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Abstract

We examine the problem of a risk-neutral investor who has to choose among
two alternative projects of different scales under output price uncertainty. We
show that as soon as investment in the smaller scale project is sometimes opti-
mal, the optimal investment strategy is not a trigger strategy and the optimal
investment region is dichotomous. Whenever the investor has the opportunity
to switch from the smaller scale to the larger scale project, the dichotomy of the
investment region can persist even when uncertainty becomes large.
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1. Introduction

The literature on irreversible investment pioneered by Arrow and Fisher (1974) and
Henry (1974) is based on the premise that there are three factors driving the investment
decision. First, there is some uncertainty about the future cash-flows of the investment
project. Next, investment is at least partially irreversible, in the sense that investment
expenditures cannot be fully recovered. Last, there is some flexibility in the timing
of investment, which is valuable because it gives the investor the option to wait for
new information. As a result, the loss of this option value at the time the firm invests
represents an additional opportunity cost of investment, and investment options are
exercised significantly above the point at which expected discounted cash-flows cover
the sunk investment expenditures.

In the benchmark case of a single indivisible project, the optimal investment policy
can be mathematically determined as the solution of an optimal stopping problem.
The prototype of this approach is the model of McDonald and Siegel (1986), in which
the underlying value of the investment project evolves as a geometric Brownian mo-
tion. Under this formulation, the optimal investment strategy is a trigger strategy.
Specifically, the investment option should be exercised at the first time where the value
of the investment project exceeds a critical threshold that can be explicitly computed
using standard smooth-fit techniques (Dixit and Pindyck (1994)).

The large and rapidly growing literature on investment under uncertainty has also
recognized as key feature of investment decisions the sequential nature of investment
(Majd and Pindyck (1987), Bar-Ilan and Strange (1998)), the importance of entry
and exit decisions (Dixit (1989)), and addressed issues like incremental capacity choice
(Pindyck (1988), Kandel and Pearson (2002)), costly reversibility (Abel and Eberly
(1996)), and technology adoption (Farzin, Huisman and Kort (1998)).

In this short paper, we leave aside these complex and meaningful extensions of the
theory and revisit an old standard question, namely the choice of mutually exclusive
investment projects under uncertainty. The starting point of our analysis is the model
of Dixit (1993). In this paper, Dixit examines the problem of an investor who has
to choose one project among multiple projects of different scales. The instantaneous
profit generated by each investment project is a linear function of a single geometric
Brownian motion, and projects with larger sunk investment costs are associated with
larger profits. At the time of the investment, the investor selects the project with the
larger net present value, and thus the underlying payoff function of the investor is the
upper envelope of the family of affine functions representing the net present values of
investing in each project.

Dixit’s (1993) treatment of this problem relies on a simple adaptation of the one-
project case studied by McDonald and Siegel (1986). Namely, he argues that each
project can be evaluated separately, and the solution to the investor’s problem is simply
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to choose the project with the highest option value. As an illustration, suppose there are
two projects, G and N . One could for instance think of these two projects as alternative
ways of producing electricity, by using a gas or a nuclear technology. Project G has
lower investment cost and generates lower profits than project N . Separate evaluation
of these two projects leads to two option values, and associated critical thresholds pG

and pN for the underlying geometric Brownian motion of output prices that drives
the instantaneous profit of each project and is the relevant state variable. According
to Dixit (1993), the solution of the investor’s problem is to invest in the project that
generates the highest option value, when the corresponding threshold pG or pN is
reached. For values of the output price greater than this optimal threshold, investment
is immediate and the project with the highest net present value is selected.

This is precisely this last point that we believe is not correct in Dixit’s (1993)
argument. Suppose that the lower cost project G generates in itself a higher option
value than the larger cost project N . In particular, when the current value of the
output price is pG, the investor is strictly better off investing in G than in N . This
implies that pG is lower than the indifference point at which the net present values
of the two projects are equal. The key point is that it is never optimal to invest in
either project when the current value of the output price is at this indifference point.
The reason is that the payoff function of the investor, i.e., the upper envelope of the
net present values of investing in each project, exhibits an upward derivative jump at
this point. Using a local time argument, we show that this implies the optimality of
delaying investment around this indifference point.

As a result, when the option of investing in G is higher than that of investing
in N , the optimal investment policy is no longer a trigger strategy and the optimal
investment region in the state space is not connected. Instead, there is a dichotomy of
the investment region. Specifically, there are two critical thresholds pL and pR around
the indifference point such that if the current value of the output price lies between pG

and pL, it is optimal to invest in G, while if the current value of the output price is
above pR, it is optimal to invest in N . The intermediate region between pL and pR is
an inaction region in which the investor waits to see in which project to invest. If the
output price raises above pR, it is optimal to invest in N , while if it drops down to pL,
it is optimal to invest in G.

The existence of this intermediate inaction region implies that, in striking contrast
with most standard real options models, it can be optimal to invest in a project even
though the instantaneous profit flow associated to this project falls. Investing in G
when the output price crosses down the threshold pL is optimal because pL is higher
than the threshold pG above which it would be optimal to invest in G if that were the
only investment option available, and because it would be too costly to wait until the
threshold pR is reached to invest in N—in other terms, “a bird in the hand is worth
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two in the bush.” Moreover, there is a region of the state space in which it is optimal to
delay investment while it would be optimal to invest if only one project, N or G, were
available. This illustrates the interaction between the two investment options, which
is not taken into account in Dixit’s (1993) solution. Adding a new investment option
to an existing one increases the demand for information and creates an additional
incentive to delay investment, even if, when evaluated separately, the second option is
dominated by the first.

To illustrate these points, we consider a slightly modified version of Dixit’s (1993)
model in which the investor has the option to switch from project G to project N by
incurring the corresponding sunk cost. (Switching from N to G is clearly suboptimal as
the instantaneous profit under G is lower than under N .) This implies that the expected
payoff from investing in G is itself an option value. This extension is motivated by the
natural question of whether the dichotomy of the optimal investment region is a robust
phenomenon, and, more specifically, of whether greater uncertainty systematically leads
to the adoption of larger projects. In Dixit’s (1993) original model, the option of
investing in the larger cost project N always dominates that of investing in the lower
cost project G if the volatility of the output price process is high enough. It is then
never optimal to invest in G, and the solution to the investor’s problem is to invest
in N as soon as the output price exceeds the critical threshold pN . Thus when the
option to switch from the smaller cost project to the larger cost project is not present,
the dichotomy of the investment region disappears as uncertainty becomes large. By
contrast, we show that, whenever the investor has the option to switch from G to N ,
there are parameter values such that the dichotomy of the optimal investment region
will be preserved and investment in G will occur with positive probability even for a
very high volatility of the underlying process.

The paper is organized as follows. Section 2 describes the model and delineates
parameter restrictions ensuring the existence of a dichotomous investment region. Our
main result is derived in Section 3.

2. An Investment Problem

2.1. The Model

Our model is adapted from Dixit’s (1993) model of choice among alternative discrete
projects under uncertainty. We simplify his model by assuming that only two alter-
native project choices are available. Unlike him, however, we do not assume that the
project choice is irreversible.

Time is continuous, and labelled by t ≥ 0. There is a single risk-neutral investor
who can engage in one of two projects, G or N , of different scales. The investor can
operate only one project at a time. Project N is a larger scale project that generates
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a higher output than project G. Specifically, investment in project k entails a sunk
capital cost Ik, where IN > IG, and generates an output flow xk, where xN > xG. A
project once installed incurs no operating costs. The instantaneous profit generated
by project k is xkPt, where P = {Pt; t ≥ 0} is a geometric Brownian motion with drift
µ and volatility σ:

dPt = µPt dt + σPt dWt; t ≥ 0,

that represents the dynamics of output price. The investor discounts future revenue
and costs at a constant rate r > µ. A project once installed can last forever, but the
investor can switch from one project to the other by incurring the corresponding sunk
cost. Since the larger scale project N generates higher profits than the lower scale
project G once it is in place, it is clear that it is never optimal to switch from N to G.
Hence, when the current value of the output price P is p, the gross expected discounted
profits of investing in project N are given by:

vN(p) =
xN

r − µ
p.

On the other hand, whenever project G has been adopted, it is optimal to switch to
project N whenever the output price P becomes large enough. Specifically, when the
current value of P is p, the gross expected discounted profits of investing in project G
are given by:

vG(p) = sup
τ∈T P

E
[∫ τ

0

e−rtP p
t xG dt + e−rτ (vN(P p

τ )− IN)

]
,

where T P is the set of stopping times adapted to the filtration generated by P , and the
superscript p in P p

t reflects the dependence of P on its initial value p.1 It is well-known
that the solution to this problem consists to switch from G to N as soon as the output
price P exceeds the critical threshold:

pGN =
β

β − 1

IN(r − µ)

xN − xG

,

where β = 1/2 − µ/σ2 +
√

(1/2− µ/σ2)2 + 2r/σ2 > 1 is the positive root of the
quadratic equation ξ(ξ − 1)σ2/2 + µξ − r = 0. Standard computations then leads to
the following explicit expression for vG:

vG(p) =


xG

r − µ
p +

(
p

pGN

)β
IN

β − 1
if p ≤ pGN ,

xN

r − µ
p− IN if p > pGN .

1In Dixit’s (1993) model, the option to switch from G to N is not available, and both vG and vN

are linear functions, with slopes xG/(r − µ) and xN/(r − µ) respectively.
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(See, e.g., Dixit and Pindyck (1994).) A simple but useful remark is that vG ≤ vN , with
equality at zero only. The reason is that the two functions coincide at zero, and that vG

is convex with a slope that is smaller or equal than the slope of vN everywhere. (Note
that the two functions are linear with the same slope on [pGN ,∞).) The intuition for
this is clear: the gross expected discounted profits generated by the larger scale project
N are greater than those generated by G, taking into account the opportunity to invest
eventually at cost IN in project N .

The investor’s problem can now be written as:

V (p) = sup
τ∈T P

E
[
e−rτv(P p

τ )
]
, (1)

where the payoff function v is the upper envelope of vG − IG and vN − IN :

v(p) = max {vG(p)− IG, vN(p)− IN} ; p ≥ 0.

It should be noted that vG(0) − IG > vN(0) − IN and vG(p) − IG < vN(p) − IN for
p > pGN . Again, the slope of vG− IG is always less than the constant slope of vN − IN .
Hence there exists a unique price p̃ < pGN such that vG(p) − IG ≥ vN(p) − IN if and
only if p ≤ p̃, with equality if p = p̃. In what follows, we shall refer to p̃ as the
indifference point. A key feature of the payoff function v is that it is not differentiable
at the indifference point p̃, with vp(p̃

+) = vNp(p̃) > vGp(p̃) = vp(p̃
−)

2.2. Two Auxiliary Problems

As benchmarks, it will be helpful to determine the solution to two auxiliary investment
problems. Suppose first that one can only invest in project N . The investor’s problem
is then:

VN(p) = sup
τ∈T P

E
[
e−rτ (vN(P p

τ )− IN)
]
, (2)

whose solution consists to invest in N as soon as the output price P exceeds the critical
threshold:

pN =
β

β − 1

IN(r − µ)

xN

.

Suppose next that investment is constrained to be sequential, with the investment in
G occurring before that in N . The investor’s problem is then:

VG(p) = sup
τ∈T P

E
[
e−rτ (vG(P p

τ )− IG)
]
. (3)

Note that, contrary to vN , the payoff vG is non linear in the current output price. It is
easy to check that the solution to this problem is to invest as soon as the output price
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P exceeds the critical threshold:

pG =


β

β − 1

IG(r − µ)

xG

if
xN

xG

− 1 <
IN

IG

,

β

β − 1

(IG + IN)(r − µ)

xN

if
xN

xG

− 1 ≥ IN

IG

.

In the first case, pG < pGN and it is optimal to invest first in project G, and then to
wait until P exceeds pGN to invest in N . In that case, investment in G is myopic in
the sense that it occurs at the same time than if the option of ultimately switching to
N was not present, as in Leahy (1993). In the second case, pG ≥ pGN and the two
investments are simultaneous.

We can use these computations to solve problem (1) in one special case.

Lemma 2.1 Suppose that it is the case that:

IG

IN

≥ xG

xN

.

Then the solution to (1) consists to invest in N as soon as P exceeds the threshold pN ,
i.e., V = VN .

Intuitively, what happens in that case is that the option of investing in N is so attractive
compared to that of investing in G that the latter is never exercised: adding the
option to invest in G before investing in N does not modify the investor’s behavior.
Economically, this corresponds to a situation in which there are increasing returns to
scale in investment, with larger projects having larger average product, and we obtain
the result of Dixit (1993) that it is then optimal to wait to invest in the larger project.
To rule out this case, we shall henceforth assume that:

IG

IN

<
xG

xN

. (4)

Note that this implies that the optimal investment trigger pG in problem (3) lies below
pGN . Hence if the investor were constrained to invest in G before than to invest in
N , there will typically be a delay between the two investments. Furthermore, (4) also
implies the tighter restriction that pG < pN .

It turns out that condition (4) is not sufficient to ensure that the problem is not
degenerate, with the option of investing in N always dominating that of investing in
G. Indeed, it may be the case that at the optimal investment trigger pG for problem
(3), the value of delaying investment until pN and invest in N , VN(pG), exceeds that of
investing in G immediately, vG(pG) − IG. The following lemma gives a necessary and
sufficient condition under which this will be true.
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Lemma 2.2 Suppose that it is the case that:(
xG

xN

)β (
IG

IN

)1−β

+

(
1− xG

xN

)β

≤ 1.

Then the solution to (1) consists to invest in N as soon as P exceeds the threshold pN ,
i.e., V = VN .

Note that (4) is not inconsistent with the condition stated in the lemma. Hence, it is
possible that (4) holds and still the option of investing in N always dominates that of
investing in G. To rule out this case, we shall henceforth assume that:(

xG

xN

)β (
IG

IN

)1−β

+

(
1− xG

xN

)β

> 1. (5)

Note that (5) implies (4) but not vice versa. Given (5), there will always be a region
of the state space in which the option of investing in G should be exercised before that
of investing in N . It should be noted that (5) implies that vG(pG)− IG > vN(pG)− IN

and thus that pG < p̃.

Note that if the option of investing in N were not available once investment in G
is sunk, as in Dixit (1993), (5) would be modified to:(

xG

xN

)β (
IG

IN

)1−β

> 1. (6)

In particular, if σ goes to infinity and thus β goes to 1, this requirement would be
violated as xG < xN . Thus, when the option to switch from G to N is not available,
it is never optimal to invest in G if the volatility σ is high enough (see Dixit (1993)).
When the option to switch from G to N becomes available as in our model, it is possible
to find parameter values for xG, xN , IG and IN such that (5) will be satisfied even for
very large values of σ.2 Hence the option to switch from G to N qualitatively affects
the impact of volatility on the optimal investment decision.

3. The Main Result

3.1. Preliminaries

First, we verify that the optimal stopping region for problem (1) is non-empty, and
therefore that the problem has a solution. Then we derive a key property of the optimal
stopping region.

2Note that if β = 1, (5) becomes an equality. The derivative of the left-hand side of (5) with respect
to β at β = 1 is (ln(xG/xN )− ln(IG/IN ))xG/xN +ln(1−xG/xN )(1−xG/xN ) which is positive under
(4) if xG/xN is close enough to 1, which implies the claim.

7



Let us define the stopping region S = {p ≥ 0 | V (p) = v(p)} for (1), as well as the
stopping time τS = inf{t ≥ 0 | P p

t ∈ S}. If S is non-empty, then τS is almost surely
finite and V (p) = E

[
e−rτSv(P p

τS
)
]

so that τS is an optimal stopping time for (1). We
have the following result.

Proposition 3.1 The optimal stopping region S is non-empty.

The next proposition is key to our results.

Proposition 3.2 The indifference point p̃ does not belong to the optimal stopping
region S.

The proof of this result is technical, and relies on the Itô-Tanaka-Meyer formula
(Karatzas and Shreve (1991, Theorem 3.7.1)). The intuition is that, because the payoff
function v = max{vG − IG, vN − IN} is not differentiable at the indifference point p̃,
with vp(p̃

+) > vp(p̃
−), the investor is always better off delaying the investment when

the current value of P is p̃ rather than investing in either project. As shown below,
this implies that whenever (5) hold, the optimal stopping region S is not connected,
and the optimal investment strategy is not a trigger strategy.

This result does not depend on our assumption that the investor has the option to
switch from G to N . Indeed, a similar result holds if the project choice is irreversible, as
in the model of Dixit (1993).3 This points out to the fact that the solution he provides—
invest at pk in the project for which xβ

k/Iβ−1
k is the largest, and, for p ≥ pk, invest

immediately in the project with the greatest net present value—is not correct, unless
(6) is violated, in which case it is never optimal to invest in G. But as soon as investing
in G is sometimes optimal, the optimal investment strategy is not a trigger strategy,
and there will be a region of values for the output price P around the indifference point
in which investment will be delayed.

3.2. The Optimal Investment Region

We are now ready to state and prove our main result.

Theorem 3.1 Suppose that (5) hold. Then:

(i) The optimal stopping region S for (1) is the union of two intervals [pG, pL] and
[pR,∞), where pL < p̃ < pR. If the current value of P lies in [pG, pL], it is optimal
to invest in G, while if it lies in [pR,∞), it is optimal to invest in N ;

3In his model, the indifference point is given by (r−µ)(IN − IG)/(xN −xG), and the left and right
derivatives of the payoff function at the indifference point are respectively given by xG/(r − µ) and
xN/(r − µ). Again, this upward jump in the derivative of the payoff function implies that it is not
optimal to invest around the indifference point.
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(ii) The value function V is continuously differentiable on R++ and satisfies the fol-
lowing variational inequalities:

1

2
σ2p2Vpp + µp Vp − rV ≤ 0, (7)

V ≥ v, (8)(
1

2
σ2p2Vpp + µp Vp − rV

)
(V − v) = 0. (9)

In particular, pL and pR are characterized by the following value matching and
smooth-pasting conditions:

V (pL) = vG(pL)− IG, (10)

V (pR) = vN(pR)− IN , (11)

Vp(pL) = vGp(pL), (12)

Vp(pR) = vNp(pR). (13)

The key insight of this proposition is that, for parameter values satisfying (5), the
optimal investment strategy is not a trigger strategy, and the optimal investment region
is dichotomous. It should be noted that Dixit’s (1993) solution remains valid on the
segment [0, pG] of the state space: it is optimal to wait until the output price exceeds
pG to invest in G. However, our solution departs from his in that there is a range of
prices (pL, pR) around the indifference point in which it is optimal for the investor to
wait in order to decide in which project to invest. Note that if project N were not
immediately available, it would be optimal to invest in G in that region. Thus delay in
the region (pL, pR) reflects the added opportunity to invest in N . Moreover, it is not
difficult to check that pR > pN , so that for values of P in (pN , pR), the investor chooses
to delay investment although he would have invested immediately if only one project,
G or N , were available. This illustrates the interaction between the two investment
options: the investor is willing to delay further investment in N because he knows
that he will have the option to invest in G if the output price deteriorates too much.
Note that this remains true even if, on the interval [0, p̃), the option of investing in
G uniformly dominates that of investing in N when these two options are evaluated
separately, i.e., VN < VG on this price range.

The value function V of the investor’s problem coincides with VG on [0, pL], then
takes off from v on (pL, pR) and touches down vN − IN at the point pR.

—Insert Figure 1 here—

On the interval [0, pG], V (p) is of the form Apβ, where:

A =
1

pβ
G

(
IG

β − 1
+

(
pG

pGN

)β
IN

β − 1

)
.
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Standard considerations imply that on the interval [pL, pR], V (p) is of the form Bpα +
Cpβ, where α = 1/2 − µ/σ2 −

√
(1/2− µ/σ2)2 + 2r/σ2 is the negative root of the

quadratic equation ξ(ξ− 1)σ2/2 + µξ− r = 0. The coefficients B and C, as well as the
critical thresholds pL and pR can be found in principle by solving the value matching
and smooth-pasting conditions (10)-(13), although no analytic solution is available.

3.3. Discussion

Examples of investment policies more complex than a simple trigger strategy abound
in the literature. The model of entry and exit by Dixit (1989) generates a two-trigger
strategy: the critical output price above which it is optimal to enter an industry is
higher than the one below which it is optimal to exit from it. Similarly, Abel and
Eberly (1996) show that the investment policy of a firm under costly reversibility is
characterized by a range of inaction in which it is optimal neither to purchase nor to sell
capital. However, a common feature of these two papers is that the lower boundary of
the inaction region corresponds to a disinvestment decision while the upper boundary
corresponds to an investment decision. By contrast, in our model both pL and pR

correspond to an investment decision—albeit in different projects.

A striking feature of the optimal investment strategy is that it may be optimal to
invest in G after a drop in the output price P if the current value of P lies in (pL, pR).
Rational investment in a down market can also be triggered by other factors. Com-
petition is one of them. Grenadier (1996) develops a model of strategic exercise of
investment options in which competitors can simultaneously invest when the invest-
ment’s value goes down in an attempt to avoid preemption. Décamps, Mariotti and
Villeneuve (2001) show that a similar phenomenon can occur in a single decision maker
context when the drift of the value process is not known to the investor ex ante. The
decision to invest then depends on both the observed current value of the project and
the beliefs about the unknown drift. This generates path dependency in the optimal
investment strategy and it may be rational to invest after a drop in the current value
of the investment project. As we have shown, this phenomenon can result from the
interaction between several investment options.

Finally, although we have derived our results for the case of two alternative projects,
it is conceptually straightforward to extend them to an arbitrary number of projects
with sunk investment costs I1, . . . , IK and output flows x1, . . . , xK ranked in increasing
order. The analogue of Proposition 3.2 is that it is never optimal to invest when the
output price level corresponds to a point of non-differentiability of the upper envelope
of the net present values of investing in each project. As soon as the largest scale
investment option does not dominate all the others, the optimal investment strategy
will be characterized by several disconnected inaction regions in which the investor
waits in order to determine in which project to invest.
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Appendix

Proof of Lemma 2.1. It is clear from the expressions for pN and pG that pN ≤ pG whenever IG/IN ≥
xG/xN . Next, we check that, in that case, pN > p̃. This amounts to verify that vG(pN ) − IG <

vN (pN )− IN . Since pGN > pN , this is true whenever:

xG

r − µ
pN +

(
pN

pGN

)β
IN

β − 1
− IG <

IN

β − 1
,

or, equivalently:
xG

xN

β

β − 1
+

1
β − 1

(
1− xG

xN

)β

− 1
β − 1

<
IG

IN
.

Whenever IG/IN ≥ xG/xN , it is therefore sufficient to check that:

xG

xN

β

β − 1
+

1
β − 1

(
1− xG

xN

)β

− 1
β − 1

<
xG

xN
,

which is always true as xG/xN < 1 and β > 1. Hence pG ≥ pN > p̃. Since vG − IG < vN − IN on
(p̃,∞), it is never optimal to stop and invest in G whenever the current value of P belongs to that
region. Similarly, it is never optimal to stop and invest in G whenever the current value of P belongs
to [0, p̃], since this is dominated by investing in G as soon as P exceeds pG > p̃. Hence, it is never
optimal to invest in G, which implies the result. �

Proof of Lemma 2.2. Given (4), the requirement that VN (pG) ≥ vG(pG)− IG is equivalent to:

IG

β − 1
+
(

pG

pGN

)β
IN

β − 1
≤
(

pG

pN

)β
IN

β − 1
,

or, equivalently: (
xG

xN

)β (
IG

IN

)1−β

≤ 1−
(

1− xG

xN

)β

, (14)

which is the condition in the statement of the lemma. Two cases may occur. Suppose first that
pG > p̃. Then clearly it is never optimal to invest in G whenever the current value of P belongs to
(pG,∞) as the investor could secure a higher payoff by investing in N in that region. Similarly, it is
never optimal to stop and invest in G whenever the current value of P belongs to [0, pG], since this
is dominated by investing in N as soon as P exceeds pN > pG. Hence the result. Suppose now that
pG ≤ p̃. We first prove that pN > p̃. Suppose the contrary. Then we have vG(pN )−IG ≥ vN (pN )−IN .
Since pGN > pN , this is true whenever:

xG

r − µ
pN +

(
pN

pGN

)β
IN

β − 1
− IG ≥ IN

β − 1
,

or, equivalently:

1−
(

1− xG

xN

)β

≤ xG

xN
β − IG

IN
(β − 1). (15)

11



Putting together (14) and (15), we obtain that:(
xG

xN

)β (
IG

IN

)1−β

+
IG

IN
(β − 1)− xG

xN
β ≤ 0. (16)

The left-hand side of (16) is decreasing in IG/IN on [0, xG/xN ] and equals zero for IG/IN = xG/xN .
Hence (16) is violated on the relevant range of parameters given by (4), and we get a contradiction.
It follows that pN > p̃, as claimed. Next, we show that vG − IG < VN on (pG, p̃). Since pN > p̃, this
is true whenever:

xG

r − µ
p +

(
p

pGN

)β
IN

β − 1
− IG −

(
p

pN

)β
IN

β − 1
< 0.

As a function of p, the left hand side has a slope given by:

xG

r − µ
+ pβ−1IN

β

β − 1

(
1

pβ
GN

− 1

pβ
N

)
.

This is clearly decreasing in p as β > 1 and pGN > pN . Hence it is sufficient to show that this slope
is non-positive at pG. Simple computations using the values of pG, pN and pGN show that this is
equivalent to (14). To conclude, note that it is never optimal to invest in G whenever the current
value of P belongs (pG, p̃) as waiting until P exceeds pN secures a higher payoff. �

Proof of Proposition 3.1. Since r > µ, the process {e−rtP p
t ; t ≥ 0} is a positive and continuous

supermartingale. In particular, it has a last element, namely zero. Hence, by the Optional Sampling
Theorem (Karatzas and Shreve (1991, Theorem 1.3.22)), E [e−rτP p

τ ] ≤ p for any stopping time τ ∈ T P .
Next, note that there exists positive constants C1 and C2 such that for each p ≥ 0, v(p) ≤ C1p + C2.
We have therefore:

E
[
e−rτv(P p

τ )
]
≤ C1E

[
e−rτP p

τ

]
+ C2 ≤ C1p + C2

for any stopping time τ ∈ T P , and thus V (p) ≤ C1p + C2. According to optimal stopping theory,
the process {e−r(t∧τS)V (P p

t∧τS
); t ≥ 0} is a martingale (El Karoui (1981)). Now, suppose that S = ∅.

Then the process {e−rtV (P p
t ); t ≥ 0} is a martingale. Therefore, for any t ≥ 0,

V (p) = E
[
e−rtV (P p

t )
]
≤ C1p e−(r−µ)t + C2e−rt.

Since t is arbitrary and r > µ, it would follow that V is identically equal to zero, which is a contra-
diction. Hence the result. �

Proof of Proposition 3.2. Let us define the operator A by:

Ag =
1
2

σ2p2gpp + µp gp − rg,

and let f = vN − IN − vG + IG. By construction, f is a difference of two convex functions which
satisfies f(p̃) = 0 and fp(p̃) > 0, and we have v = vG − IG + max{f, 0}. The function vG − IG is of
class C2 on R++ \{pGN}. Therefore, according to the generalized Itô’s formula (Krylov (1980, §2.10))

12



and the Itô-Tanaka-Meyer formula (Karazas and Shreve (1991, Theorem 3.7.1)), we have, for every
t ≥ 0,

E
[
e−rtv(P p̃

t )
]

= v(p̃) + E
∫ t

0

e−rsA(vG − IG)(P p̃
s ) ds

+ E
∫ t

0

e−rsAf(P p̃
s )χ{P p̃

s ≥p̃} ds +
1
2

fp(p̃) E
[
e−rtLp̃

t

]
,

where {Lp̃
t ; t ≥ 0} is the local time for the continuous semimartingale P at p̃. We treat each term

on the right-hand side of this equation separately. For the first term, since vG − IG is of class C2 on
(0, pGN ) there exists a positive constant C1 such that |A(vG − IG)(p)| ≤ C1 for p ∈ (0, pGN ). For
p ∈ (pGN ,∞), A(vG − IG)(p) = r(IN + IG)− xNp. Hence, for every t ≥ 0,∣∣∣∣E∫ t

0

e−rsA(vG − IG)(P p̃
s ) ds

∣∣∣∣ ≤ E
∫ t

0

e−rs
∣∣A(vG − IG)(P p̃

s )
∣∣ ds

≤ E
∫ t

0

e−rs(xNP p̃
s + r(IG + IN ) + C1) ds

=
xN p̃

r − µ
(1− e−(r−µ)t) +

r(IG + IN ) + C1

r
(1− e−rt).

Since r > µ, it follows that:

E
∫ t

0

e−rsA(vG − IG)(P p̃
s ) ds = o(

√
t).

For the second term, note that there exists positive constants C2 and C3 such that |Af(p)| ≤ C2p+C3

for p ≥ p̃. Hence, for every t ≥ 0,∣∣∣∣E∫ t

0

e−rsAf(P p̃
s )χ{P p̃

s ≥p̃} ds

∣∣∣∣ ≤ E
∫ t

0

e−rs
∣∣∣Af(P p̃

s )χ{P p̃
s ≥p̃}

∣∣∣ ds

≤ E
∫ t

0

e−rs(C2P
p̃
s + C3) ds

=
C2p̃

r − µ
(1− e−(r−µ)t) +

C3

r
(1− e−rt).

Since r > µ, it follows that:

E
∫ t

0

e−rsAf(P p̃
s )χ{P p̃

s ≥p̃} ds = o(
√

t).

For the third term, note that by the Itô-Tanaka-Meyer formula,

E
[
e−rt(P p̃

t − p̃)+
]

= µ E
∫ t

0

e−rsP p̃
s χ{P p̃

s ≥p̃} ds− r E
∫ t

0

e−rs(P p̃
s − p̃)+ ds +

1
2

E
[
e−rtLp̃

t

]
.

The first two terms on the right-hand side of this equality can be shown to be on the order of o(
√

t)
by the same reasoning as above. Hence:

1
2

E
[
e−rtLp̃

t

]
= E

[
e−rt(P p̃

t − p̃)+
]

+ o(
√

t)
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= e−rtp̃

(
eµt P

[
W1 ≤

µ + σ2/2
σ

√
t

]
− P

[
W1 ≤

µ− σ2/2
σ

√
t

])
+ o(

√
t)

= p̃ σ

√
t

2π
+ o(

√
t),

where the second and third equalities follow from a direct computation. We thus have:

E
[
e−rtv(P p̃

t )
]

= v(p̃) + p̃ σfp(p̃)

√
t

2π
+ o(

√
t).

Letting t tend to zero and observing that fp(p̃) > 0, we obtain that supτ∈T P E
[
e−rτv(P p̃

τ )
]

> v(p̃).
Hence p̃ does not belong to the optimal stopping region S. �

Proof of Theorem 3.1. Given (5), it follows that S ∩ [0, p̃] 6= ∅, otherwise one would have V = VN ,
which is contradicted by the fact that vG(pG) − IG > VN (pG) under (5). Moreover, by Proposition
3.2, inf S < p̃. It is clear that for p < pG, V (p) ≥ VG(p) > vG(p) − IG so that pG ≤ inf S. We now
prove the reverse inequality, establishing that pG = inf S. We have:

V (pG) = E
[
e−rτS (vG(P pG

τS
)− IG)

]
≤ sup

τ∈T P

E
[
e−rτ (vG(P pG

τ )− IG)
]

= vG(pG)− IG,

where the first equality follows from the fact that inf S < p̃, and the second from the definition of
pG. Since V (pG) ≥ vG(pG)− IG, these quantities are in fact equal, and it follows that pG ≥ inf S, as
claimed. A similar argument establishes that S ∩ [0, p̃] is an interval [pG, pL], and by Proposition 3.2,
pL < p̃. We now prove that S ∩ [p̃,∞) 6= ∅. If this was not the case, then S = [pG, pL], and for any
p > pL, we would have:

V (p) = E
[
e−rτS (vG(P p

τS
)− IG)

]
> vN (p)− IN ,

or, equivalently: (
p

pL

)α
(

xG

r − µ
pL +

(
pL

pGN

)β
IN

β − 1
− IG

)
>

xN

r − µ
p− IN , (17)

where α = 1/2 − µ/σ2 −
√

(1/2− µ/σ2)2 + 2r/σ2 < 0. For p large enough, (17) is violated, and we
get a contradiction. Let pR = inf S ∩ [p̃,∞). By Proposition 3.2, pR > p̃. Moreover, it is immediate
that pR ≥ pN otherwise waiting until P exceeds pN to invest in N would secure the investor a strictly
greater payoff than investing in N when the current value of P is pR. It then follows by an argument
similar to the one used to prove that pG = inf S that S ∩ [p̃,∞) = [pR,∞). This concludes the proof
of part (i).

To prove part (ii), note that the variational inequalities (10)-(13) are necessary and sufficient
conditions to characterize the value function V if we prove that V is differentiable (Øksendal (2000,
Theorem 10.4.1)). We need to do so only at the triggers pG, pL and pR. On [0, pG], we clearly have
V = VG, and the differentiability of V at pG follows from a standard smooth-pasting argument for
problem (3). We now prove that Vp(pL) = vGp(pL). Since V ≥ vG − IG and V (pL) = vG(pL) − IG,
we have, for any ε > 0,

V (pL + ε)− V (pL)
ε

=
V (pL + ε)− vG(pL) + IG

ε
≥ vG(pL + ε)− vG(pL)

ε
. (18)
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Following Karatzas and Shreve (1998, Lemma 7.8), let us introduce the stopping times T 1
ε = inf{t ≥

0 | (pL + ε)Ht ≤ pL} and T 2
ε = inf{t ≥ 0 | (pL + ε)Ht ≥ pR}, where Ht = exp((µ − σ2/2)t + σWt)

for each t ≥ 0. The stopping time Tε = T 1
ε ∧ T 2

ε is optimal whenever the initial value of P is pL + ε.
Therefore:

V (pL + ε) = E
[
e−rTεv((pL + ε)HTε

)
]
≤ V (pL) + E

[
e−rTε(v((pL + ε)HTε

)− v(pLHTε
))
]
,

where the inequality follows from the fact that Tε is not an optimal stopping time whenever the initial
value of P is pL. The right-hand side of this inequality can be written as:

V (pL)+
(

vG(pL)− vG

(
p2

L

pL + ε

))
E
[
e−rTεχ{Tε=T 1

ε }
]
+
(

vN (pR)− vN

(
pLpR

pL + ε

))
E
[
e−rTεχ{Tε=T 2

ε }
]
.

Using standard results on the Laplace transform of the exit time of a Brownian motion on an interval
(Karatzas and Shreve (1991, p. 100), together with the continuity of vN , we obtain that:(

vN (pR)− vN

(
pLpR

pL + ε

))
E
[
e−rTεχ{Tε=T 2

ε }
]

= o(ε).

It follows that:

V (pL + ε)− V (pL)
ε

≤
vG(pL)− vG

(
p2

L

pL + ε

)
ε

+ o(1). (19)

Using (18)-(19) and letting ε go to zero, we obtain that Vp(p+
L) = vGp(p+

L), which implies the result.
The proof of the differentiability of V at pR is similar, and therefore omitted. �
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