an option value of the form

p(ρ)(v) = (Ṽ (ρ) −K)

(

v

Ṽ (ρ)

)β(ρ)

(15)

and a quadratic for β(ρ) involving the unknown equilibrium rate of return µe:

1

2
η2β(ρ)(β(ρ) − 1) + β(ρ)(ν − r) + (r − µe) = 0. (16)

McDonald and Siegel (1986) obtain a characterization for µe via the CAPM. Applying
Ito’s formula to X = p(ρ)(v) gives

dX

X
=

(

β(ρ)ν +
1

2
β(ρ)(β(ρ) − 1)η2 + (1 − β(ρ))r

)

dt+ β(ρ)ηdW. (17)

Under the CAPM, investors require compensating only for systematic or market risk of
projects. Hence, the equilibrium required rate of return on the project is

ν̂ = r + λρη

12Although the solution presented here differs slightly from Dixit and Pindyck (1994) as they assume in-
vestment costs are constant over time. This causes optimal investment to take place in their model when V

itself reaches a constant level. These differences are minor and the form of the value of the option to invest in
(10) and trigger level in (11) are the same.
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where λ is the Sharpe ratio on the market asset. Under this assumption, the equilibrium
expected rate of return on the investment opportunity µe can be derived by equating the
Sharpe ratios of the investment opportunity with the project

µe − r

β(ρ)η
=
ν̂ − r

η

so that
µe = r + β(ρ)(ν̂ − r) = r + β(ρ)λρη. (18)

Equating the expression for µe above with the expected rate of return on the investment
opportunity in (17), or equivalently substituting into (16) gives

1

2
β(ρ)(β(ρ) − 1)η2 + β(ρ)(ν − r − λρη) = 0.

Let δ = ν̂−ν = r+λρη−ν, the difference in the equilibrium expected rate of return and the
expected return on the project. We will commment on this later. Using (18) and the form
of the option value in (15), we can rewrite the Bellman equation in (13) as

1

2
η2v2p(ρ)

vv (v) + η(ξ − λρ)vp(ρ)
v (v) = 0. (19)

We can also reexpress the above quadratic for β(ρ) in terms of Sharpe ratios,

1

2
β(ρ)(β(ρ) − 1)η2 + β(ρ)η(ξ − λρ) = 0 (20)

with solutions13

β
(ρ)
1 = 1 −

2(ξ − λρ)

η
, β

(ρ)
2 = 0. (21)

Rejecting β
(ρ)
2 = 0 as before, and considering β

(ρ)
1 > 1 gives the value of the option to

invest as

p(ρ)(v) = (Ṽ (ρ) −K)

(

v

Ṽ (ρ)

)β
(ρ)
1

(22)

with

Ṽ (ρ) =
β

(ρ)
1

β
(ρ)
1 − 1

K. (23)

In this model, we see a similar decision rule to the perfect spanning model earlier: invest
when the discounted value of V first reaches a constant level Ṽ (ρ). The only difference in the

two valuations is the form of the root β
(ρ)
1 versus β

(1)
1 of the perfect spanning model. The

root in the McDonald and Siegel (1986) model depends upon the correlation factor ρ, whilst
this is one in the complete model.

The value of β
(ρ)
1 governs again whether it is optimal for the firm to ever invest. The

condition β
(ρ)
1 > 1 corresponds to ξ < λρ, or ν < ν̂. The interpretation is that provided the

expected capital gain on the project is lower than the equilibrium rate (which includes a risk

13See Footnote 10.
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premium), then there is an opportunity cost to keeping the option alive. This means it is
optimal for the firm to invest at some point in the future.

However, if β
(ρ)
1 ≤ 1 (equivalently ξ ≥ λρ, or ν ≥ ν̂), the firm postpones investment, since

holding the option is the best strategy. Since δ ≤ 0, there is no opportunity cost to keeping
the option alive.

Since investment is only ever optimal when ν < ν̂, or equivalently δ > 0, McDonald and
Siegel (1986) (and earlier McDonald and Siegel (1984) and Constantinides (1978)) refer to δ
as a “below equilibrium return shortfall”. We later recover the two models presented in this
section as special cases of the partial spanning model, described in Section 4.

4 The Partial Spanning Asset Investment model

Both of the models presented in the previous section made strong assumptions in deriving
the value of the option to invest. The complete market model makes the assumption that a
perfect spanning asset or twin security exists, one which is often not justifiable in practice.
Alternatively, the model of McDonald and Siegel (1986) assumes CAPM to quantify how risk
is compensated.

4.1 The Model Framework

In this section we develop the partial spanning asset model. In doing so, we assume that
the returns from asset P do not necessarily perfectly span the project value, and so allow
for −1 < ρ < 1. We will show that in the special case of |ρ| = 1, our model will recover the
classic complete markets valuation presented in Section 3.

Since the project value, V , is not perfectly spanned by the traded asset P , private risks will
exist which cannot be hedged with P . The valuation must take into account risk preferences
and thus our model allows for incompleteness. Our approach is to assume these preferences
are summarized by the exponential utility function U(x) = − 1

γ
e−γx, γ > 0 which exhibits

constant absolute risk aversion. As such, the valuation no longer represents a financial market
valuation but rather the value to the firm of the investment. This is inevitable since the firm
must assess the private risk of the investment according to its risk preferences. In fact, any
model recognizing private risk must make an equivalent assumption, for example, Smith and
Nau (1995).

The second special case of the partial spanning model occurs when γ → 0. In this case,
our model recovers the valuation of McDonald and Siegel (1986) in Section 3. Their valuation
makes strong assumptions and we show it is equivalent to just one possible valuation in our
partial spanning asset model. Varying the risk aversion results in different valuations to the
McDonald and Siegel (1986) model. Thus the partial spanning model of this paper generalizes
both of the existing valuation approaches presented in Section 3.

Our setup is as outlined in Section 2. The option payoff if investment is undertaken at
τ ≥ t is given by (Vτ −Ke

r(τ−t))+. As was the case in the classic models, we will find the firm
invests if the project value V climbs high enough compared with the investment costs. Our
model will give a characterization of the level V needs to reach and the value of the option
to invest in closed form. These will be compared with the valuation and optimal investment
trigger found in Section 3 for the complete and McDonald and Siegel (1986) models.

12



An assumption we are required to make in our incomplete model is that when the company
invests at time τ they immediately receive the cash amount Vτ − Ker(τ−t) rather than the
right to a future stream of cashflows over time. The cash amount is then invested optimally
over the infinite horizon. In exactly the same way as in the complete model (although this is
not usually made explicit) the firm hedges in the partial spanning asset P (and invests cash
in the bank account) to give wealth X. Changes in wealth are given by

dX = θ
dP

P
+ r(X − θ)dt (24)

where θ is the cash amount invested in the partial spanning asset P . In the complete model of
Section 3, this hedging is perfect. When the firm only has a partial spanning asset however,
risk preferences are used to assess the private risk involved.

At the time of investment τ , the company has generated wealth Xτ from trading the
partial spanning asset P (and investing in the bank account), and receives amount (Vτ −
Ker(τ−t)), the difference in the project value and investment costs. The firm’s investment
problem can be expressed in terms of a utility maximization problem: maximize expected
utility of wealth over an infinite horizon. That is, the firm should optimally choose the invest-
ment time τ , and partial hedge in P to maximize expected utility from receiving cash amount
Xτ + (Vτ −Ker(τ−t))+. Inherent in this approach is that the amount at τ is then optimally
invested in P (and the bank account) over the infinite horizon. The utility maximization
we propose requires valuing a cashflow at the investment time τ < ∞ which is not usually
considered in standard utility maximization problems. We need to consider time consistency
of utility functions, which is discussed in Appendix 7.1.

The firm’s value function for the partial spanning model is given by the optimal stopping
problem:

G(x, v) = sup
t≤τ

sup
θu,t≤u≤τ

Et

[

Uτ

(

Xτ + (Vτ −Ker(τ−t))+
)

|Xt = x, Vt = v
]

where the appropriate time-τ consistent exponential utility function Uτ (x) is given in the
following proposition.

Proposition 4.1 The time-τ consistent exponential utility function is given by

Uτ (x) = −
A

γ
e−γe

−r(τ−t)xe
1
2
λ2(τ−t),

where A is a constant and γ is the constant absolute risk aversion of the firm at the fixed
time t. The value function for the firm under the partial spanning model can be written as

G(x, v) = sup
t≤τ

sup
θu,t≤u≤τ

Et

[

−
A

γ
e

1
2
λ2(τ−t)e−γe

−r(τ−t)(Xτ+(Vτ−Ker(τ−t))+)|Xt = x, Vt = v

]

Proof: Appendix 7.1 contains the details of the time consistent utility, which is given in
(46). The reformulation of the value function is then immediate. �
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4.2 The Solution

A Bellman equation can now be derived (see Appendix 7.2) for G(Xt, Vt) from which we can
solve for the optimal investment trigger level τ∗ and holding in the partial spanning asset θ∗.
In the stopping region,

G(x, v) = −
A

γ
e−γ(x+(v−K)+).

In the continuation region, G(x, v) > −A
γ
e−γ(x+(v−K)+) and

0 =
1

2
λ2G+ ξηvGv +

1

2
η2v2Gvv −

1

2

(λGx + ρηvGxv)
2

Gxx
(25)

with boundary, value matching and smooth pasting conditions

G(x, 0) = −
A

γ
e−γx

G(x, Ṽ (ρ,γ)) = −
A

γ
e−γ(x+(Ṽ (ρ,γ)−K)+)

Gv(x, Ṽ
(ρ,γ)) = AI{Ṽ (ρ,γ)>K}e

−γ(x+(Ṽ (ρ,γ)−K)+).

The optimal investment time τ∗ is given by

τ∗ = inf
{

u ≥ t : Vu = Ṽ (ρ,γ)er(u−t)
}

so investment takes place when the discounted project value reaches some constant level
Ṽ (ρ,γ), where we characterize this constant shortly. This investment criteria is of the same
form as that in the classic models of Section 3.

We now want to solve the non-linear pde (25). Proposing a solution of the form G(x, v) =
−A
γ
e−γxJ(v) and setting J(v) = Γ(v)g gives

0 =

[

vΓvη (ξ − λρ) +
1

2
η2v2Γvv +

1

2

Γ2
v

Γ
η2v2(g(1 − ρ2) − 1)

]

. (26)

Choosing g = 1
1−ρ2

eliminates the non-linear term completely, leaving

0 =

[

vΓvη (ξ − λρ) +
1

2
η2v2Γvv

]

(27)

with corresponding conditions on Γ(v)

Γ(0) = 1 (28)

Γ(Ṽ (ρ,γ)) = e−γ(Ṽ
(ρ,γ)−K)+(1−ρ2) (29)

Γv(Ṽ
(ρ,γ))

Γ(Ṽ (ρ,γ))
= −γI{Ṽ (ρ,γ)>K}(1 − ρ2) (30)

Similarly to the classic models of Section 3, we propose a solution of the form Γ(v) =
L(ρ,γ)vψ, which gives14

0 = ψ(ψ − β
(ρ,γ)
1 )

14The notational dependence of β
(ρ,γ)
1 on γ is simply to distinguish it from the other models.
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where β
(ρ,γ)
1 = 1 − 2(ξ−λρ)

η
. Solutions are

ψ = β
(ρ,γ)
1 = 1 −

2(ξ − λρ)

η
, ψ = 0. (31)

It can be seen that Γ(v) = L(ρ,γ)vβ
(ρ,γ)
1 +B, and (28) gives B = 1. There are two possibilities.

If β
(ρ,γ)
1 ≤ 0 (or equivalently ξ ≥ λρ + η

2 ) then L(ρ,γ) = 0, smooth pasting fails and there

is no solution.15 In this case, the firm postpones investment. If β
(ρ,γ)
1 > 0 (correspondingly

ξ < λρ+ η
2 ), the firm will invest at time τ∗.

In the case β
(ρ,γ)
1 > 0, (29) gives an expression for L(ρ,γ) and via (30) we solve for the

optimal investment trigger, Ṽ (ρ,γ), as the solution to

Ṽ (ρ,γ) −K =
1

γ(1 − ρ2)
ln

[

1 +
γṼ (ρ,γ)(1 − ρ2)

β
(ρ,γ)
1

]

. (32)

We also obtain

Γ(v) = L(ρ,γ)vψ + 1 = 1 −
(

1 − e−γ(Ṽ
(ρ,γ)−K)(1−ρ2)

)

(

v

Ṽ (ρ,γ)

)β
(ρ,γ)
1

. (33)

Recalling the form of the value function G(x, v), we find the solution is of the form

τ∗ = inf
{

u ≥ t, Vu ≥ Ṽ (ρ,γ)er(u−t)
}

,

G(x, v) =















− 1
γ
e−γx

[

1 − (1 − e−γ(Ṽ
(ρ,γ)−K)(1−ρ2))

(

v

Ṽ (ρ,γ)

)β
(ρ,γ)
1

]
1

1−ρ2

v ∈ [0, Ṽ (ρ,γ))

− 1
γ
e−γxe−γ(v−K) v ∈ [Ṽ (ρ,γ),∞)

(34)

4.3 The Value of the Option to Invest

We are interested in the value of the option to invest, having solved for the optimal investment
time, and the value function thus far. The value of the option to invest can be found by
a certainty equivalence argument. This establishes the certain amount at which the firm
would be indifferent between owing the investment option and selling the option for a certain
amount. Equivalently, it represents the compensation required by the firm for giving up
the right to the option payoff. As we will see later, the certainty equivalence value and the
complete market value coincide when the correlation is perfect.

We evaluate the certainty equivalent amount by comparing the value achievable by in-
vesting in P and the riskfree asset and receiving the amount p(ρ,γ)(v) for the option, to the
value achievable by having the option. Equating the two values and solving for p(ρ,γ)(v) gives

15If β
(ρ,γ)
1 = 0 then (27) becomes

0 =
[

vΓv + v
2Γvv

] η2

2

with solution Γ(v) = L(ρ,γ) ln v + B. Again Γ(0) = 1 forces Γ(v) = 1 and smooth pasting fails.
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Proposition 4.2 The value of the option to invest in the partial spanning asset model is
given by

p(ρ,γ)(v) = −
1

γ(1 − ρ2)
ln



1 − (1 − e−γ(Ṽ
(ρ,γ)−K)(1−ρ2))

(

v

Ṽ (ρ,γ)

)β
(ρ,γ)
1



. (35)

This is the firm’s valuation of the real investment opportunity. We can compare this
valuation to that obtained in the complete and McDonald and Siegel (1986) models of Section
3. As in the complete model, the value (35) depends on the level of (in discounted terms)
investment costs K and the investment trigger level Ṽ (ρ,γ) which in turn depends on the
Sharpe ratios of the project and spanning asset. In contrast to the complete model valuation
in (10), the value in (35) also depends on the correlation between the project value and the
value of the partial spanning asset. The valuation in the McDonald and Siegel (1986) model
(22) also depends on correlation, interpreted to be the correlation between the project value
and the market. In contrast to both of the models in Section 3, the value under the partial
spanning model above depends on the risk aversion γ. We will see later in Section 5 how
these differences alter the value of the option to invest in numerical examples.

Recall in Section 3, the complete model value (see (3)) was expressed as the risk neutral
expectation of the discounted value of the payoff, maximized over investment times. A similar
representation held for the McDonald and Siegel (1986) value in (12), albeit involving the
equilibrium expected rate of return and original P expectation. It turns out that we can also
write the partial spanning value in (35) as an optimal stopping problem, analogous to these
earlier representations.

Proposition 4.3 The value of the option to invest in the partial spanning model can be
represented as

p(ρ,γ)(v) = sup
τ<∞

−
1

γ(1 − ρ2)
ln EQ0

(e−γ(1−ρ
2)e−r(τ−t)(Vτ−Ker(τ−t))+ |Vt = v).

where Q0 denotes a new measure, defined in (53).

Proof: The details of the proof are relegated to Appendix 7.3. �

We can relate the representation for the value of the option to invest given above to the
values in the complete model (3), and the McDonald and Siegel model (12), earlier. All
are represented as optimal stopping problems, the firm chooses when to optimally invest.
The difference is that the value in the partial spanning model becomes a more complicated,
non-linear function of the payoff. This is due to the incorporation of risk preferences via the
exponential utility.

It is straightforward16 to derive the following pde for p(ρ,γ)(v)

0 = −vp(ρ,γ)
v η (ξ − λρ) −

1

2
η2v2(p(ρ,γ)

vv − (p(ρ,γ)
v )2γ(1 − ρ2)) (36)

16Use the representation (51) together with the pde for Γ(v) given in (27).
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with

p(ρ,γ)(0) = 0 (37)

p(ρ,γ)(Ṽ (ρ,γ)) = Ṽ (ρ,γ) −K (38)

p(ρ,γ)
v (Ṽ (ρ,γ)) = 1. (39)

These representations for the value of the option to invest under our partial spanning
model will prove useful later in the paper. In the coming sections, we show some special
cases of the partial spanning model, and also highlight a striking difference between the
partial spanning model and the classic models of Section 3.

4.4 The Special Case of No Spanning Asset

A special case of the partial spanning model is obtained when the correlation between the
project’s value and the spanning asset P is zero. In this case, there is effectively no spanning

asset and, assuming β
(0,γ)
1 > 0, the value of the investment opportunity (from (35)) is

p(0,γ)(v) = −
1

γ
ln



1 − (1 − e−γ(Ṽ
(0,γ)−K))

(

v

Ṽ (0,γ)

)β
(0,γ)
1





where β
(0,γ)
1 = 1 − 2ξ

η
and Ṽ (0,γ) solves

Ṽ (0,γ) −K =
1

γ
ln

(

1 +
γṼ (0,γ)

β
(0,γ)
1

)

.

Observe that the investment trigger level Ṽ (0,γ) is always greater than the investment cost
K. That is, even when there is no spanning asset, the option to invest still has value and
it is optimal to wait to invest until the discounted project value reaches Ṽ (0,γ) > K. Again,

if β
(0,γ)
1 ≤ 0, the firm postpones investment. Modulo differences due to discounting, this

solution corresponds to that obtained in Kadam et al (2003b) in the context of executive
stock options.

4.5 Recovering the McDonald and Siegel & Complete Model Valuations

In this section, we show that both the valuation of McDonald and Siegel (1986) and
the complete market valuation of Dixit and Pindyck (1994) (and many others), are special
cases of the partial spanning model. The complete market valuation obtains when we let
ρ→ 1, whilst the McDonald and Siegel (1986) valuation is recovered by taking γ → 0. This
is expressed in the following result. The result says that in the limit as, first, the partial
spanning asset becomes perfect or, second, the risk aversion becomes negligible, the value

of the investment option, β
(ρ,γ)
1 , and the investment trigger all collapse to their complete or

McDonald and Siegel model counterparts respectively.
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Proposition 4.4 Two special cases of the partial spanning model are:
(A) As ρ→ 1,

(i) β
(ρ,γ)
1 → β

(1)
1 ; (ii) Ṽ (ρ,γ) → Ṽ (1); (iii) p(ρ,γ)(v) → p(1)(v).

(B) As γ → 0,

(i) β
(ρ,γ)
1 → β

(ρ)
1 ; (ii) Ṽ (ρ,γ) → Ṽ (ρ); (iii) p(ρ,γ)(v) → p(ρ)(v)

Proof: Parts (i) and (ii) in both (A) and (B) are straightforward from the definitions. An
intuitive approach to parts (iii) can be shown via Bellman equations as follows. The pde (36)
with ρ = 1 simplifies to

1

2
η2v2p(1,γ)

vv + η(ξ − λ)vp(1,γ)
v = 0

with boundary conditions (37)-(39). This is exactly the Bellman equation (4) obtained in the
complete model and thus p(1,γ)(v) = p(1)(v), where p(1)(v) is the option value in the complete
model, given in (10). Similarly, letting γ → 0 in (36) gives

1

2
η2v2p(ρ,0)

vv + η(ξ − λρ)vp(ρ,0)
v = 0

with the same boundary conditions (37)-(39). Again, since this is the Bellman equation we
obtained earlier in (19) for the McDonald and Siegel model, p(ρ,0)(v) = p(ρ)(v) where p(ρ)(v)
is the valuation given in (22).

The above approach only shows the values converge in the situation where β
(ρ,γ)
1 > 1 and

all the models give a finite value and investment trigger. It will also be instructive to consider
showing the result via the optimal stopping representation in Proposition 4.3. This enables

us to consider also the situation 0 < β
(ρ,γ)
1 ≤ 1 in which the partial spanning model gives a

finite trigger and value but the classic models do not. Writing c = γ(1 − ρ2), for small c,

p(ρ,γ)(v) ≈ sup
τ<∞

−
1

c
ln (1 − cEQ0

e−r(τ−t)(Vτ −Ker(τ−t))+) ≈ sup
τ<∞

EQ0
e−r(τ−t)(Vτ−Ke

r(τ−t))+.

We can interpret c small to be either γ → 0 or ρ → 1. Consider ρ → 1 first. Then,
W = B and in fact (see Appendix 7.3) Q0 = Q so

lim
ρ→1

p(ρ,γ)(v) = p(1,γ)(v) = sup
τ<∞

EQe−r(τ−t)(Vτ −Ker(τ−t))+

When β
(ρ,γ)
1 > 1, (or from (A)(i) this is equivalent to β

(1)
1 > 1), the solution to the above

optimal stopping problem is p(1)(v), the complete model value given in (3). When 0 <

β
(ρ,γ)
1 ≤ 1, (or again from (A)(i) we can replace with β

(1)
1 ) the above problem has infinite

value.
Now consider γ → 0. In this case we simply obtain

lim
γ→0

p(ρ,γ)(v) = p(ρ,0)(v) = sup
τ<∞

EQ0
e−r(τ−t)(Vτ −Ker(τ−t))+ (40)

since Q0 is independent of γ. When γ → 0 in the exponential utility function, we are
effectively taking U(x) = x, a linear utility function.17 Although linear utility itself is risk

17Note that although we specify U(x) = −

1
γ
e−γx, utilities are only defined up to a positive constant. It is

equivalent to consider U(x) = −e−γx and hence limγ→0 U(x) = x.
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neutral, when we take γ → 0, we do not obtain a risk neutral valuation, as seen above
where the expectation is taken under the minimal martingale measure, Q0. This turns out
to correspond to how risk is quantified in the McDonald and Siegel (1986) model of Section
3. That is, we can show that the limiting representation obtained above is equivalent to the

McDonald and Siegel valuation. For 0 < β
(ρ,γ)
1 ≤ 1, or from (B)(i), equivalently, 0 < β

(ρ)
1 ≤ 1,

(40) is infinite. Consider the case β
(ρ,γ)
1 > 1, or equivalently β

(ρ)
1 > 1. Begin with writing

Su = Vue
−r(u−t) and from (40), for u ≥ t

p̂(ρ,0)(Su) = sup
u≤τ

EQ0
[(Sτ −K)+|Su = s].

Under Q0, S follows (54). We now derive a Bellman equation in a similar fashion to that in
Appendix 7.3. In the continuation region, p̂(ρ,0)(Su) > (Su −K)+ and

0 = p̂(ρ,0)
s sη(ξ − λρ) +

1

2
p̂(ρ,0)
ss s2η2

Since p(ρ,0)(v) = p̂(ρ,0)(s), we can rewrite the Bellman equation as

0 = p(ρ,0)
v vη(ξ − λρ) +

1

2
p(ρ,0)
vv v2η2.

This is exactly the Bellman equation (19) in the McDonald and Siegel (1986) model. �

4.6 A Larger Range of Parameter Values Leading to Investment

We have seen that the valuation under the partial spanning model depends additionally on
risk aversion, in comparison to the classic models. The previous section showed that in the
limit as risk aversion tends to zero, the valuation coincides with the McDonald and Siegel
(1986) valuation of Section 3. We also saw that in the limit as correlation became perfect,
the value of the option to invest under the perfect spanning model collapses to the complete
market value. In this section we highlight a crucial difference between the partial spanning
model and the earlier classic models. This observation has implications for optimal investment
and valuation of investment options.

Recall, under the partial spanning model, the firm invests in the case where β
(ρ,γ)
1 > 0,

or equivalently only when ξ < λρ + η
2 . As described in Section 4.2, outside this case, the

firm should postpone investment indefinitely. However, the corresponding critical value in
the complete and McDonald and Siegel (1986) models is different.

Fix r, λ and η. We begin with some definitions. Let ξ∗ = ξ∗(ρ, γ) be the largest18 value of
the project’s Sharpe ratio in the partial spanning model, given values of ρ and γ, for which
there is a finite investment trigger, and for which the value of the option to invest is finite.19

Then (see the discussion after (31)) ξ∗ = λρ+ η
2 . Let ξ∗DP = ξ∗DP (1, γ) be the largest value of

the project’s Sharpe ratio in the perfect spanning model (see Dixit and Pindyck (1994)) for
which there is a finite investment trigger, and for which the value of the option to invest is

18In fact ξ∗ is the supremum of those values for which there is a finite investment trigger and the option
value is finite. When ξ = ξ∗ these quantities are infinite.

19Note that ξ∗(ρ, γ), ξ∗DP (1, γ) and ξ∗MS(ρ, 0) do not depend on γ.
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finite. Then (see Section 3) ξ∗DP = λ. Finally, let ξ∗MS = ξ∗MS(ρ, 0) be the largest value of the
project’s Sharpe ratio in the McDonald and Siegel (1986) model given values of ρ for which
there is a finite investment trigger, and for which the value of the option to invest is finite.
Then (see Section 3) ξ∗MS = λρ. The following theorem is now immediate.

Theorem 4.5
(i) ξ∗(ρ, γ) does not tend to ξ∗DP (1, γ) as ρ→ 1;
(ii) ξ∗(ρ, γ) does not tend to ξ∗MS(ρ, 0) as γ → 0.

The above theorem observes that the criteria for investment to take place at some time
in the future are different in the partial spanning model compared with the complete and
McDonald and Siegel models. In the partial spanning model there is a larger critical value
for the Sharpe ratio, leading to more situations where the firm should invest. The condition
under the partial spanning model, ξ < ξ∗ will be satisfied more often than the analogous
condition ξ < ξ∗MS under the McDonald and Siegel model, so all other things equal, the firm
will be more likely to invest and will invest sooner under the partial spanning model. It is
more difficult to compare the conditions for the partial spanning model and complete model
since the former applies for |ρ| < 1 and the complete model for ρ2 = 1. However, if ρ is
near to one, ξ < ξ∗ will be satisfied more often than the analogous complete model condition
ξ < ξ∗DP and the firm will be more likely to invest.

This feature clearly distinguishes the partial spanning model from the classic models. In
Proposition 4.4, we saw that as ρ → 1, the value and investment trigger level approach the
complete model value and trigger. However, for values of correlation close to one, there is a
range of values for the project’s Sharpe ratio ξ for which the value and investment trigger
for the partially spanned model are finite, but the complete model solution is degenerate.
That is, the complete model recommends the firm waits indefinitely, whilst our model gives
a trigger level that the project value must reach for investment to take place. Similarly, we
saw that as γ → 0, the value and investment trigger level approach the McDonald and Siegel
model value and trigger. However, for low risk aversion, there is again a range of values for
the Sharpe ratio ξ for which the value and investment trigger for the partially spanned model
are finite, but the McDonald and Siegel model solution is degenerate. That is, their model
recommends the firm waits indefinitely, whilst our model gives a trigger level that the project
value has to reach for investment to take place.

We can now ask how these new features might impact on a firm’s investment decision if
the firm were using the classic complete model. Suppose the firm decides that it has a traded
asset which has correlation quite close to one with the project. Then, in some sense it is
reasonable to approximate the value of the option using the well known complete (Dixit and
Pindyck (1994)) model. However, our discussion (and the result of Theorem 4.5) shows that
if the complete model concludes the firm should postpone investment, then it not possible to
conclude that it is optimal to postpone investment in the partial spanning model. Rather, it
may in fact be optimal to invest at some finite trigger level. Thus a widely held belief that
a complete model is a good approximation tool in an “almost complete” situation is wrong.
Using the complete model can lead the firm to an incorrect conclusion concerning investment
timing.
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A similar question can be asked for a firm using the McDonald and Siegel (1986) model.
If the firm believes risk aversion should not play a major role, then it can approximate the
option value via the McDonald and Siegel model.20 Again, our results show that if the
McDonald and Siegel (1986) model concludes investment should be postponed indefinitely
then it is not possible to conclude the same in the partial spanning model. Again in this case,
the CAPM style model is not a good approximation if risk aversion is non-negligible and can
lead to the wrong conclusion on investment timing.

We can also compare the two classic models to each other. The complete model criteria of
ξ < ξ∗DP is more easily satisfied than the corresponding criteria ξ < ξ∗MS in the McDonald and
Siegel model (at least in the natural case where the Sharpe ratios and correlation is positive),
so a firm following the complete model is more likely to invest and will invest sooner than
one following the McDonald and Siegel model. We observe this later in Figure 3.

We will return to observe the implications of Theorem 4.5 in the numerical examples of
Section 5.

5 Implications of Partial Spanning for Valuation of the Option
to Invest and Optimal Investment

In this section we examine more closely the value of the option to invest obtained under
the partial spanning model of Section 4, and the associated investment trigger level. We
will illustrate a striking feature of the model represented in Theorem 4.5, that there is are
additional situations where the partial spanning model can be solved but the complete and
McDonald and Siegel (1986) models are degenerate. This observation has important impli-
cations for valuation and investment which we outline in this section. Additionally, via both
comparative statics and numerical examples, we observe the effects of imperfect correlation
and risk aversion on the value of the option to invest and trigger level.

We first observe the effect of imperfect correlation on the value of the option to invest
and the investment timing decision. Recall from (31) that ξ − λρ is a crucial quantity in

determining the value of the option to invest. It appears in the root β
(ρ,γ)
1 which in turn

appears in the value, (35). Set α = ξ − λρ. In our analysis of the effect of correlation on the
value of the option, we will fix the value of α. This can be interpreted in terms of the below
equilibrium return shortfall identified by McDonald and Siegel (1986). Write δ = −ηα where
δ = ν̂ − ν. Fixing α is equivalent to fixing the value of δ. This is consistent with assuming
that δ is a fundamental parameter, in agreement with the discussion in Dixit and Pindyck
(1994)[Chapter 5].

Consider first the partial spanning asset model of Section 4, and assume β
(ρ,γ)
1 > 1, or

equivalently ξ < λρ = ξ∗MS. In this case, even in the limit of perfect correlation, there is a
finite investment trigger level. Figure 1 corresponds to this case. Note that on all figures, the
displayed values and triggers represent discounted values. We have used the same parameter
values as the example in Section 5.4 of Dixit and Pindyck (1994) (and Pindyck (1991)) for
comparison purposes. Parameters for all graphs are given in the captions.

The top graph displays the investment trigger Ṽ (ρ,γ) obtained from (32). Each value of
Ṽ (ρ,γ) corresponds to the level of S where the two sides of (32) are equal. This is where the

20Note that the McDonald and Siegel (1986) model allows for an aversion to risk in the sense of CAPM,
rather than in the sense of a concave utility function.
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Figure 1: Case β
(ρ,γ)
1 > 1. The top figure shows the investment trigger

Ṽ (ρ,γ) from (32) for a range of correlations. The solid lines correspond to

the RHS of (32) with, from top to bottom, ρ = 1, 0.99, 0.95, 0.9, 0.75, 0.5, 0.

When ρ2 = 1, the investment trigger Ṽ (ρ,γ) = Ṽ (1) = 1.5. For |ρ| < 1,

Ṽ (ρ,γ) < Ṽ (1). The lower figure shows the value of the option to in-

vest obtained from (35) for a range of correlations. The highest value

corresponds to ρ2 = 1, and Ṽ (1) = 1.5 in this case. For |ρ| < 1, op-

tion values lie beneath the perfect correlation value, and correspond to

values ρ = 0.99, 0.95, 0.9, 0.75, 0.5, 0.0 from highest to lowest. Observe

Ṽ (ρ,γ) < Ṽ (1) for |ρ| < 1. In both figures, parameters are K = 1, η =

0.2, λ = 0.3, r = 0.04, α = ξ − λρ = −0.2, β
(ρ,γ)
1 = 1 − 2α/η = 3 = β

(1)
1 ,

γ = 10. 22
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Figure 2: Case 0 < β
(ρ,γ)
1 ≤ 1. The top figure shows the investment

trigger Ṽ (ρ,γ) from (32) for a range of correlations. The top dashed line

corresponds to the complete model with ρ2 = 1. Since β
(1)
1 ≤ 1, Ṽ (1) = ∞

shown on the graph as the line never crosses the lower dashed line S −K.

The solid lines correspond to the RHS of (32) with, from top to bottom, ρ =

0.99, 0.95, 0.9, 0.75, 0.5, 0. For |ρ| < 1, Ṽ (ρ,γ) < Ṽ (1) = ∞. The lower figure

shows the value of the option to invest from (35) for a range of correlation

values. Option values correspond to values ρ = 0.95, 0.9, 0.75, 0.5, 0.0 from

highest to lowest. Again, Ṽ (ρ,γ) < Ṽ 1 = ∞. Parameters are K = 1, η =

0.2, λ = 0.3, r = 0.04, α = ξ − λρ = 0.05, β
(ρ,γ)
1 = 1 − 2α/η = 0.5 = β

(1)
1 ,

γ = 10.
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curve

f(S) =
1

γ(1 − ρ2)
ln

[

1 +
γS(1 − ρ2)

β
(ρ,γ)
1

]

intersects the line S − K represented by the dashed line. The top line (labelled S/β
(1)
1 )

corresponds to ρ2 = 1, and gives Ṽ (1) = β(1)

1−β(1)K = 1.5.21 The remaining curves all correspond

to |ρ| < 1. This leads to lower investment triggers (Ṽ (ρ,γ)) as |ρ| is decreased, hence the less
close the spanning asset is to the real asset, the sooner the firm should invest. The discounted
investment cost is K = 1, and it can be seen that even when the correlation between the
project value and partial spanning asset is zero, the investment trigger is in excess of one.
That is, even when there is no correlated asset at all, the option to invest still has value and
investment should only take place when S rises above Ṽ (0,γ) > K.

The lower panel of Figure 1 gives the value of the option to invest. The curved lines
represent option value, calculated via (35) for a range of correlation values. The highest
curve corresponds to perfect correlation, where option value p(1)(v) is given in (3). In this
case when S = Ṽ (1) = 1.5, the firm should invest. As correlation is reduced, the option value
curve shifts downwards and, corresponding to the top panel, the investment trigger falls.

Now consider the case 0 < β
(ρ,γ)
1 ≤ 1 (or ξ∗MS ≤ ξ < ξ∗) in the partial spanning asset

model. In the limiting case of perfect correlation, our model coincides with the complete
model of Section 3 and the firm should postpone investment. The investment trigger and
option value in this case are infinite. However, for −1 < ρ < 1 our partial spanning model
gives a finite investment trigger and option value. Figure 2 illustrates this behavior. Figure

2 is the analog of Figure 1 with 0 < β
(ρ,γ)
1 ≤ 1 and illustrates the investment trigger levels,

Ṽ (ρ,γ), for various values of correlation in the top panel. The perfect correlation case is

represented by the line labelled S/β
(1)
1 , which now never crosses the dotted line S −K. This

is the complete model whereby the firm should postpone investment. Once correlation is less
than perfect however, the curves corresponding to

f(S) =
1

γ(1 − ρ2)
ln

[

1 +
γS(1 − ρ2)

β
(ρ,γ)
1

]

cross S −K at a finite trigger, Ṽ (ρ,γ), marked on the figure. For instance, when correlation
drops from 1 to 0.99, the investment trigger goes from being infinite to having finite value

8.36. Hence in the case 0 < β
(ρ,γ)
1 ≤ 1 (or ξ∗MS ≤ ξ < ξ∗) the assumption of perfect

correlation gives the firm the signal to postpone investment indefinitely, whilst as soon as we
(more realistically) assume less than perfect correlation, the firm should invest at a certain
trigger level. Again, as correlation decreases, Ṽ (ρ,γ) decreases. Even when correlation is zero
and there is no correlated asset, the option to invest still has value and the trigger of 1.33 is
still greater than K = 1.

The lower panel of Figure 2 gives the corresponding option values for a range of corre-

lations. Recall if correlation is perfect, for these values for β
(ρ,γ)
1 , the investment trigger is

infinite and the option value is also infinite. The firm should postpone investment in this

21In fact, Dixit and Pindyck (1994) obtain an investment trigger of 2 due to their treatment of investment
costs. Our assumption of growing costs results in a lowered investment trigger compared with Dixit and
Pindyck (1994).
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case. However, for less than perfect correlation, the option value is finite and there is a finite
investment trigger Ṽ (ρ,γ), above which the firm should invest. The highest option value in the
lower panel of Figure 2 corresponds to ρ = 0.95 (taking higher values swamped the remaining
lines on the graph). We see again that even when there is no correlated asset, the investment
trigger is still greater than K. One final observation from the lower panel of Figure 2 is that
the option value is not convex in the project value. We will return to this point later in this
section, following a discussion of the effect of risk aversion.

Displayed in Figure 3 are option values for various values of risk aversion, γ. Both appear
to be very similar to the lower panels of Figures 1 and 2. This is because correlation and risk
aversion have similar effects on the option value and investment. For this reason, we do not
repeat graphs for the investment triggers with varying risk aversion. In addition, the trigger
information is contained in the value graphs as the level where the function smooth pastes
to the option payoff.

The upper panel treats the case β
(ρ,γ)
1 > 1 (or ξ < λρ = ξ∗MS) whilst the lower panel

considers 0 < β
(ρ,γ)
1 ≤ 1 (or ξ∗MS ≤ ξ < ξ∗). Correlation is held fixed at 0.9 for both panels

(apart from one exception noted below), other parameter values are given in the caption. In
the top panel, the highest curve corresponds to the McDonald and Siegel valuation, which is
the special case γ = 0. The line underneath this corresponds to taking ρ = 1, for comparison.
The complete market valuation in this case lies below the McDonald and Siegel valuation.
They differ only in the value of α used, since otherwise, as we observed earlier, taking γ = 0
or ρ = 1 impacts in the same way on the value. In our example, the complete model uses a
more negative α and therefore has a lower value than the McDonald and Siegel value. We also
observed this feature earlier in Section 4.6 in the context of the critical values of the Sharpe
ratio ξ. Our observation is also confirmed by the earlier discovery that the McDonald and
Siegel (1986) valuation corresponds to the valuation under a new measure, see Proposition
4.4. This ordering would reverse for instance if the Sharpe ratio of the traded partial spanning
asset P were negative. It would also reverse if we were to compare the McDonald and Siegel
valuation with −1 < ρ < 0 with perfect negative correlation. Other curves for increasing γ
show that increasing risk aversion reduces the option value and the investment trigger Ṽ (ρ,γ).

The lower panel of Figure 3 treats the second case, 0 < β
(ρ,γ)
1 ≤ 1 (or ξ∗MS ≤ ξ < ξ∗).

When γ = 0, the McDonald and Siegel option value and investment trigger are infinite. On
the graph are values for risk aversions γ = 1, 5, 10, 20, from highest to lowest on the graph.

We have seen the effect of correlation and risk aversion via the figures. It is also possible,
although tedious, to obtain the following comparative statics result.

Proposition 5.1 Under the partial spanning model of Section 4, for fixed α, the investment
trigger Ṽ (ρ,γ) and value of the option to invest p(ρ,γ)(v) are
(i) increasing in |ρ|; and
(ii) decreasing in γ.

Proof: The calculations are available from the author upon request. �

Observe from the lower panels of Figures 2 and 3, that the option value is no longer
everywhere convex in the project value when 0 < β(ρ,γ) < 1, or ξ∗MS < ξ < ξ∗.22 We can

22However, if we recall the case of perfect correlation, where the option value is zero when V = 0 and infinite
for any positive V , then, in fact, this is not convex either.

25



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S

(S−K)+ 

V(ρ,γ) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

S

(S−K)+ 

V(ρ,γ) 

Figure 3: Both figures show the value of the option to invest for a range of

γ against the discounted project value for a fixed correlation ρ = 0.9. In the

top panel, β
(ρ,γ)
1 > 1. The highest value corresponds to the McDonald and

Siegel valuation (γ = 0). Lower values correspond to increasing γ to values

5, 10 and 20. For the top panel, α = −0.17, β
(ρ,γ)
1 = 1−2α/η = 2.7. In the

lower panel, 0 < β
(ρ,γ)
1 ≤ 1. Option values correspond to γ = 1, 5, 10, 20,

from highest to lowest on the graph. When γ = 0, the McDonald and Siegel

trigger Ṽ (ρ,0) = ∞. For the lower panel, α = 0.08, β
(ρ,γ)
1 = 1− 2α/η = 0.2.

Parameters common to both panels are K = 1, η = 0.2, λ = 0.3, r = 0.04.
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show

Proposition 5.2 Assume the value of the option to invest, p(ρ,γ)(v), is given in (35).

(i) If β
(ρ,γ)
1 ≥ 1, or equivalently ξ ≤ ξ∗MS,

∂2

∂v2
p(ρ,γ)(v) > 0 and the value of the option is

convex in v.
(ii) If 0 < β

(ρ,γ)
1 < 1, or equivalently ξ∗MS < ξ < ξ∗, the value of the option may be convex or

concave depending on the value of v.

Proof: We can prove this result either by straightforward differentiation or by using the
representation in (51). See Appendix 7.4 for details. �

The result of the proposition confirms what we have seen in the figures. There are two
effects operating here. Firstly, a convexity effect from optionality. In a complete market,
option values are convex in the underlying asset, in this case, project value. This convexity

effect carries over to our incomplete market, and dominates in the case β
(ρ,γ)
1 ≥ 1. That

is, in the case ξ ≤ ξ∗MS, the option value is convex regardless of risk aversion, and model

parameters. However, in other situations, when β
(ρ,γ)
1 < 1 or ξ∗MS < ξ < ξ∗, there is a

second effect, that of risk aversion, influencing the value in the partial spanning model. Risk
aversion and incompleteness mean that the additional option value from an extra dollar of
project value diminishes as project value increases. In the case ξ∗MS < ξ < ξ∗, this becomes
important and the effect of risk aversion can outweigh the optionality effect, resulting in
concavity in the project value.

6 Conclusion

This paper has formulated and analyzed a new model for corporate investment decisions. It
recognizes that private risks exist, and introduces these via a partial spanning asset, one which
has less than perfect correlation with the underlying project. In doing so, the paper extends
the well known complete real options models including those of Amram and Kulatilaka (1999),
Brennan and Schwartz (1985), Dixit and Pindyck (1994), Mason and Merton (1985), Pindyck
(1991) and Trigeorgis and Mason (1987) to incompleteness, as suggested by Pinches (1998).
Reassuringly, these models, as well as those based on CAPM such as McDonald and Siegel
(1986), are recovered as limiting cases of the partial spanning model.

Our main conclusion is that the classic models are overstating the worth of the option
to invest, and recommending a firm waits too long to invest. The classic models may be
leading to underinvestment on the part of firms. Our more realistic model incorporating
a partial spanning asset and risk aversion recommends firms invest earlier, as the option
is not as valuable as the classic models claim, due to private risks. Moreover, we discover
that approximating investment decisions with the complete model when a highly correlated
spanning asset can be found, can lead to the wrong decision. In particular, if the complete
model concludes the firm should postpone investment indefinitely, then it not possible to
conclude that it is optimal to postpone investment in the partial spanning model. It may in
fact be optimal to invest at some finite trigger level. Thus a widely held belief that a complete
model is a good approximation tool in an “almost complete” situation is incorrect. It is also
the case that the CAPM style model of McDonald and Siegel (1986) is not a always a good
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approximation if risk aversion is non-negligible, and again, can lead to the wrong conclusion
concerning the timing of investment.

Various extensions of the partial spanning model presented could be undertaken. Firstly,
models other than lognormal could be assumed for the project value, see Footnote 7. For
instance, mean reverting models are increasingly popular, see Bhattacharya (1978), Dixit
and Pindyck (1994)[Chapter 5.5] and Schwartz (1997). Although we have analyzed options
to invest in this paper, the same framework could be used to examine abandonment decisions
as well. The conclusion of such an extension would be that the firm should abandon earlier
(compared to a complete or CAPM style model, as treated in Myers and Majd (1990) and
McDonald and Siegel (1986) respectively) when the correlation between the project value
and traded asset is less than perfect. The constant abandonment trigger level would rise
as correlation decreased away from one. Investment (and similarly, abandonment) decisions
with a finite horizon can also be modeled via a partial spanning approach. Of course, the
option value and trigger level cannot be found in closed form in this case, making general
conclusions difficult to obtain.

Empirical testing of real options models is beginning, see Berger et al (1996) and Moel
and Tufano (2002). This paper raises many questions which could potentially be empirically
tested. For instance, what are typical correlations between projects and the traded assets that
firms have access to ? Are firms investing earlier than classic real options models recommend
? Can we determine if firms are investing when the project Sharpe ratio is higher than the
critical value suggested in the classic models ? Much work remains to be done in this area.
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7 Appendix

7.1 Time Consistency of Utility Functions
In Merton (1969) style investment problems, utility of terminal wealth is maximized and

the optimal investment strategy over this fixed time period is obtained. Inherently, the utility
function is being applied to value an amount of wealth at a fixed, terminal date T ′, and in
this type of problem, it is not necessary to consider how the investor values wealth at earlier
dates T < T ′. Denote the utility function used to value wealth at T ′ by UT ′(x).

However, in the perpetual problem of this paper, we need to describe how the firm values
the amount Xτ + (Vτ − Ker(τ−t))+ at an intermediate date τ < ∞. To do this, we need
to think about time consistency properties of utility functions. This is a new approach,
although alternative ways of treating infinite horizon portfolio problems exist, such as those
maximizing the growth rate of a portfolio, see Hakansson (1979).

We temporarily forget about the option and infinite horizon complications and concentrate
on a finite horizon T ′ ≥ t where t is fixed. Assume we aim to maximize expected utility of
wealth, given wealth follows (24). Consider also an intermediate date t ≤ T ≤ T ′. At T ′, we
assume utility of wealth is described by the exponential utility function

UT ′(x) = −
AT ′

γT ′

e−γT ′x

where AT ′ is some constant and the constant absolute risk aversion γT ′ reflects risk aversion
at date T ′.

To decide how to value wealth at the intermediate time T , consider choosing any invest-
ment strategy over [t, T ] and the optimal strategy between T and T ′. This optimal strategy
is the Merton (1969) strategy given by

θ∗M =
λe−r(T

′−T )

γT ′σ

We can write (using the Merton (1969) solution)

sup
θu,t≤u≤T ′

EUT ′(XT ′) = sup
θu,t≤u≤T

E

[

−
AT ′

γT ′

e−γT ′er(T ′
−T )XT e−

1
2
λ2(T ′−T )

]

(41)

The right hand side is now an optimization problem over the sub-horizon [t, T ]. To value
consistently with T ′ cashflows, we would like the utility function valuing cashflows at T to
take the form

UT (x) = −
AT
γT

e−γT x (42)

where AT is constant and γT reflects risk aversion for time T . From (41) we must have

−
AT ′

γT ′

e−γT ′er(T ′
−T )xe

−
1
2 λ2(T ′

−T )

= −
AT
γT

e−γT x

and so require
γT ′erT

′

= γT e
rT = γte

rt (43)

and
AT ′

γT ′

e−
1
2
λ2T ′

=
AT
γT

e−
1
2
λ2T =

At
γt
e−

1
2
λ2t (44)
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where in both (43) and (44), At is a constant and γt is the constant absolute risk aversion
parameter for today, t. From here on, and throughout the main text of the paper, we denote
γt = γ and At = A for ease of notation.

Using (43) in (44) gives

AT = Ae(
1
2
λ2−r)(T−t). (45)

Now combining (42), (45) and (43) gives the time consistent utility function for cashflows at
T as

UT (x) = −
A

γ
e−γe

−r(T−t)xe
1
2
λ2(T−t).

We see that the terminal date T ′ has disappeared in the time consistent utility used at
T ≤ T ′. For this reason, this is also the appropriate utility to use when the horizon T ′ is
infinite.

Returning to our perpetual problem, the firm receives (Vτ − Ker(τ−t))+ at τ and has
generated Xτ from hedging. The appropriate time-τ utility function to use is

Uτ (x) = −
A

γ
e−γe

−r(τ−t)xe
1
2
λ2(τ−t) (46)

where A is a constant and γ is the constant absolute risk aversion of the firm today.
The firm’s investment problem is to solve

G(x, v) = sup
t≤τ

sup
θu,t≤u≤τ

Et

[

Uτ

(

Xτ + (Vτ −Ker(τ−t))+
)

|Xt = x, Vt = v
]

for the optimal investment time τ and hedge θ in the partial spanning asset P . Using the
time consistent utility gives

G(x, v) = sup
t≤τ

sup
θu,t≤u≤τ

Et

[

−
A

γ
e

1
2
λ2(τ−t)e−γe

−r(τ−t)(Xτ+(Vτ−Ker(τ−t))+)|Xt = x, Vt = v

]

(47)

7.2 Derivation of the Bellman equation (25)
In this section, we develop a Bellman equation for the investment problem in (47). Define

for u ≥ t,

H(y, s) = sup
u≤τ

sup
θr ,u≤r≤τ

Eu

[

−
A

γ
e

1
2
λ2(τ−u)e−γ(Yτ+(Sτ−K)+)|Yu = y, Su = s

]

where Yu = Xue
−r(u−t) and Su = Vue

−r(u−t) are the discounted wealth and project cashflows
respectively. Now

H(Yu, Su) = Max

{

−
A

γ
e−γ(Yu+(Su−K)+) ; (48)

sup
τ≥u+du

sup
θ

Eu

[

Eu+du

(

−
A

γ
e

1
2
λ2(τ−(u+du)+du)e−γ(Yτ +(Sτ−K)+)

)]

}
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Concentrating on the second term above, we see it can be written as

sup
θr , r≤u+du

Eu

[

sup
τ≥u+du

sup
θr , r≥u+du

e
1
2
λ2duEu+du

(

−
A

γ
e

1
2
λ2(τ−(u+du))e−γ(Yτ +(Sτ−K)+)

)

]

= sup
θr , r≤u+du

Eu[e
1
2
λ2duH(Yu+du, Su+du)]

= sup
θr , r≤u+du

Eu[e
1
2
λ2du(H(Yu, Su) + dH(Yu, Su))]

= H(Yu, Su)

(

1 +
1

2
λ2du

)

+ sup
θr , r≤u+du

EudH(Yu, Su)

Using this expression in (48) gives

0 = Max

{

−
A

γ
e−γ(Yu+(Su−K)+) −H(Yu, Su) ;

1

2
λ2H(Yu, Su)du+ sup

θr , r≤u+du
EudH(Yu, Su)

}

In the continuation region H(y, s) > −A
γ
e−γ(y+(s−K)+) and

LH = 0 (49)

where

LH =
1

2
λ2H + ξηsHs +

1

2
η2s2Hss + sup

θ̃

{

θ̃λσHy +
1

2
θ̃2σ2Hyy + θ̃σρηsHys

}

and Yu = Xue
−r(u−t), Su = Vue

−r(u−t), θ̃u = θue
−r(u−t), P̃u = Pue

−r(u−t) giving dynamics

dYu = θ̃u
dP̃

P̃
, dS
S

= η(ξdu+ dW ), dP̃
P̃

= σ(λdu+ dB).

In the stopping region H(y, s) = −A
γ
e−γ(y+(s−K)+) and

LH ≤ 0.

The stopping region is characterized by the investment time τ∗ given by

τ∗ = inf
{

u ≥ t : Su = Ṽ (ρ,γ)
}

= inf
{

u ≥ t : Vu = Ṽ (ρ,γ)er(u−t)
}

That is, when the discounted project value reaches the constant level Ṽ (ρ,γ), investment
optimally takes place. Optimizing over θ̃ gives

θ̃∗u =
−λHy −Hysρsη

Hyyσ
.

and substituting this back into (49) gives

0 =
1

2
λ2H + ξηsHs +

1

2
η2s2Hss −

1

2

(λHy + ρηsHys)
2

Hyy
(50)

in the continuation region.
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Finally, observe from (47),

G(x, v) = sup
t≤τ

sup
θu,t≤u≤τ

Et

[

−
A

γ
e

1
2
λ2(τ−t)e−γe

−r(τ−t)(Xτ+(Vτ−Ker(τ−t))+)|Xt = x, Vt = v

]

= sup
t≤τ

sup
θu,t≤u≤τ

Et

[

−
A

γ
e

1
2
λ2(τ−t)e−γ(Yτ+(Sτ−K)+)|Xt = x, Vt = v

]

= sup
t≤τ

sup
θu,t≤u≤τ

Et

[

−
A

γ
e

1
2
λ2(τ−t)e−γ(Yτ+(Sτ−K)+)|Yt = x, St = v

]

= H(x, v)

We can rewrite (50) and the continuation region as G(x, v) > −A
γ
e−γ(x+(v−K)+),

0 =
1

2
λ2G+ ξηvGv +

1

2
η2v2Gvv −

1

2

(λGx + ρηvGxv)
2

Gxx

with

G(x, 0) = −
A

γ
e−γx

G(x, Ṽ (ρ,γ)) = −
A

γ
e−γ(x+(Ṽ (ρ,γ)−K)+)

Gv(x, Ṽ
(ρ,γ)) = AI{Ṽ (ρ,γ)>K}e

−γ(x+(Ṽ (ρ,γ)−K)+)

7.3 Proof of Proposition 4.3
A similar representation in terms of the minimal martingale measure is shown in the case

of finite time American options in Musiela and Zariphopoulou (2003) and in the European
case by Henderson (2002). We extend the representation here to the perpetual American
option under consideration.

First, write the value in (35) as

p(ρ,γ)(v) = −
1

γ(1 − ρ2)
lnΓ(v). (51)

We now propose a form for Γ(v) and verify it satisfies the pde (27) and associated boundary
conditions. For the proposition to be true, we must have that

Γ(v) = inf
τ<∞

EQ0
(e−γ(1−ρ

2)e−r(τ−t)(Vτ−Ker(τ−t))+ |Vt = v) (52)

where Q0 defined via
dQ0

dP
= exp

(

−λBT −
1

2
λ2T

)

(53)

is the minimal martingale measure under which the traded asset P is a martingale. Specifi-
cally, under Q0, the traded asset follows

dP

P
= rdt+ σdB0
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where B0 = B + λt is a Q0 Brownian motion. Writing the original P Brownian motions W
and B as dW = ρdB +

√

1 − ρ2dZ where Z is independent of B, the project value follows

dV

V
= νdt+ η(ρdB +

√

1 − ρ2dZ)

under P. Substituting for the Q0 Brownian motion and leaving the drift of the independent
Brownian motion Z unchanged, gives

dV

V
= (ν − ληρ)dt + η(ρdB0 +

√

1 − ρ2dZ)

under the minimal martingale measure Q0. Finally, discounting gives S follows

dS

S
= (ν − r − ληρ)dt + η(ρdB0 +

√

1 − ρ2dZ) (54)

under Q0.
Returning to (52), we see boundary condition (28) is satisfied. Rewrite (52) for u ≥ t as

Γ̂(s) = inf
u≤τ

EQ0

u (e−γ(1−ρ
2)(Sτ−K)+|Su = s)

where Su = Vue
−r(u−t). We develop a Bellman equation for Γ̂(s) similarly to that derived in

6.2. Write

Γ̂(s) = min

[

e−γ(1−ρ
2)(Su−K)+ ; inf

u+du≤τ
EQ0

u E
Q0

u+due
−γ(1−ρ2)(Sτ−K)+

]

which reduces to
0 = min

[

e−γ(1−ρ
2)(Su−K)+ − Γ̂(Su); E

Q0

u dΓ̂(Su)
]

In the continuation region, Γ̂(s) < e−γ(1−ρ
2)(s−K)+ and

0 = EQ0

u

(

Γ̂sdS +
1

2
Γ̂ss(dS)2

)

.

Substituting from the dynamics in (54) and taking expectations, we obtain

0 = Γ̂sSη(ξ − λρ) +
1

2
Γ̂ssS

2η2

Now since Γ̂(s) = Γ(v), we obtain

0 = vΓvη(ξ − λρ) +
1

2
η2v2Γvv

which is exactly the pde (27). The condition (29) is obtained from the stopping condition.
�

7.4 Proof of Proposition 5.2
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The first idea of a proof is simply to differentiate (35) twice in v to obtain

∂2

∂v2

{

p(ρ,γ)(v)
}

= −
β

(ρ,γ)
1

cv2
(1 − ecp

(ρ,γ)
)
[

β
(ρ,γ)
1 − 1 − β

(ρ,γ)
1 (1 − ecp

(ρ,γ)
1 )

]

where c = γ(1−ρ2). The term outside the square brackets is positive for any β
(ρ,γ)
1 > 0. Now

observe that if β
(ρ,γ)
1 ≥ 1, the term inside the square brackets is positive also, and overall the

second derivative is greater than zero. However, if β
(ρ,γ)
1 < 1, the sign of the square bracket

term is indeterminate and the second derivative may be of either sign.
A more enlightening approach is to write for functions f(v),Γ(v) (where Γ(v) is given in

(33) and the relationship between option value and Γ(v) is given in (51))

{f ◦ Γ}′′ = f ′′(Γ)(Γ′)2 + Γ′′f ′(Γ)

Identifying f(x) = −1
c
lnx, this is convex and decreasing. The convexity or concavity of

p(ρ,γ)(v) depends upon the sign of {f.Γ}′′ above. The first term f ′′(Γ)(Γ′)2 is always positive.
We need to determine the sign of the second term above.

In the case β
(ρ,γ)
1 ≥ 1, Γ(v) is concave and decreasing, and hence the second term above

is positive. Overall, p(ρ,γ)(v) is convex in v in this case.

Consider now β
(ρ,γ)
1 < 1. Now Γ(v) is convex and decreasing, and hence the second term

above is now negative. Whether p(ρ,γ)(v) is convex or concave in v depends on which term
dominates.

For example, set β
(ρ,γ)
1 = 1

2 . Then Γ(v) = 1 − kv
1
2 , (Γ′)2 ∼ 1

v
and Γ′′ ∼ 1

v3/2 . In this

case, for small v, 1
v3/2 >

1
v

so the second, negative term dominates and p(ρ,γ)(v) is concave.
However, for large v, the first term dominates and the option value is convex. �
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