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Vulnerable Options in Supply Chains:

Effects of Supplier Competition

Abstract

This paper presents valuation of inventory-reorder options in a competitive environment with de-

faultable suppliers. Analysis of a single period model of a supply chain with two suppliers, a

retailer, and exogenous sources of defaults, leads to a number of surprising observation on the

effects of the supplier credit risk and competition on the value of the deferment option, retailer’s

procurement and production decisions, suppliers’ pricing decisions, and firms profits. In particular,

when wholesale prices are fixed, introduction of the deferment option may benefit the supplier with

longer production lead-time at the expense of the supplier with shorter production lead-time and

there are conditions for the retailer’s profit to be increasing in default correlation. When wholesale

prices are allowed to vary, analysis of the game between suppliers shows that introduction of the

deferment option diminishes competition between suppliers and, thus, hurts the retailer if supplier

defaults are highly correlated. On the other hand, retailer’s profit is increasing in supplier default

correlation if the level of correlation is low.



1 Introduction

Cost of purchased materials constitutes more than 50% of total sales for an average manufactur-

ing firm [see Subramaniam (1998)], and, therefore, a significant portion of a firm’s investment is

exposed to supplier default risk. Even temporary supply disruptions may force a firm to incur

additional costs of outsourcing and expediting and to pay penalties for defaulting on obligations to

its customers.

Recent reports by credit rating agencies indicate that the corporate default rates have peaked

at record high levels (10% default rate for high yield bonds in 2002) while recovery rates have sunk

to record low levels (20% of par). Consequently, in the current state of the economy, the exposure

to supplier credit risk is an important consideration for firms.

Concerned with supplier default risk, a firm (retailer) may profit by procuring from several

suppliers, provided that diversification benefits surpass the losses from the higher wholesale prices

and from the costs of transforming firm’s production process to accept raw materials from multiple

sources. Moreover, because of the discrepancy in the production lead-times among suppliers, the

retailer, having ordered from the slowest supplier initially, has an option to continue increasing order

size over time by contracting with other, faster suppliers. The option to defer ordering decisions

could be very valuable because it gives the retailer the flexibility to respond to market events and

to supplier defaults.

Intuitively, the benefits to the retailer from procuring from several suppliers should grow as

the default correlation decreases (this is similar to the diversification of portfolio risk argument in

finance) and, because of the option to defer, as the market volatility increases. However, according

to Babich, Burnetas and Ritchken (2003), without deferment, the benefits to the retailer from

procuring from several suppliers need not increase in the default correlation if the wholesale prices

are endogenous to the problem (the problem is no longer a portfolio selection problem). If the

suppliers have a significant bargaining power and compete in price for the retailer’s business, Babich

et al. (2003) demonstrate that the benefits of competition dominate the benefits of diversification

and the retailer prefers suppliers whose defaults are highly positively correlated.

Answers to “What is the role of deferment when prices are set endogenously?” and “How do

market volatility and the default correlation affect the deferment value when the suppliers compete

in price for the retailer’s business?” are not clear a priori.
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Suppliers with the faster production technology have an option as well — an option to defer

pricing decisions until some of the market uncertainty and default uncertainty is resolved. In some

situations the retailer might find ex-ante contracts to be too expensive or impossible to enforce [see

discussion on incomplete contracts in Van Mieghem (1999) and references therein]. Thus, if the

powerful suppliers can change wholesale prices at will, the retailer will anticipate a renegotiation

of contract terms. Assuming that this is the case, we define deferment option as the option held

collectively by the fast suppliers and the retailer to postpone negotiations regarding wholesale prices

and order quantities.

Besides prices, suppliers also decide whether to invest in a faster production technology in the

first place. “What is the value of the deferment option for the suppliers?” and “Under which

condition would suppliers profit from shorter production lead-times?” are interesting research

questions.

The analysis of this problem is complicated by the fact that the deferment option is vulnerable,

that is it could be rendered valueless by a supplier’s default.

To address these and other research questions, we adopt a single period, multi-stage model of a

two-echelon supply chain with two competing risky suppliers and a single retailer. The retailer, who

is facing an uncertain future retail price and has a limited production capacity, decides on order

quantities. The suppliers, whose defaults are correlated, control wholesale prices. The retailer and

the suppliers may negotiate contracts stipulating order quantities and wholesale prices at time 0.

Alternatively, the retailer and the supplier with the faster technology can postpone negotiations,

both taking advantage of the deferment option. Contrasting the two cases, we can compute the

effects of the deferment option on profits of the retailer, the suppliers, and the channel and study

how these effects depend on model parameters (e.g. the default correlation and the retail price

volatility).

We solve stochastic games between suppliers and the retailer (a Nash game in the scenario

without deferment and a Stackelberg game in the scenario with deferment), derive the equilibrium

retailer’s ordering policies, the equilibrium suppliers’ pricing policies, the equilibrium profits, and

compute the deferment option values.

Among other results we find that even when wholesale prices are exogenous, but deferment

option is present, the retailer’s profit could be increasing in the default correlation. Furthermore,
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although the retailer always benefits from the deferment option, the fast supplier profits from the

deferment option only under certain conditions. Surprisingly, the introduction of the deferment

option could benefit the slow supplier, because the retailer would treat the fast supplier as a back-

up facility and would increase the order quantity to the slow supplier. We identify conditions under

which the introduction of the deferment option is a Pareto improving decision. The value of the

deferment option to the retailer depends on the default correlation in a non-monotone way, and

furthermore, the sensitivity of the option value to the default correlation depends on the level of

the retail price volatility.

When wholesale price are endogenous and in the presence of the deferment option the outcome

of the Stackelberg game between firms depends on the level of the default correlation. If supplier

defaults are highly correlated the competition between suppliers breaks down and the slow supplier

charges monopolist prices and makes monopolist profits. The retailer’s profit in this case is 0.

At the intermediate correlation levels, there is some competition between suppliers but the slow

supplier charges even higher than monopolist price leaving 0 profits to the retailer. The profit of

the slow supplier is increasing in the default correlation, while the profit of the fast supplier is the

same as in no option case and is decreasing with the default correlation. Finally, if supplier defaults

are negatively correlated (or slightly correlated), the profits with the deferment are the same as the

profits without deferments and, therefore, suppliers’ profits are decreasing in the default correlation

while the retailer’s profit is increasing in the default correlation. With endogenous wholesale prices

the retailer never profits from the deferment option while the suppliers can never be worse off, with

the slow supplier collecting the majority of the deferment option benefits.

Therefore, when wholesale prices are endogenous, the retailer prefers suppliers with identical

lead times, because it enhances the competition between suppliers. However, ceteris paribus, if a

faster technology is available to a supplier at a reasonable price, then retailer’s preference will not

be honored. The supplier will invest in the faster technology and profit from the deferment option.

There is a substantial body of literature that considers the value of options (or flexibility, in

general) in supply chains as a hedge against demand uncertainty or channel coordinating mecha-

nism. For example, Barnes-Schuster, Bassok and Anupindi (2002) study a two period, single-buyer,

single-supplier model where demand for the buyer’s product is correlated between periods. The

buyer can purchase options that give her a right, after observing the demand in period 1, to adjust

order quantity for period 2. The supplier, who can use either slow and cheap or fast and expensive
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production modes, makes production decisions trying to satisfy buyer’s demand. Authors compute

the equilibrium value of options for the buyer and study the effects of various model parameters

(demand risk, demand correlation) on the option values. They also analyze the effect of options in

channel coordination.

Burnetas and Ritchken (2000) investigate the role of call and put reorder options on the equilib-

rium solution of a Stackelberg game between a single supplier and a single retailer in a single period

model with downward sloping demand curve. The authors show that the introduction of option

could benefit all firms, however, there are circumstances (high variability of demand uncertainty)

when the retailer is made worse off with options. The latter observation is similar to our conclusion

that when suppliers, who are Stackelberg leaders, control wholesale prices the retailer could suffer

from the introduction of deferment options.

The benefits of shorter lead-times that allow firms to defer decisions while learning about market

uncertainty were studied by Iyer and Bergen (1997). They show that reducing lead times need not

be good for the supplier, because it reduces expected retailer’s order, thus reducing supplier’s

expected profit. We derive analogous results in our model with fixed wholesale prices.

Several papers assume that, similar to our model, there are several sources of raw materials for

the retailer. Elmaghraby (2000) and Minner (2003) offer surveys of research on multi-sourcing in

supply chain management.

Serel, Dada and Moskowitz (2001) consider a multi-period model where the retailer, besides

reserving capacity of the long-term supplier, can aquire raw materials on the spot market. The

presence of the spot market exerts competitive pressure on the long-term supplier and alters the

equilibrium solution of the game between the supplier and the retailer.

In the multi-period discounted profit maximization model by Kouvelis and Milner (2002) a firm

faces a stochastic demand and a stochastic supply. To meet its needs for non-core activities the

firms can either produce products internally (using supplier owned by the firm) or rely on outside

suppliers.

An excellent review of research papers dedicated to studying quantity flexibility, effects of short-

ening lead-times, buy-back and return policies, is offered by Tsay, Nahmias and Agrawal (1999),

along with classification and review of other research on contracts in supply chain management.

However, to the best of our knowledge, this paper is the first one to study the value of vulnerable
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deferment options and their effect on supply chains in a stochastic game setting with multiple

competing risky suppliers under both market and supply uncertainty.

Financial vulnerable options were first studied by Johnson and Stulz (1987) using Merton (1974)

model of credit risk. The authors show numerically that premature exercise of the vulnerable

American options may be optimal. Another model for valuation of vulnerable options in the general

Merton’s framework was offered by Hull and White (1995). Exogenously driven defaults are better

described using intensity type models of credit risk. Papers by Jarrow and Turnbull (1995) and

by Duffie and Singleton (1999a) are representative of research on valuation of vulnerable options

under the intensity framework.

The mathematical analysis in this paper would still be valid if disruptions in supply were caused

not by financial defaults but by other events such as natural disasters, labor strikes, machine fail-

ures. However, very active and fast growing financial market for credit risk securities1 facilitates

estimations of risk-neutral default distributions, whereas estimation of distributions due to “nat-

ural” events could be more problematic.

The rest of the paper has the following structure. Section 2 describes the model. Section 3

introduces the retailer’s production option as a solution of the last stage in the retailer’s three

stage stochastic program. Section 4 computes the deferment option value and analyzes the effects

of the default correlation and the retail price volatility on firm profits and the option value when

wholesale prices are exogenously fixed. Section 5 repeats this analysis for the model with endogenous

wholesale prices.

2 Model. Assumptions.

We consider a one period, multi-stage model of a two-echelon supply chain with two competing,

risky suppliers and a retailer. The suppliers and the retailer are maximizing their expected (with

respect to a risk-neutral measure) discounted profits. We assume that the conditions necessary

for the existence of a risk-neutral pricing measure are satisfied [see, Harrison and Kreps (1979),

Harrison and Pliska (1981)].

All firms have complete and symmetric information about the problem.
1The first credit derivatives appeared in 1993. In 1997, the notional amount of credit derivative securities was $55

billion. In 2002, the notional amount of credit derivative securities was $573 billion [source: OCC (2002)].
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The retailer’s variable production cost is cR, its production lead-time is LR, and its production

capacity is D which, for simplicity, is assumed to be fixed. The product offered by the retailer is

perishable and is in demand for a short while at time T . The retailer is a price taker and will sell

the final product at time T at an exogenously given, random, retail price S(T ). We assume that

the evolution of retail price S(t) over time can be described by a geometric Wiener process (under

a risk-neutral measure):
dS

S
= µdt + σdz, (1)

where µ need not be equal to the risk free rate r because of storage costs and convenience yield2

to the users of the final product. Define δ = r−µ. Traditionally, the operations literature assumes

that the prices are known and demand is stochastic [a notable recent exception is a paper by Li

and Kouvelis (1999) who study supply contracts in an environment with deterministic demand

and stochastic wholesale prices that follow a geometric Wiener process similar to (1)]. Conversely,

the marketing literature usually assumes random prices and known demand. Because demand

and prices are related through supply in micro-economic equilibrium, these two approaches are

conceptually equivalent. We assume that the retailer’s production capacity, D, is too small to

affect total supply, so we introduce market uncertainty in retail prices rather than demand for

analytical convenience.

Suppliers employ production technologies with lead times of Li, i = 1, 2. Without loss of

generality, assume that L1 > L2 and denote τ2 = T −LR and τ1 = T −LR −L2. Supplier’s variable

production costs are ci, i = 1, 2 such that c1 ≤ c2. See Figure 1 for the timeline and the notation

of the model.

The disparity in production lead-times of the suppliers furnishes the retailer with a valuable

option to delay the ordering decision and to observe the evolution of the retail price, S, and suppliers’

defaults. Without credit risk, by analogy with the optimal exercise policy for financial American

call options, the retailer should delay ordering from supplier 1 until time T − LR − L1 and from

supplier 2 until time T −LR−L2. However, if an option is vulnerable (that is if a counterparty that

has written this option can default) then, as Johnson and Stulz (1987) show for financial options, a

premature exercise could be optimal. We assume that the retailer’s storage costs are exorbitantly

high. Therefore, the finished product has to be sold immediately and, in addition, the production

must commence right after the raw materials have been provided by a supplier. Consequently, the
2For a discussion of convenience yields, see Dixit and Pindyck (1994) and Hull (2000).
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Figure 1: Timeline and notation.

retailer will not order from supplier 1 prior to T −LR−L1 (designated as time 0) and from supplier

2 prior to time τ1 = T − LR − L2.

The exact sequence of events during planning horizon, [0, T ], depends on the type of contractual

arrangements between the suppliers and the retailer. One possibility is for the firms to negotiate

at time 0 contracts that stipulate wholesale prices and order quantities for both suppliers. Al-

ternatively, the retailer and supplier 2 may defer the negotiation until time τ1. The outcome of

the negotiation depends on the bargaining power of the suppliers and the retailer. In Section 4

wholesale prices are fixed and assumed to be know to the retailer before time 0. In Section 5,

which considers a model with endogenous wholesale prices, the suppliers are Stackelberg leaders

that announce their prices before the retailer makes ordering decisions. Thus, supplier 1 chooses

her price K at time 0. The retailer immediately responds by ordering z units from supplier 1. At

time τ1 supplier 2 announces her price M , the retailer responds by ordering y units from supplier 2.

At time τ2 the retailer decides on the size of the production batch x. The finished product is sold

at time T at retail price S(T ). The units in the model are adjusted so that a unit of the retailer’s
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finished product requires a unit of the supplier’s product.

Exogenous events may cause a supplier’s default at any time. The default process and the retail

price process (1) are independent and doing business with the retailer does not affect the suppliers’

default distribution. For tractability, we assume that, if a supplier defaults prior to completing

retailer’s order, the entire order is lost (recovery rate is 0). This could be the case when the entire

production process has to be completed before the supplier’s product becomes usable and defaults

(or other disruptions) are so violent that they cause a shutdown of the supplier’s operations. In

random yield terminology, the yield function β(·) has a Bernoulli distribution [see Sobel (1995)

for properties of yield functions and discussion of various yield functions]. Suppliers’ defaults may

be correlated. The finance literature models correlated defaults using various methods: though

correlated default intensities [e.g. Jarrow and Yu (2001)], by introducing stochastic processes for

joint defaults [e.g. Duffie and Singleton (1999b)], and using copula functions [e.g. Schönbucher and

Schubert (2001)]. Because in our model the decisions are made at specific time points, the firms

need to know only joint default probabilities over intervals between decision points. Therefore,

modeling complexity and data requirements for correlated defaults in our model are significantly

reduced compared to the financial models mentioned above. We will refer to the time interval [0, τ1]

as the first stage, to the time interval [τ1, τ2] as the second stage, and to the time interval [τ2, T ]

as the third stage. Let π1
k, k = 1, 2 be the default probability of supplier k during the first stage

(superindex indicates the stage). Furthermore, let p1
11 be the probability that both suppliers will

defaults during the first stage, p1
10 be the probability that the first supplier will default and the

second supplier will survive during the first stage, etc. The joint default probabilities, p1
ij , and the

marginals, π1
k, satisfy the following relationships:

p1
00, p

1
01, p

1
10, p

1
11 ≥ 0; p1

00 + p1
01 + p1

10 + p1
11 = 1; (2a)

p1
00 + p1

10 = 1 − π1
2 ; p1

00 + p1
01 = 1 − π1

1; p1
11 + p1

10 = π1
1; p1

11 + p1
01 = π1

2; (2b)

Conditional on the events during the first stage we define joint default probabilities p2
ij|mn, i, j,m, n ∈

{0, 1} and the marginals π2
k|mn, k = 1, 2 for the second stage (again, superindex indicates the stage).

For example, π2
1|00 is the probability that the first supplier will default in the second stage given

that both suppliers survived the first stage, π2
1|01 is the probability that first supplier will default in

the second stage given that first supplier survived first stage and second supplier defaulted during

the first stage, π2
2|00 is the probability that the second supplier will default in the second stage

given that both suppliers survived first stage, etc. Similarly, p2
00|00 is the conditional probability
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that both suppliers will survive second stage given that neither supplier defaulted during the first

stage, p2
10|10 is conditional probability that the second supplier will survive second stage given that

first supplier defaulted during the first stage and the second supplier survived the first stage, etc.

Second stage joint default probabilities and the marginals satisfy relationships similar to (2). To

denote default probabilities over first two stage we will omit superindex. For example, p00 is the

probability that both suppliers survive the first two stages.

In the numerical examples we will assume that supplier default distributions are symmetric

(that is π1
1 = π1

2 = π1, π2
1|00 = π2

2|0 = π2
|00, π1 = π2 = π) and that the following parameters

are given: π1 — probability of supplier’s default in the first stage, π — probability of supplier’s

default in the first two stages, ξ — a magnifier of marginal default probability in the second stage

if a default occured in the first stage (p2
11|01 = ξπ2

1|00 and p2
11|10 = ξπ2

2|00), p1
00 — probability that

both suppliers will survive the first stage (represents default correlation in the first stage), p00 —

probability that both suppliers survive the first two stages (represents default correlation in the first

two stages). These parameters, which can be inferred from prices of financial securities, uniquely

describe the symmetric joint default distribution of suppliers’ defaults.

3 Stage three retailer’s subproblem

Suppose that the retailer has X units of raw materials in inventory at time τ2 ≤ T and has to

decide how many units x to produce to satisfy demand at time T . The retailer’s problem is

max
0≤x≤min(X,D)

{
e−r(T−τ2)Eτ2 [S(T )] − cR

}
x, (3)

where Eτ2 [·] is an expectation conditional on the information up to time τ2. The retailer will

commence production only if

e−r(T−τ2)Eτ2 [S(T )] ≥ cR. (4)

Using the definition for the S process (1) we find that e−r(T−τ2)Eτ2 [S(T )] = e−δ(T−τ2)S(τ2) and

rewrite condition (4) as S(τ2)e−δ(T−τ2) ≥ cR (recall δ = r − µ). Therefore, the retailer’s expected

profit at time τ2 is [
S(τ2)e−δ(T−τ2) − cR

]+
min(X,D). (5)

The expected profit of the retailer at time τ2 [equation (5)] is equal to the payoff of min(X,D)

call options on the process S̆(t) = S(t)e−δ(T−t) with exercise price cR and expiration date τ2. Let
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V (t) = e−r(τ2−t)Et[S̆(τ2) − cR]+ denote the value of one such option at time t ≤ τ2. Note that the

evolution of S̆(t) under the risk-neutral measure is described by

dS̆

S̆
= rdt + σdz. (6)

In some of the subsequent sections, to facilitate analysis of the model and computations, we will

assume that cR ≡ 0. In this case, the retailer’s expected profit at time τ2 [equation (5)] becomes

S̆(τ2)min(X,D) and option value V (t) = S̆(t).

4 Exogenous wholesale prices

Assume that wholesale prices K ≥ c1 and M ≥ c2 are given exogenously. For example, if the

retailer wields great market power or if the channel is centralized, K = c1 and M = c2. The

retailer is the only decision maker in this model.

4.1 Profits without deferment

Wholesale prices are fixed and at time 0 the retailer decides how much to order from each of the

suppliers. The retailer’s problem is:

max
z,y

{
− Kz − (1 − π1

2)e
−rτ1My +

+ V0 [p01 min(D, z) + p10 min(D, y) + p00 min(D, z + y)]
}

,

(7)

where V0 = V (0) is the value of option defined in Section 3. Supplier 2 receives M from the retailer

and pays production cost, c2, per unit of product at time τ1. Denote by M̃ = (1 − π1
2)e

−rτ1M the

expected present value of M and by c̃2 = (1 − π1
2)e

−rτ1c2 the expected present value of c2. Then

expected profits of the suppliers are

Supplier 1

(K − c1)z(K,M)

Supplier 2

(M̃ − c̃2)y(K,M)
(8)

The following proposition [which is similar to results derived by Babich et al. (2003)] introduces

the optimal solution to problem (7). Let R∗ denote the optimal expected profit of the retailer, S∗
1

denote the optimal profit of supplier 1, S∗
2 denote the optimal expected profit of supplier 2, and Q∗

denote the optimal expected profit of the channel. For simplicity, assume that when the retailer is

indifferent between ordering from supplier 1 and supplier 2, she will order from supplier 1.
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Proposition 1. Given exogenously fixed wholesale prices K and M such that c1 ≤ K ≤ (1−π1)V0

and c̃2 ≤ M̃ ≤ (1 − π2)V0, a solution to the retailer’s problem (7) and profits at the optimum are

given as follows:

(i) If K ≤ p01V0 and M̃ ≤ p10V0, then optimal order quantities are (z∗, y∗) = (D,D) and

optimal profits are

Retailer (R∗)
[
(1 − p11)V0 − K − M̃

]
D, (9a)

Supplier 1 (S∗
1) (K − c1)D, (9b)

Supplier 2 (S∗
2)

(
M̃ − c̃2

)
D, (9c)

Channel (Q∗) [(1 − p11)V0 − c1 − c̃2]D. (9d)

(ii) If p01V0 < K and M̃ < K+V0(π1−π2), then optimal order quantities are (z∗, y∗) = (0,D)

and optimal profits are

Retailer (R∗)
[
(1 − π2)V0 − M̃

]
D, (10a)

Supplier 1 (S∗
1) 0, (10b)

Supplier 2 (S∗
2)

(
M̃ − c̃2

)
D, (10c)

Channel (Q∗) [(1 − π2)V0 − c̃2] D. (10d)

(iii) If p10V0 < M̃ and M̃ ≥ K+V0(π1−π2), then optimal order quantities are (z∗, y∗) = (D, 0)

and optimal profits are

Retailer (R∗) [(1 − π1)V0 − K]D, (11a)

Supplier 1 (S∗
1) (K − c1) D, (11b)

Supplier 2 (S∗
2) 0, (11c)

Channel (Q∗) [(1 − π1)V0 − c1]D. (11d)

Proposition 1 has several implications. First, profits of supplier 1, supplier 2, the retailer, and

the channel are non-increasing in default probabilities and in the default correlation. Thus, as one’s

intuition might suggest, an increase in either probability of default or in the default correlation has

detrimental effects on profits of firms and the channel.

Second, increasing retail price volatility σ could benefit all firms. Note that with the increase in

σ, V0 increases as well and, consequently, the region where the retailer orders from both suppliers,
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B = [0, p01V0] × [0, p10V0], expands. Thus, although initially it could be that (K, M̃ ) 6∈ B, and

one of the suppliers makes zero profits, eventually both suppliers will have non-zero profits. To

appreciate the logic behind this result, consider that at time τ2 the retailer holds an option to

commence production. The value of this option is increasing in the retail price volatility, σ, and

decreasing in the retailer’s variable production cost, cR. However, the retailer can exercise her

production option only if she receives raw materials by time τ2. Therefore, as the value of the

option increases the retailer is more likely to order from both suppliers to increase the probability

of obtaining raw materials. Thus, suppliers benefit from the increase in σ as well. Note, however,

that for the intermediate values of σ, supplier’s profit could decrease. For example, suppose that

π1 > π2. Then, as V0 increases a point (K, M̃ ) could move from region

{(K, M̃ ) : p10V0 < M̃ and M̃ ≥ K + V0(π1 − π2)}

to region

{(K, M̃ ) : p01V0 < K and M̃ < K + V0(π1 − π2)}

before entering region B. Profit of supplier 1 would change from positive, to 0, to positive. Profit

of supplier 2 would change from 0, to positive and would remain positive. This happens, because

as σ increases the sensitivity of the retailer to default risk increases and the retailer could find it

profitable to switch to a lower risk supplier, in spite of her higher wholesale prices.

Third, the influence of the volatility, σ, on the retailer’s (channel) profit depends on the level

of the default correlation, p00. Consider

∂2R∗

∂p00∂σ
=




−∂V0

∂σ D if K ≤ p01V0 and M̃ ≤ p10V0

0 otherwise
(12)

It follows from equation (12) that the marginal increase in profits of the retailer and the channel

due an increase in the volatility, ∂R∗

∂σ , is non-increasing in correlation (decreasing for small p00 and

constant for large p00). Equation (12) also implies that the marginal decrease in the profits of the

retailer and the channel due to an increase in the default correlation, − ∂R∗

∂p00
, is non-decreasing in

the volatility (0 for small σ and increasing for large σ). Thus, the retailer and the channel are most

concerned with the detrimental effects of the increase in the default correlation when retail prices

are highly volatile.
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4.2 Profits with deferment

Wholesale prices, K and M , are fixed. At time 0 the retailer places an order, z, with supplier 1

and has an option to place an order, y, with supplier 2 at time τ1. Consider the retailer’s problem:

max
z≤D

{
−Kz + p01V0 min(z,D) +

+ p1
10e

−rτ1E0

(
max
y≤D

{
−My + p2

10|10V (τ1)min(y,D)
})

+

+ p1
00e

−rτ1E0

(
max
y≤D

{
−My + V (τ1) ×

×
[
p2
00|00 min(z + y,D) + p2

10|00 min(y,D)
]})}

,

(13)

The first subproblem in problem (13) corresponds to the outcome where supplier 1 has defaulted

and supplier 2 has not defaulted before time τ1. The following lemma describes the optimal solution

of this subproblem and shows how much this subproblem contributes to the expected profits of the

firms.

Lemma 1. If supplier 1 has defaulted before time τ1 and supplier 2 has not then

(i) The optimal reorder quantity for the retailer is

y∗10 = D 1{M≤p2
10|10V (τ1)}. (14)

(ii) The time 0 expected present value of this subproblem to the retailer is

R∗
10 = p1

10e
−rτ1E0

[
p2
10|10V (τ1) − M

]+
D =

= p1
10p

2
10|10DW0

(
τ1,

M

p2
10|10

)
,

(15)

where W0(τ1,X) is the time 0 value of a compound call option3 with expiration date τ1, a

strike price X, and a payoff based on the value of option V .

(iii) Time 0 expected present value of this subproblem to supplier 2 is

S∗
2|10 = p1

10e
−rτ1(M − c2)D Pr[M ≤ p2

10|10V (τ1)]. (16)

3For theory and valuation of compound options, see Geske (1979) and Rubinstein (1991).

13



The second subproblem in problem (13) correspond to an outcome where neither supplier has

defaulted before time τ1. Let’s introduce the following notation:

M1 := p2
10|00V (τ1), (17)

M2 :=
(
p2
10|00 + p2

00|00

)
V (τ1). (18)

Lemma 2. If neither supplier has defaulted before time τ1, then

(i) The optimal retailer’s reorder quantity is

y00 =





D if M ≤ M1

D − z if M1 < M ≤ M2

0 if M > M2

(19)

(ii) The time 0 expected present value of the retailer’s profit from this subproblem is

R00 = p00V0z + p1
00

(
1 − π2

2|00

)
W0

(
τ1,

M

1 − π2
2|00

)
(D − z) +

+ p1
00p

2
10|00W0

(
τ1,

M

p2
10|00

)
z.

(20)

Proof. Using expressions (19) in the last subproblem (13) we derive

R∗
00 = p1

00e
−rτ1E0

[
(M2 − M)(D ± z)1{M≤M1} + (M2 − M)(D − z)1{M1<M≤M2} +

+ p2
00|00V (τ1)z1{M1<M≤M2} + p2

00|00V (τ1)z1{M>M2}

]
=

= p1
00e

−rτ1E0

[
(M2 − M)(D − z)1{M≤M2} + (M1 − M) z 1{M≤M1} + p2

00|00V (τ1)z
]

�

Using expressions (15) and (20) we can rewrite the retailer’s time 0 problem as follows

max
z≤D



[(1 − π1)V0 − K] z + p1

10p
2
10|10W0

(
τ1,

M

p2
10|10

)
D +

+ p1
00

(
1 − π2

2|00

)
W0

(
τ1,

M

1 − π2
2|00

)
(D − z) + p1

00p
2
10|00W0

(
τ1,

M

p2
10|00

)
z

}
.

(21)

Define:

K̂(M) : = (1 − π1)V0 −

− p1
00

[
(1 − π2

2|00)W0

(
τ1,

M

1 − π2
2|00

)
− p2

10|00W0

(
τ1,

M

p2
10|00

)]
.

(22)
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The curve on Figure 2 is the graph of K̂(M) when cR ≡ 0 and δ = 0.

An immediate consequence of the definition of K̂(M) and option properties is that, for any M ,

K̂(M) is non-increasing in the default correlation and, if cR ≡ 0, then, K̂(M) is non-increasing in

σ.

The following proposition describes optimal profits of the firms and the channel when wholesale

prices are exogenous and the retailer defers ordering decisions.

Proposition 2. Given exogenous wholesale prices K ≥ c1 and M ≥ c2,

The optimal order quantity to supplier 1 is

z∗ =





D if K ≤ K̂(M)

0 otherwise
(23)

The retailer’s expected profit is

R∗ =





[(1 − π1)V0 − K] D +

+ p1
10p

2
10|10W0

(
τ1,

M

p2
10|10

)
D +

+ p1
00p

2
10|00W0

(
τ1,

M

p2
10|00

)
D

if K ≤ K̂(M)

p1
10p

2
10|10W0

(
τ1,

M

p2
10|10

)
D +

+ p1
00

(
1 − π2

2|00

)
W0

(
τ1,

M

1 − π2
2|00

)
D

otherwise

(24)

The expected profit of supplier 1

S∗
1 =





(K − c1)D if K ≤ K̂(M)

0 otherwise
(25)

The expected profit of supplier 2

S∗
2 =





e−rτ1(M − c2)
{

p1
10 Pr

[
M ≤ p2

10|10V (τ1)
]

+

+ p1
00 Pr

[
M ≤ p2

10|00V (τ1)
]}

D
if K ≤ K̂(M)

e−rτ1(M − c2)
{

p1
10 Pr

[
M ≤ p2

10|10V (τ1)
]

+

+ p1
00 Pr

[
M ≤

(
p2
10|00 + p2

00|00

)
V (τ1)

]}
D

otherwise

(26)
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The expected profit of the channel is

If K ≤ K̂(M)

Q∗ = [(1 − π1)V0 − c1]D +

+ p1
10e

−rτ1E

{[
p2
10|10V (τ1) − c2

]
1{

p2
10|10V (τ1)≥M

}}D +

+ p1
00e

−rτ1E

{[
p2
10|00V (τ1) − c2

]
1{

p2
10|00V (τ1)≥M

}}D

(27)

Otherwise

Q∗ = p1
10e

−rτ1E

{[
p2
10|10V (τ1) − c2

]
1{

p2
10|10V (τ1)≥M

}}D +

+ p1
00e

−rτ1E

{[
(1 − π2

2|00)V (τ1) − c2

]
1{

(1−π2
2|00)V (τ1)≥M

}}D

(28)

Proof. Expression (21) is linear in z with a coefficient K̂(M)−K. Hence, the retailer should order

from supplier 1 according to rule (23). Using formula (23), one can derive optimal profits of the

firms and the channel. �

Consider consequences of Proposition 2.

Corollary 1. Given exogenous wholesale prices K ≥ c1 and M ≥ c2, and if marginal default

probabilities, π2
k|00, k = 1, 2 and p2

10|10, do not change as the default correlation changes and p2
10|10 ≥

p2
10|00, then

(i) The optimal order quantity to supplier 1, z∗, and the optimal profit of supplier 1, S∗
1 , are

non-increasing in the default correlation and in the volatility of retail prices, σ (if cR ≡ 0).

(ii) If p2
10|10 ≥ 1 − π2

2|00 then the retailer’s optimal profit, R∗, is decreasing in the default

correlation.

If p2
10|10 < 1 − π2

2|00 the relationship between the retailer’s optimal profit, R∗, and the

default correlation is non-monotone.

(iii) The retailer’s optimal profit, R∗, is increasing in σ (if cR ≡ 0).

(iv) If p2
10|10 ≥ 1 − π2

2|00 then the optimal profit of supplier 2, S∗
2 , is locally decreasing in the

default correlation for (K,M) away from the boundary, K = K̂(M).

If p2
10|10 < 1 − π2

2|00 the relationship between the optimal profit of supplier 2, S∗
2 , and the

default correlation is non-monotone.

(v) The optimal profit of supplier 2, S∗
2 , is locally increasing in σ (if cR ≡ 0) for (K,M) away

from the boundary, K = K̂(M).
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Proof. Recall that, for any M , K̂(M) is non-increasing in the default correlation and non-increasing

in σ (if cR ≡ 0). Therefore, formulae (23) and (25) imply that the optimal order quantity to supplier

1, z∗, and the optimal profit of supplier 1, S∗
1 , are non-increasing in the default correlation and in

σ (if cR ≡ 0).

Next consider the effect of default correlation on the retailer’s profit, R∗.

Then, for K ≤ K̂(M),

R∗ = [(1 − π1)V0 − K]D + p2
10|10W0

(
τ1,

M

p2
10|10

)
D −

− p1
00

[
p2
10|10W0

(
τ1,

M

p2
10|10

)
− p2

10|00W0

(
τ1,

M

p2
10|00

)]
D.

(29)

In (29) only the second line depends on the default correlation. As correlation increases, p1
00

increases and [
p2
10|10W0

(
τ1,

M

p2
10|10

)
− p2

10|00W0

(
τ1,

M

p2
10|00

)]
(30)

increases and remains positive. Therefore, R∗ decreases.

For K > K̂(M), if p2
10|10 ≥ 1 − π2

2|00

R∗ = − p1
00

[
p2
10|10W0

(
τ1,

M

p2
10|10

)
−
(
1 − π2

2|00

)
W0

(
τ1,

M

1 − π2
2|00

)]
D+

+ p2
10|10W0

(
τ1,

M

p2
10|10

)
D,

(31)

where [
p2
10|10W0

(
τ1,

M

p2
10|10

)
−
(
1 − π2

2|00

)
W0

(
τ1,

M

1 − π2
2|00

)]
≥ 0 (32)

It is easy to show that in this case R∗ is decreasing in the default correlation. However, if K > K̂(M)

and p2
10|10 < 1 − π2

2|00

R∗ =p1
00

[(
1 − π2

2|00

)
W0

(
τ1,

M

1 − π2
2|00

)
− p2

10|10W0

(
τ1,

M

p2
10|10

)]
D+

+ p2
10|10W0

(
τ1,

M

p2
10|10

)
D,

(33)

where [(
1 − π2

2|00

)
W0

(
τ1,

M

1 − π2
2|00

)
− p2

10|10W0

(
τ1,

M

p2
10|10

)]
≥ 0 (34)

and, therefore, R∗ is increasing in the default correlation.
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To summarize, if p2
10|10 ≥ 1 − π2

2|00, then, because the retailer’s profit in continuous at the

boundary K = K̂(M), the retailer’s optimal profit, R∗, is decreasing in the default correlation.

However, if p2
10|10 < 1− π2

2|00 the relationship may be non-monotone. Specifically, for negative cor-

relation (p00 ≈ 0), the retailer’s profit is decreasing in the default correlation, but as the correlation

continue to increase after certain threshold the retailer’s profit starts growing.

If cR ≡ 0, then each branch in the definition of R∗ is increasing in σ. Because the retailer’s

profit is continuous at the boundary between branches, it follows that R∗ is increasing in σ.

Analysis for supplier 2 is similar to the analysis for the retailer, except that profit of supplier

2 need not be continuous at the boundary, K = K̂(M). Therefore, we can only make statements

locally within each branch of the definition for S∗
2 . �

4.3 Deferment options, the retail price volatility, and the default correlation.

Define the value of the deferment option to the retailer as

Φ = R∗
defer − R∗, (35)

where R∗
defer is the retailer’s profit when decisions are deferred and R∗ is the retailer’s profit when

orders are placed at time 0. Similarly, the values of the deferment option to the suppliers and the

channel are

Ψ1 = S∗
1,defer − S∗

1 , (36)

Ψ2 = S∗
2,defer − S∗

2 , (37)

Θ = Q∗
defer − Q∗. (38)

Assume that cR ≡ 0. Observe that limM→+∞K̂(M) = (1 − π1)S̆0 and K̂(0) = p01S̆0. Also, it

follows from the Black-Scholes formula that ∂V
∂X = −erT Pr[S̆ ≥ X]. Therefore, differentiating

equation (22) with respect to M we obtain

K̂ ′(M) = −p1
00

[
∂V0

∂X

(
τ1,

M

1 − π2
2|00

)
− ∂V0

∂X

(
τ1,

M

p2
10|00

)]
≥ 0 (39)

It follows that (K,M)-space is divided into 5 regions shown in Figure 2.
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Figure 2: Regions in the definition of the deferment option. Regions are marked by

roman numerals. cR ≡ 0.

The option values are given in each of the regions as follows. For the retailer:

ΦI =

{
p1
10p

2
10|10

[
V0

(
τ1,

M

p2
10|10

)
− S̆0

]
+

+ p1
00p

2
10|00

[
V0

(
τ1,

M

p2
10|00

)
− S̆0

]
+
(
1 − π1

2

)
e−rτ1M

}
D,

(40a)

ΦII =

[
p1
10p

2
10|10V0

(
τ1,

M

p2
10|10

)
+ p1

00p
2
10|00V0

(
τ1,

M

p2
10|00

)]
D, (40b)

ΦIII =

{
p1
10p

2
10|10

[
V0

(
τ1,

M

p2
10|10

)
− S̆0

]
+

+ p1
00p

2
10|00

[
V0

(
τ1,

M

p2
10|00

)
− S̆0

]
+
(
1 − π1

2

)
e−rτ1M + p01S̆0 − K

}
D,

(40c)

ΦIV =

{
p1
10p

2
10|10

[
V0

(
τ1,

M

p2
10|10

)
− S̆0

]
+

+p1
00

(
1 − π2

2|00

)[
V0

(
τ1,

M

1 − π2
2|00

)
− S̆0

]
+
(
1 − π1

2

)
e−rτ1M

}
D,

(40d)

ΦV =

{
p1
10p

2
10|10V0

(
τ1,

M

p2
10|10

)
+ p1

00

(
1 − π2

2|00

)
V0

(
τ1,

M

1 − π2
2|00

)
−

−
[
(1 − π1)S̆0 − K

]}
D.

(40e)
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For supplier 1:

ΨI
1 = ΨII

1 = ΨIV
1 = 0, (41a)

ΨIII
1 = (K − c1)D, (41b)

ΨV
1 = −(K − c1)D. (41c)

For supplier 2:

ΨI
2 = ΨIII

2 = e−rτ1(M − c2)
{

p1
10 Pr

[
M ≤ p2

10|10S̆(τ1)
]

+

+ p1
00 Pr

[
M ≤ p2

10|00S̆(τ1)
]
−
(
1 − π1

2

)}
D,

(42a)

ΨII
2 = e−rτ1(M − c2)

{
p1
10 Pr

[
M ≤ p2

10|10S̆(τ1)
]

+

+ p1
00 Pr

[
M ≤ p2

10|00S̆(τ1)
]}

D,
(42b)

ΨIV
2 = e−rτ1(M − c2)

{
p1
10 Pr

[
M ≤ p2

10|10S̆(τ1)
]
+

+ p1
00 Pr

[
M ≤

(
1 − π2

2|00

)
S̆(τ1)

]
−
(
1 − π1

2

)}
D,

(42c)

ΨV
2 = e−rτ1(M − c2)

{
p1
10 Pr

[
M ≤ p2

10|10S̆(τ1)
]

+

+ p1
00 Pr

[
M ≤

(
1 − π2

2|00

)
S̆(τ1)

]}
D.

(42d)

For the channel:

Θ = Φ + Ψ1 + Ψ2. (43)

The effect of deferment on profit of supplier 1 is clear from (41). Using put-call parity [V0 − S̆0 =

U0−PV (strike), where U0 is the put option on S̆] we can show that Φ ≥ 0. For supplier 2, ΨII
2 > 0,

ΨV
2 > 0 and because

p1
10 Pr

[
M ≤ p2

10|10S̆(τ1)
]

+ p1
00 Pr

[
M ≤ p2

10|00S̆(τ1)
]
−
(
1 − π1

2

)
≤ 0, (44)

ΨI
2 ≤ 0, ΨIII

2 ≤ 0, and ΨIV
2 ≤ 0.

Table 1 summarizes the effects of the deferment option on firms’ profits. As you can see, the

retailer always benefits from the deferment option.

Supplier 1 benefits from the option in region III because the retailer uses supplier 2 as a back-

up facility placing larger order with supplier 1. Supplier 1 is hurt by the introduction of option in

region V , because her prices are too high and the retailer prefers to wait and order from supplier

2.
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Table 1: Effects of deferring ordering decisions on firms’ profits when wholesale prices

are exogenous and cR ≡ 0. “+” indicates that profit increases, “−” indicates that

profit decreases, “=” indicates that profit does not change.

Region Supplier 1 Supplier 2 Retailer

I = − +

II = + +

III + − +

IV = − +

V − + +

Supplier 2 benefits from the option in regions II and V because the options assures non-zero

probability of the retailer placing an order with supplier 2 in those regions. On the other hand, the

expected order quantity to supplier 2 in regions I, III, and IV is reduced by the deferment option.

Therefore, supplier 2 will invest in the faster technology only if prices, (K,M), are either in

region II or in a region V . Note that in region II the introduction of the deferment option is a

Pareto improving decision.

The following result summarizes the consequences for option values of changes in the default

correlation and the retail price volatility.

Proposition 3. For a given pair of wholesale prices, (K,M), the deferment option values depend

on σ as follows

(K, M) ∈ Ψ1 Ψ2 Φ

I no change increasing increasing

II non-increasing locally increasing increasing

III non-increasing locally increasing increasing

IV no change increasing increasing

V no change increasing increasing

where “local” property holds as long as (K,M) remains within specified region.

Proof. As σ increases, prices (K,M) may move from region III to region IV or from region II to
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region V but they will remain in regions I, IV , or V . Next, note that each branch of Φ and Ψ2 is

increasing in σ and none of the branches of Ψ1 depends on σ. Finally, observe that Φ is continuous

on the curve K = K̂(M). Results follow. �

Next consider the effect of the default correlation on the option value. Let’s begin with the

option value of the supplier 1, Ψ1. For M̃ > K + S̆0(π1 − π2), as correlation increases (starting

from perfect negative correlation) a point (K,M) moves from region I to region II and possibly

to region V . For M̃ ≤ K + S̆0(π1 − π2), a point (K,M) moves from region I to region III and

possibly region IV . Within each of the regions, the value of the deferment option to supplier 1

does not depend on the default correlation. We have, therefore, the following proposition

Proposition 4. Given wholesale prices (K,M),

(i) If M̃ > K + S̆0(π1 − π2), then, Ψ1, is non-increasing in the default correlation.

(ii) If M̃ ≤ K + S̆0(π1 − π2) then, Ψ1, is non-monotone in the default correlation (non-

decreasing initially and non-increasing after certain level of correlation).

Continue with the option value for supplier 2, Ψ2, assuming that marginal default probabilities

πk|00, k = 1, 2 and p2
10|10 do not change as correlation changes.

If p2
10|10 ≥ p2

10|00, then

p1
00

{
Pr
[
M ≤ p2

10|10S̆(τ1)
]
− Pr

[
M ≤ p2

10|00)S̆(τ1)
]}

(45)

is increasing in the default correlation.

If p2
10|10 ≥ 1 − π2

2|00, then

p1
00

{
Pr
[
M ≤ p2

10|10S̆(τ1)
]
− Pr

[
M ≤ (1 − π2

2|00)S̆(τ1)
]}

(46)

is increasing in the default correlation.

If p2
10|10 ≤ 1 − π2

2|00, then

p1
00

{
Pr
[
M ≤ (1 − π2

2|00)S̆(τ1)
]
− Pr

[
M ≤ p2

10|10S̆(τ1)
]}

(47)

is increasing in the default correlation. Properties of (45), (46), and (47) imply

Proposition 5. If marginal default probabilities πk|00, k = 1, 2 and p2
10|10 do not change as corre-

lation changes and p2
10|00 ≤ p2

10|10, then

(i) ΨI
2 = ΨIII

2 and ΨII
2 are decreasing in the default correlation.
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(ii) If p2
10|10 ≥ 1 − π2

2|00 then ΨIV
2 and ΨV

2 are decreasing in the default correlation.

(iii) If p2
10|10 ≤ 1 − π2

2|00 then ΨIV
2 and ΨV

2 are increasing in the default correlation.

Therefore, if p2
10|10 ≤ 1 − π2

2|00, as the default correlation increases Ψ2 initially decreases and then

increases.

Proof. As the correlation increases a point (K,M) moves among regions either I → III → IV or

I → II → V . Ψ2 is decreasing in correlation in regions I, II, and III and increasing in correlation

in regions IV and V . �

Figure 3 demonstrates that the value of the retailer’s option Φ is non-monotone in correlation

as well.

Figure 3: Non-monotone relationship between the retailer’s option value, Φ, and the

default correlation, p00.

Parameters: cR ≡ 0, δ = 0, K = 39, M = 40, σ = 0.1, S0 = 100, D = 100,

p1
00 = 0.5, 1− π1 = 0.9, 1− π = 0.45, ξ = 1, p00 ∈ [0, 0.25].

The remaining issue is the interaction between effects on deferment options of the default

correlation and the volatility of retail prices. Figure 4 shows dependence of ∆Φ
∆σ on the default

correlation. The sensitivity of option value Φ to change is σ depends in a non-monotone way on the
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default correlation. Conversely, the sensitivity of option value to a change in the default correlation

depends in a non-monotone way on the level of the retail price volatility.

Figure 4: Non-monotone relationship between change in option value,

Φ(σ) − Φ(σ − ∆σ), and the default correlation, p00.

Parameters: cR ≡ 0, δ = 0, K = 39, M = 40, σ = 0.1, ∆σ = 0.001, S0 = 100,

D = 100, p1
00 = 0.5, 1− π1 = 0.9, 1− π = 0.45, ξ = 1, p00 ∈ [0, 0.25].

5 Endogenous wholesale prices

It is more realistic to assume that the suppliers have at least some market power, the industry

is not too heavily regulated and, therefore, wholesale prices are determined endogenously. In this

case competition between suppliers plays an essential role in valuation of the deferment option and

significantly contributes to the effects of the default correlation on profits of firms and the channel.

This section investigates interaction between competition, default correlation and deferment option

under assumption that market power belongs to the suppliers.
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5.1 Profits without deferment

At time 0 suppliers simultaneously announce prices (K and M). Retailer [whose problem is given

by (7)] responds with orders (z, y). The retailer’s response to any pair of wholesale prices (K,M)

is given in Proposition 1. Suppliers profit functions are given in (8). The following proposition

specifies pure strategy equilibrium solution to the game between suppliers and equilibrium profits

of the firms and the channel.

Proposition 6. Assume that either p01V0 > c1 or p10V0 > c̃2, then the unique pure strategy

equilibrium solution to the game between suppliers is

(i) If p01V0 > c1 and p10V0 > c̃2, then (K∗, M̃∗) = (p01V0, p10V0). Equilibrium order quanti-

ties are (z, y) = (D,D). Equilibrium profits are

Supplier 1 (S∗
1) (p01V0 − c1)D, (48a)

Supplier 2 (S∗
2) (p10V0 − c̃2)D, (48b)

Retailer (R∗) p00V0D, (48c)

Channel (Q∗
1) [(1 − p11)V0 − c1 − c̃2]D. (48d)

(ii) If p01V0 > c1 and p10V0 ≤ c̃2, then (K∗, M̃∗) = (c̃2 + V0(π2 − π1) − ε, c̃2) for some small

ε and equilibrium order quantities are (z, y) = (D, 0). Equilibrium profits are

Supplier 1 (S∗
1) [c̃2 + V0(π2 − π1) − ε − c1]D, (49a)

Supplier 2 (S∗
2) 0, (49b)

Retailer (R∗) [(1 − π2)V0 − c̃2 + ε] D, (49c)

Channel (Q∗
1) [(1 − π1)V0 − c1] D. (49d)

(iii) If p01V0 ≤ c1 and p10V0 > c̃2, then (K∗,M∗) = (c1, c1 + V0(π1 − π2) − ε) for some small

ε and equilibrium order quantities are (z, y) = (0,D). Equilibrium profits are

Supplier 1 (S∗
1) 0, (50a)

Supplier 2 (S∗
2) [c1 + V0(π1 − π2) − ε − c̃2]D, (50b)

Retailer (R∗) [(1 − π1)V0 − c1 + ε] D, (50c)

Channel (Q∗
1) [(1 − π2)V0 − c̃2] D. (50d)

Proof. Similar to Proposition ??. �
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Observe that equilibrium prices, equilibrium order quantities, and profits of firms and the

channel are non-decreasing in the volatility of retail prices, σ.

In addition, if p01V0 > c1 and p10V0 > c̃2, then the retailer’s profit is increasing in the default

correlation and profits of the suppliers and the channel are decreasing in the default correlation.

Recall that with exogenous wholesale prices all firms suffered from the increasing default correlation.

When prices are endogenous, increasing correlation intensifies the competition between suppliers.

The competition lowers wholesale prices benefiting the retailer. Also note that, when prices are

endogenous, the retailer’s incentives are different from those of the channel and, therefore, the

retailer should not be selected to coordinate the system.

Further, if p01V0 > c1 and p10V0 > c̃2, then the marginal increase in the retailer’s equilibrium

profit due to the change in the volatility, ∂R∗

∂σ , is increasing in correlation and the marginal increase

in profits of suppliers and the channel due to the change in the volatility, ∂S∗
k

∂σ , k = 1, 2 and ∂Q∗

∂σ ,

are decreasing in the default correlation. The marginal increase in the retailer’s equilibrium profit

due to an increase in the default correlation, ∂R∗

∂p00
, and the marginal decreases in profits of the

suppliers and the channel, − ∂S∗
k

∂p00
, k = 1, 2 and − ∂Q∗

∂p00
, are increasing in the default correlation.

Therefore, the consequences of increasing default correlation (positive consequences for the retailer

and negative consequences for the suppliers and the channel) are most profound when retail prices

are very volatile.

5.2 Profits for contracts with renegotiation

Supplier 1 announces her wholesale price, K, at time 0. The retailer responds by placing an order,

z, with supplier 1. At time τ1 supplier 2 and the retailer negotiate the wholesale price, M , and the

order quantity, y. Thus, both supplier 2 and the retailer defer making decisions until time τ1 and

incorporate information about defaults and retail prices that has been revealed during [0, τ1]. The

outcome of negotiation depends on bargaining powers of the retailer and supplier 2. If the retailer

is the dominant firm then the price M will be set at the suppliers marginal production cost (to

ensure the suppliers’ participation). This would lead to the model considered in section 4. In this

section we will assume that the supplier is the dominant firm so that the wholesale price is set at

the highest level that does not violate retailer’s participation constraints.
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At time 0 the retailer solves

max
z≤D

{
−Kz + p01V0 min(z,D)+

p1
10e

−rτ1E0

(
max
y≤D

{
−M(τ1)y + p2

10|10V (τ1)min(y,D)
})

+

p1
00e

−rτ1E0

(
max
y≤D

{
−M(τ1)y + V (τ1) ×

×
[
p2
00|00 min(z + y,D) + p2

10|00 min(y,D)
]})}

.

(51)

Note that, unlike problem (13), the price M in the subproblems of (51) depends on the information

available by the time τ1. The first optimization subproblem in equation (51), corresponds to the

outcome when supplier 1 has defaulted before time τ1 and supplier 2 has not. The optimal solutions

to this subproblem for the retailer and supplier 2 are given in the following lemma:

Lemma 3. If by time τ1 supplier 1 has defaulted and supplier 2 has not, then

(i) Supplier 2 optimal price is

M10(τ1) = max
{

p2
10|10V (τ1), c2

}
. (52)

(ii) The retailer’s optimal order quantity is

y10 = D1{
p2
10|10V (τ1)≥c2

}. (53)

(iii) Time 0 expected present value of this subproblem to the retailer is 0.

(iv) Time 0 expected present value of this subproblem to supplier 2 is

p1
10p

2
10|10W0

(
τ1,

c2

p2
10|10

)
D. (54)

The second optimization subproblem in equation (51), corresponds to the outcome where neither

supplier has defaulted before time τ1. Given price M(τ1) the retailer will order according to the

rule in equation (19). Knowing the retailer’s response, supplier 2 determines an optimal pricing

policy. Define:

ẑ(V ) :=
p2
00|00V D

(1 − π2
2|00)V − c2

. (55)

Lemma 4 summarizes the solution to the second optimization subproblem.
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Lemma 4. If neither supplier has defaulted before time τ1 then the equilibrium wholesale price of

supplier 2 and the retailer’s order quantities are as follows:

M∗(τ1) =





c2

M2

M2

M1

, y∗00 =





0 if M2(τ1) ≤ c2

D − z if M1(τ1) ≤ c2 < M2(τ1)

D − z if M1(τ1) > c2 and z < ẑ[V (τ1)]

D if M1(τ1) > c2 and z ≥ ẑ[V (τ1)]

(56)

The time 0 expected present value of this subproblem to the retailer is

p00V0z + p00(D − z)e−rτ1E0

[
V (τ1)1{M1>c2}1{z≥ẑ[V (τ1)]}

]
. (57)

The time 0 expected present value of this subproblem to supplier 2 is

p1
00(1 − π2

2|00)W0

(
τ1,

c2

1 − π2
2|00

)
(D − z) +

+ p1
00

[
(1 − π2

2|00)z − p2
00|00D

]
W0

(
τ1,

c2z

(1 − π2
2|00)z − p2

00|00D

)
1{

z>
p2
00|00D

1−π2
2|00

}.

(58)

Proof. Using the retailer’s response rule (19) and profit function of the second supplier (8) we

conclude that supplier 2 will charge either M1 or M2, if feasible. If M2 ≤ c2, then supplier 2 is

forced to set price at c2 receiving no orders from the retailer. If M1 ≤ c2 < M2 the only alternative

left for supplier 2 is M2. If M1 > c2 then supplier 2 decides whether to charge M1 and receive an

order of D or charge M2 and receive the order of D − z. If z ≤ ẑ[V (τ1)] the supplier prefers the
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latter. Hence, the expected present value of the supplier’s subproblem is

p1
00e

−rτ1E0

{
(M2 − c2) (D − z) 1{M1≤c2<M2} + (M2 − c2)(D − z) 1{c2<M1}1{z<ẑ(V )} +

+
[
M1 ± p2

00|00V (τ1) − c2

]
(D ± z) 1{c2<M1}1{z≥ẑ(V )}

}
=

= p1
00e

−rτ1E0

{
(M2 − c2)(D − z) 1{c2≤M2} +

+
[
(M2 − c2)z − p2

00|00V (τ1)D
]
1{c2<M1}1{z≥ẑ(V )}

}
=

= p1
00(1 − π2

2|00)W0

(
τ1,

c2

1 − π2
2|00

)
(D − z) + p1

00e
−rτ1 1{

z>
p2
00|00D

1−π2
2|00

}×

× E0



{

[(1 − π2
2|00)z − p2

00|00D]V (τ1) − c2z
}

1{
V (τ1)≥ c2z

(1−π2
2|00)z−p2

00|00D

}

 =

= p1
00(1 − π2

2|00)W0

(
τ1,

c2

1 − π2
2|00

)
(D − z) +

+ p1
00

[
(1 − π2

2|00)z − p2
00|00D

]
W0

(
τ1,

c2z

(1 − π2
2|00)z − p2

00|00D

)
1{

z>
p2
00|00D

1−π2
2|00

}

If the supplier’s price is M1 then the expected retailer’s profit at time τ1 is

−M1D + V (τ1)
(
p2
00|00D + p2

10|00D
)

= p2
00|00V (τ1)D.

If the supplier’s price is M2 then the expected retailer’s profit at time τ1 is

−M2(D − z) + V (τ1)
[
p2
00|00D + p2

10|00(D − z)
]

= p2
00|00V (τ1)z.

Expected present value of the retailer’s subproblem is

p1
00e

−rτ1E0

[
p2
00|00V (τ1) z 1{c2>M2} + p2

00|00V (τ1) z 1{M1≤c2<M2} +

+ p2
00|00V (τ1) z 1{c2≤M1}1{z<ẑ(V )} + p2

00|00V (τ1) (D ± z) 1{c2≤M1}1{z≥ẑ(S)}

]
=

= p00V0z + p00(D − z)e−rτ1E0

[
V (τ1)1{c2≤M1}1{z≥ẑ(V )}

]
. �

Using Lemmas 3 and 4, we can rewrite the retailer’s time 0 optimization problem (51) as follows:

max
z≤D

{
− Kz + (1 − π1)V0z +

+ p00(D − z)e−rτ1E0

[
V (τ1)1{c2≤M1(τ1)}1{z≥ẑ[V (τ1)]}

]}
,

(59)
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which is equivalent to

max
z≤D





[(1 − π1)V0 − K] z +

+ p00(D − z)e−rτ1E0


V (τ1)1{

V (τ1)≥ c2z

(1−π2
2|00)z−p2

00|00D

}

 1{

z>
p2
00|00D

1−π2
2|00

}




.

(60)

Define

A(K) := (1 − π1)V0 − K, (61)

and

f(z) := p00(D − z)e−rτ1E0


V (τ1)1{

V (τ1)≥ c2z

(1−π2
2|00)z−p2

00|00D

}

 . (62)

Given process (1) for the evolution of retail prices and the definition of option V in Section 3

one can derive an explicit expression for f [the derivation is similar to the valuation of compound

options by Rubinstein (1991)]

f(z) = p00(D − z)
{

S̆0N2 [α(z), β, ρ] − cRe−rτ2N2 [α(z) − σ
√

τ1, β − σ
√

τ2, ρ]
}

(63)

where N2[·, ·, ·] is the c.d.f. of the standard bivariate normal r.v. and

α =
ln
(

S̆0
Scr(z)

)
+
(
r + σ2

2

)
τ1

σ
√

τ1
, β =

ln
(

S̆0
cR

)
+
(
r + σ2

2

)
τ2

σ
√

τ2
, ρ =

√
τ1

τ2
.

Scr(z) satisfies the following equation:

ScrN(γ) − cRe−r(τ2−τ1)N(γ − σ
√

τ2 − τ1) = V̂ (z), (64)

where N(·) is the cumulative standard normal distribution function,

V̂ (z) =
c2z

(1 − π2
2|00)z − p2

00|00D
and γ =

ln
(

Scr
cR

)
+
(
r + σ2

2

)
(τ2 − τ1)

σ
√

τ2 − τ1
. (65)

Note that one has to find a root of a non-linear equation (64) in order to compute f(z). In numerical

examples we will consider a simpler problem where cR ≡ 0. In this case

f(z) = p00(D − z)S̆0N{d1[V̂ (z)]}, (66)

where

d1(X) =
ln
(

S̆0
X

)
+
(
r + σ2

2

)
τ1

σ
√

τ1
.

The following lemma proves the existence of the solution to the retailer’s time 0 problem
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Lemma 5. There exists a solution to the retailer’s problem (60).

Proof. Problem (60) is defined on a compact set z ∈ [0,D]. Therefore, to ensure the existence of a

solution it is sufficient to show that the retailer’s profit function is continuous in z.

To show continuity of the retailer’s profit function it is sufficient to show that

g(z) := f(z) 1{
z>

p2
00|00D

1−π2
2|00

}

is continuous. Let z0 =
p2
00|00D

1−π2
2|00

. If z ≤ z0, then g(z) ≡ 0 and, thus, continuous. If z > z0, then

c2z

(1 − π2
2|00)z − p2

00|00D

is continuous (and, furthermore, monotone) function of z. V (τ1) is integrable. Therefore, by the

Dominated Convergence Theorem,

E0


V (τ1) 1{

V (τ1)≥ c2z

(1−π2
2|00)z−p2

00|00D

}



is a continuous function of z. Consequently, g(z) is continuous. To complete the proof we will show

that g(·) is continuous at z0. Observe that

lim
z↓z0

c2z

(1 − π2
2|00)z − p2

00|00D
= +∞.

Therefore, as z ↓ z0

V (τ1) 1{
V (τ1)≥ c2z

(1−π2
2|00)z−p2

00|00D

} → 0 a. s.

and by the Dominated Convergence Theorem

lim
z↓z0

g(z) = 0 = g(z0) = lim
z↑z0

g(z). �

The following lemma describes some properties of the solution of (60) that may be used to

increase efficiency of numerical solution procedures.

Lemma 6. Let z0 =
p2
00|00D

1−π2
2|00

. Then a solution of the optimization problem (60) is either 0 or it lies

in the interval [z0,D]. Furthermore, if the solution is unique and

K ≤(1 − π1)V0 −

− p00

{
S̆0N2[α(z), β, ρ] − cRe−rτ2N2[α(z) − σ

√
τ1, β − σ

√
τ2, ρ]

}
,

(67)
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then the optimal order quantity z∗ = D, otherwise z∗ satisfies

f ′(z) = −A(K). (68)

Proof. Note that f(z) ≥ 0 for z > z0. Therefore, the maximum of function A(K)z + f(z) is either

0 or is achieved on the interval [z0,D]. For D to be an optimal order quantity it must be true that

A(K) + f ′(D) ≥ 0. This implies condition (67). �

Note that when cR ≡ 0 condition (67) simplifies to

K ≤ (1 − π1)S̆0 − p00S̆0N
{

d1

[
V̂ (D)

]}
. (69)

The following properties of the optimal retailer’s order quantity are useful in the analysis of the

supplier 1 problem.

Lemma 7. For optimization problem (60), arg max A(K)z + f(z) is non-increasing in K.

Proof. Observe that for H(u;K) = −A(K)u + f(−u), ∂2H
∂u∂K ≥ 0. Therefore, function H, which

is defined on a lattice [−D, 0] × [0,+∞] and which is quasi-supermodular in u, satisfies single-

crossing property. Theorem 4 in Milgrom and Shannon (1994) implies that u∗ = arg maxH(u;K)

is non-decreasing in K. Therefore, z∗ = −u∗ is non-increasing in K. �

Supplier 1 problem is

max
K

(K − c1)z∗(K), (70)

where z∗(K) is the solution of the retailer’s problem.

We will find a solution of (70) numerically and also will consider a simplified problem with

deterministic retail prices (σ = 0).

5.3 Special case: deterministic prices

Assume that retail price S is deterministic and increases only due to the drift term. Thus, for any

time t, S(t) = S0e
µt (for adjusted process S̆, S̆(t) = S̆0e

rt). For simplicity, assume that cR ≡ 0.
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5.3.1 Equilibrium profits with deferment

The retailer’s time 0 optimization problem (59) becomes

max
z≤D





[
(1 − π1)S̆0 − K

]
z +

+ p00S̆0(D − z)1{
c2e−rτ1≤p2

10|00S̆0

}1{
z≥

p2
00|00DS̆0erτ1

(1−π2
2|00)S̆0erτ1−c2

}




.

(71)

Lemma 8. A solution to the optimization problem (71) for a given K is

If c2e
−rτ1 > p2

10|00S̆0, then

z∗(K) = D 1{K≤(1−π1)S̆0}. (72)

If c2e
−rτ1 ≤ p2

10|00S̆0, then

z∗(K) =





0 if K > (1 − π1)S̆0 + p1
00

(
p2
10|00S̆0 − c2e

−rτ1
)

p2
00|00DS̆0erτ1

(1−π2
2|00)S̆0erτ1−c2

if
p01S̆0 < K ≤

≤ (1 − π1)S̆0 + p1
00

(
p2
10|00S̆0 − c2e

−rτ1
)

D if K ≤ p01S̆0

(73)

Proof. If c2e
−rτ1 ≤ p2

10|00S̆0, the function that we are optimizing is piece-wise linear. Let

z0 =
p2
00|00DS̆0e

rτ1

(1 − π2
2|00)S̆0erτ1 − c2

.

To the left of z0 the slope of the retailer’s profit function is (1 − π1)S̆0 − K. To the right of z0 the

slope of the retailer’s profit function is p01S̆0 −K. If p01S̆0 −K ≥ 0 then the retailer will order D.

Otherwise, the retailer will order z0 if

[
(1 − π1)S̆0 − K

]
z0 + p00S̆0(D − z0) ≥ 0

or equivalently

K ≤
(

p00
D

z0
+ p01

)
S̆0 = (1 − π1)S̆0 + p1

00

(
p2
10|00S̆0 − c2e

−rτ1
)

. �

The following proposition describes solution of the suppliers’ problem (70).
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Proposition 7. Assume that (1 − π1)S̆0 ≥ c1 and (1 − π2
2|00)S̆0e

rτ1 ≥ c2. Then

If

c2e
−rτ1 > p2

10|00S̆0, (H)

then K∗ = (1 − π1)S̆0, z∗ = D and equilibrium profits are

Supplier 1 (S∗
1)

[
(1 − π1)S̆0 − c1

]
D, (74a)

Supplier 2 (S∗
2) p1

10

(
p2
10|10S̆0 − c2e

−rτ1
)+

D, (74b)

Retailer (R∗) 0, (74c)

Channel (Q∗)
[
(1 − π1)S̆0 − c1 + p1

10

(
p2
10|10S̆0 − c2e

−rτ1
)+
]

D. (74d)

If

c2e
−rτ1 ≤ p2

10|00S̆0 and p00S̆0 ≥ (p01S̆0 − c1)
p2
10|00S̆0 − c2e

−rτ1

(1 − π2
2|00)S̆0 − c2e−rτ1

, (M)

then K∗ = (1−π1)S̆0 + p1
00

(
p2
10|00S̆0 − c2e

−rτ1
)
, z∗ =

p2
00|00DS̆0erτ1

(1−π2
2|00)S̆0erτ1−c2

and equilibrium profits are

Supplier 1 (S∗
1)

[
(1 − π1)S̆0 + p1

00

(
p2
10|00S̆0 − c2e

−rτ1
)
− c1

]
× (75a)

×
p2
00|00DS̆0e

rτ1

(1 − π2
2|00)S̆0erτ1 − c2

,

Supplier 2 (S∗
2)

(
p10S̆0 − c̃2

)
D, (75b)

Retailer (R∗) 0, (75c)

Channel (Q∗) S∗
1 + S∗

2 + R∗. (75d)

If

c2e
−rτ1 ≤ p2

10|00S̆0 and p00S̆0 < (p01S̆0 − c1)
p2
10|00S̆0 − c2e

−rτ1

(1 − π2
2|00)S̆0 − c2e−rτ1

, (L)

then K∗ = p01S̆0, z∗ = D and equilibrium profits are

Supplier 1 (S∗
1)

(
p01S̆0 − c1

)
D, (76a)

Supplier 2 (S∗
2)

(
p10S̆0 − c̃2

)
D, (76b)

Retailer (R∗) p00S̆0D, (76c)

Channel (Q∗)
[
(1 − p11)S̆0 − c1 − c̃2

]
D. (76d)
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Proof. Suppose c2e
−rτ1 > p2

10|00S0. Using Lemma 8 and supplier 1 problem (70) we conclude that

K∗ = (1 − π1)S̆0 and z∗ = D. Expressions for profits of the retailer and supplier 1 follow from

equations (71) and (70) respectively. To compute profit of supplier 2, invoke Lemmas 3 and 4,

noting that condition (H) corresponds to c2 > M1

If c2e
−rτ1 ≤ p2

10|00S0, then from Lemma 8 it follows that supplier 1 has to choose between two

values of profits

(p01S̆0 − c1)D

and
[
(1 − π1)S̆0 + p1

00

(
p2
10|00S̆0 − c2e

−rτ1
)
− c1

] p2
00|00DS̆0e

rτ1

(1 − π2
2|00)S̆0erτ1 − c2

Supplier 1 prefers the latter, which corresponds to

K∗ = (1 − π1)S̆0 + p1
00

(
p2
10|00S̆0 − c2e

−rτ1
)

and

z∗ =
p2
00|00DS̆0e

rτ1

(1 − π2
2|00)S̆0erτ1 − c2

,

if condition (M) is satisfied.

Under condition (M) the retailer’s profit is 0 [based on equation (71)].

Using Lemmas 3 and 4 and noting that p2
10|10S̆(τ1) > p10|00S̆(τ1) > c2, supplier 2 profit is

p1
00e

−rτ1
{[

(1 − π2
2|00)S̆(τ1) − c2

]
D − p2

00|00S̆(τ1)D
}

+ p1
10e

−rτ1
[
p2
10|10S̆(τ1) − c2

]
D =

=
(
p10S̆0 − c̃2

)
D

Similarly, we derive expressions for profits of firms and the channel under condition (L). �

The order of conditions (H),(M), and (L) corresponds to the decreasing default correlation.

Perfectly positive default correlation (p00 = 1 − π, p10 = 0) satisfies condition (H). Perfectly

negative default correlation (p00 = 0, p10 = 1 − π2) satisfies condition (L).

Figure 5 shows the dependence of the profits on the default correlation.

When the default correlation is high [condition (H)], supplier 1 charges the retailer the monop-

olist price and the retailer responds by ordering z∗ = D from supplier 1. Supplier 2 makes a profit

only if supplier 1 defaults before time τ1. The higher the correlation the lower the expected profit
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Figure 5: Dependence of equilibrium profits of supplier 1, S∗
1 , supplier 2, S∗

2 , the

retailer, R∗, and the channel, Q∗, on the default correlation, p00.

Letters (L), (M), and (H) indicate regions described in Proposition 7.

Parameters: cR ≡ 0, δ = 0, σ = 0, S0 = 100, D = 100, p1
00 = 0.5, 1− π1 = 0.9,

1− π = 0.45, ξ = 1, p00 ∈ [0, 0.25].

of supplier 2. Profits of supplier 1 and the retailer do not depend on the default correlation in this

case. Profit of the channel also decreases in the default correlation.

When the default correlation is medium [condition (M)], supplier 1 charges the retailer a price

that is even higher than the monopolist price but the retailer now orders z∗ < D from supplier

1. The profit of supplier 1 depends on the default correlation in a non-linear fashion. As the

correlation decreases, the expected profit of supplier 2 increases. The retailer’s expected profit is

always 0.

Finally, when the default correlation is low [condition (L)] the equilibrium solution is the same as
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the one in no-options case: supplier 1 charges a competitive price and the retailer places high orders

with both suppliers. As the correlation decreases, profits of suppliers and the channel increase while

the expected profit of the retailer decreases.

If there is no competition and all decisions are made at time 0, then according to section 4.1, as

the default correlation increases, benefits of diversification decrease and profits of the suppliers, the

retailer, and the channel decrease. However, as section 5.1 showed, when risky suppliers compete

for the retailer’s business, benefits of competition dominate benefits of diversification and as a

result positive default correlation benefits the retailer while negative default correlation benefits the

suppliers and the channel. However, if the discrepancy in production lead-times creates a deferment

option for the suppliers and the retailer, then even in a competitive environment, positive default

correlation could be bad for the retailer after all.

5.3.2 Deferment options and the default correlation

If p01S0 ≥ c1 and p10S0 ≥ c̃2, then using expressions for firms’ profits in Proposition 6 and

Proposition 7, we can derive deferment option value for each of the firms. The results are presented

in Table 2.

Table 2: Deferment option values when wholesale prices are endogenous and σ = 0.

Firm (H) (M) (L)

Supplier 1 (Ψ1) p00S̆0D

[
p10S̆0 − c1

]
D×

×
[

c2−p10|00S̆0erτ1

(1−π2
2|00)S̆0erτ1−c2

]
+ p00S̆0D

0

Supplier 2 (Ψ2) p1
00

(
e−rτ1c2 − p2

10|00S̆0

)
D 0 0

Retailer (Φ) −p00S̆0D −p00S̆0D 0

Channel (Θ) p1
00

(
e−rτ1c2 − p2

10|00S̆0

)
D

[
p10S̆0 − c1

]
D

c2−p10|00S̆0erτ1

(1−π2
2|00)S̆0erτ1−c2

0

As the default correlation increases, the value of the deferment option increases for the suppliers

and decreases for the retailer (see Figure 6).

For low default correlation the value of the deferment option to the channel is 0. As correlation

crosses boundary between (L) and (M) regions, the value of the option to the channel drops and
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Figure 6: Dependence of the deferment option for supplier 1, Ψ1, supplier 2, Ψ2, the

retailer, Φ, and the channel, Θ, on the default correlation, p00.

Parameters: cR ≡ 0, δ = 0, σ = 0, S0 = 100, D = 100, p1
00 = 0.5, 1− π1 = 0.9,

1− π = 0.45, ξ = 1, p00 ∈ [0, 0.25].

then increases as the default correlation continues to grow.

Table 3 presents the direction (positive or negative) in which firm’s profits change after intro-

duction of the deferment option.

Unlike the case of exogenous prices (Table 1), the retailer never benefits from the introduction of

deferment option, because the introduction of the option changes the nature of competition between

suppliers to the retailer’s disadvantage. Furthermore, when prices are endogenous, both suppliers

are better off with the option. Observe that when the default correlation is high the suppliers and

the channel prefer model with the option. However, when correlation is at intermediate level both

the retailer and the channel oppose introduction of the option. Therefore, none of the firms can be
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Table 3: Effect of the deferment option introduction on firms’ profits when wholesale

prices are endogenous and σ = 0. “+” indicates that profit increases, “−” indicates

that profit decreases, “=” indicates that profit does not change.

Firm \ Condition (H) (M) (L)

Supplier 1 (Ψ1) + + =

Supplier 2 (Ψ2) + = =

Retailer (Φ) − − =

Channel (Θ) + − =

appointed to represent channel interests for all levels of the default correlation.

5.4 Numerical example: stochastic retail prices

When the volatility of retail prices σ > 0 finding a solution of supplier 1 problem (70) analytically

is problematic, therefore, we resort to numerical study. To investigate effects of σ on equilibrium

solution and interaction between σ and the default correlation, we will compute equilibrium prices,

order quantities, profits, and option values for σ = 0 and σ = 0.1 (which is a moderate value of the

volatility of retail prices) and contrast results. Figure 7 shows equilibrium prices of supplier 1 and

equilibrium order quantities from the retailer to supplier 1. Note that the region (with respect to

the default correlation) where supplier 1 charges higher than monopolist prices shift to the left if

retail prices are uncertain. However, over this region the equilibrium wholesale prices of supplier 1

are lower when σ > 0. The uncertainty in retail prices has no effect on equilibrium prices and order

quantities when correlation is either very high or very low. Figure 8 shows profits of the suppliers,

the retailer, and the channel both with and without uncertainty in retail prices. Note that the

retailer is worse off if there is an uncertainty about the retail prices.

Finally, Figure 9 presents deferment option values for the suppliers, the retailer and the channel.

Note, again, that if the default correlation is very high or very low the effect from retail price

uncertainty is small.
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Figure 7: Dependence of equilibrium supplier 1 prices, K∗, and equilibrium order

quantities to supplier 1, z∗, on the default correlation, p00, and the volatility, σ.

Parameters: cR ≡ 0, δ = 0, S0 = 100, D = 100, p1
00 = 0.5, 1− π1 = 0.9,

1− π = 0.45, ξ = 1, p00 ∈ [0, 0.25].
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Figure 8: Dependence of equilibrium profits of supplier 1, S∗
1 , supplier 2, S∗

2 , the

retailer, R∗, and the channel, Q∗, on the default correlation, p00, and the volatility, σ.

Parameters: cR ≡ 0, δ = 0, S0 = 100, D = 100, p1
00 = 0.5, 1− π1 = 0.9,

1− π = 0.45, ξ = 1, p00 ∈ [0, 0.25].

41



Figure 9: Dependence of option values for supplier 1, Ψ1, supplier 2, Ψ2, the retailer,

Φ, and the channel, Θ, on the default correlation, p00, and the volatility, σ.

Parameters: cR ≡ 0, δ = 0, S0 = 100, D = 100, p1
00 = 0.5, 1− π1 = 0.9,

1− π = 0.45, ξ = 1, p00 ∈ [0, 0.25].
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