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Abstract

In this normative paper, we derive payback period (PBP) and internal rate of return (IRR) in the
presence of real options. In a Kulatilaka - Trigeorgis General Real Option Pricing Model, we derive
the expected value of these two decision rules that corresponds to the expected NPV Bellman dynamic
programming maximizing strategy in the presence of the options to wait, to mothball and to abandon.
A number of original results are derived for an all equity financed firm. Expected PBP and IRR at
time 0 are derived together with their distribution. These new methods are applied to a case study in
shipping finance. Real options are shown to be value enhancing and shortfall decreasing also with respect
to thumb rules: expected IRR is increased while expected PBP is decreased. Probabilities of earning
negative returns are reduced together with those of not recovering initially invested capital.

Our model gives a more intuitive insight into the dynamic optimal behavior which is endogenous
to real options valuation models showing plainly how the representative agent would probably manage
optimally her project. This would help to compare optimally dynamic behavior with current practice and
to conclude whether real options are a simple pure academic abstraction or a realistic model.
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Introduction

Although real options were proposed more than twenty years ago,1 they are still a side product or an

application of financial options models. As the latters, real options literature focuses on project evaluation,

i.e. expanded NPV computation, neglecting all the other parameters widely used in capital budgeting

practice, namely IRR and PBP.2 In this normative paper, we compute these decision rules in the presence

of real options providing practitioners with figures which, most of the times, they are more familiar with.

After twenty years real options have been proposed for the first time, one of the factors that prevents their

becoming widely used in practice is that they are perceived as a valuation criterion on its own. Instead,

in this paper we show how even other capital budgeting parameters, such as those previously mentioned,

can be computed in a real options framework. In other words, it is possible to translate the active dynamic

management of an industrial investment project even in thumb rules.

The model we have devised is simple and it can be easily adapted by practitioners to the various

contingencies of the business life. We have derived NPVe, the usual expanded NPV, in a version of the

Kulatilaka - Trigeorgis General Real Option Pricing Model (GROPM). Together with this expanded NPV we

have derived optimal exercise thresholds of the real options to wait, to mothball, to restart and to abandon

for the whole life of the project. Having established a Bellman’s Dynamic Programming (DP) optimal

policy, we were able to compute forward the same expanded NPV that was previously derived in the usual

backward induction process running an Euler Scheme Monte Carlo simulation. The average of these Monte

Carlo experiments corresponds to the expected expanded NPV computed in the original backward induction.

This fact assures that both backward and forward computations are modeling the same DP optimal policy.

Using the DP optimally managed time series of cash flows and the corresponding NPVes, a number of

original results can be derived. Value at risk of the project at time t = 0, V aRNPVe , and the Cash Flow at

Risk for each epoch of the investment project horizon, CFaRCFDP
can be easily derived, see (Alesii, 2003).

Moreover, investment criteria which are intrinsically path dependent like IRR and PBP at time t = 0 can

be computed taking into account the optimal exercise of real options.

This paper is organized as follows. In section 1 the use of thumb rules is briefly examined both from an

empirical and a theoretical point of view. As a matter of fact a short review in positive capital budgeting

literature is provided in order to show that, after all, NPV and a fortiori real options, are not very used

in practice while IRR and PBP are. Moreover, theoretical justifications for the use of these thumb rules is

1The original intuition of a (real) growth option is already in (Myers, 1977) but the expression “real option” was coined
by (Myers, 1984).

2We should be wary in defining criteria some decision rules that simply do not have a representative agent criterion function
to maximize or which do not respect the Value Additivity Principle, see for instance (Rao, 1992) page 240.
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provided. In section 2 it is described the method adopted to compute forward the same E(NPVe) usually

computed backward in a GROPM framework. This same method is used to compute the two thumb rules

object of this paper. In section 3 the method previously devised is applied to a shipping finance stylized

case study. In section 4, conclusions are drawn and several extensions are proposed. The appendix reports

an extensive numerical proof of convergence of expected forward computed NPV to the values obtained in

the usual backward induction process.

1 Practice and Theory of Thumb Rules in Capital Budgeting

The main justification of this paper is that thumb rules, such as PBP and IRR, are widely used in practice

and their use can be upheld from a theoretical point of view. The widespread use of thumb rules in the

practice of capital budgeting is described taking some evidence from the positive capital budgeting literature.

Instead, theoretical justifications for the use of these non-NPV decision rules have been devised in both a

behavioral and a rational framework, respectively in organizational behavior literature and in agency theory

and real options analysis.

To begin with, the most recent surveys in positive capital budgeting have shown how rules of thumb

are still widely used in practice, see for instance (Graham and Harvey, 2001) and (Ryan and Ryan, 2002).

Although there is an increasing number of firms that use DCF methods and expecially NPV,3 the use of

thumb rules is still important: according to (Graham and Harvey, 2001) page 197, more than 75% of US

firms still use IRR as an individual criterion, inasmuch as NPV, and more than 50% use PBP. Those figures

are more or less the same as those reported by (Ryan and Ryan, 2002). The use of less sophisticated capital

budgeting rules is more widespread among small and medium sized firms with an older CEO (Graham

and Harvey, 2001). Although that is true, even for large firms, such as the Fortune 1000, thumb rules are

important for small sized capital budgets, see Exhibit 2 in (Ryan and Ryan, 2002). The US evidence is

confirmed by a stack of studies in other countries. 4

Another pattern in the practice of thumb rules in capital budgeting that emerges from these studies is that

they are used in combination with NPV to explore the many faceted aspects of investment performance (Pike,

1996), or because some Non-NPV investment parameters, such as IRR, are a more cognitively efficient

measure of comparison, (Binder and Chaput, 1996), or simply because they are provided in any spreadsheet

3See for instance (Binder and Chaput, 1996) for a description of trends from the ’50s till the ’80s in capital budgeting
practices in the US.

4See for instance references in (Boyle and Guthrie, 1997) for survey results about Australia, Canada and New Zealand.
See (Scapens and Sale, 1981) for two parallel surveys about UK and US firms, (Runyon, 1983) and (Coulthurst and McIntyre,
1987) for a survey about small-medium sized firms respectively in the US and the UK. See (Segelod, 2000) and (Sandahl and
Sjögren, 2003) for evidence about Swedish professional service groups and large companies.
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package (Pike, 1996). PBP and IRR are often found as one of the most popular combinations, see (Mills

and Herbert, 1987) and (Cullinane and Panayides, 2000) page 323.

The use of thumb rules in combination with NPV can be explained from two points of view. From an

agency theory, organizational behavior point of view, in small firms or in large ones but for small capital

budgets, quite often investments are mostly defensive and sometimes they are not even evaluated (Runyon,

1983). In divisionalized companies, managers mostly implement headquarters decisions although they exert

a certain influence and interact informally with them. In this bargaining process, there is limited role for

the rigorous textbook like NPV only evaluation technique, (Scapens and Sale, 1981). In conclusion, formal

capital budgeting is only one of the performance control tools and, sometimes, it is not the most important,

(Segelod, 2000). As a consequence, informal bargaining takes place better on a whole string of investment

project parameters instead of only one, i.e. NPV.

This has been given a theoretical rational justification by (Berkovitch and Israel, 1998) who show how in

a bargaining process between headquarters and divisions managers, IRR and PI are useful in curbing empire

building because, when selecting between mutually exclusive projects, they tend to bias against large scale

projects, expecially when allocation according to these criteria is in conflict with the NPV criterion. Hence,

thumb rules can be rational on their own when taking into account agency considerations. For instance, a

manager may maximize her utility increasing early cash flows at the expense of ultimate overall profitability

of the firm, visibility bias, see (Hirshleifer, 1993). In pursuing this kind of optimization, she may find more

convenient to use PBP instead of NPV favoring the former investment projects that produce early cash

flows (Narayanan, 1985).

On the other hand, leaving aside agency theory and organizational behavior considerations, the use of

thumb rules alone or in combination with passive NPV has been shown to produce the same allocation as

real options models, see (McDonald, 1998) in (Brennan and Trigeorgis, 1998) for a general view about these

hybrid rules. This has been proved for models with time homogeneous cash flows with individual irreversible

real options for IRR, see (Dixit, 1992), PBP, see (Boyle and Guthrie, 1997) and PI, see (McDonald, 1998).

Basically, an hybrid rule is stated deriving endogenously to the real option model the level of the threshold

for the thumb rule which corresponds to the real option exercise, using it, in the case of PBP, in combination

with a passive NPV.

Our model differs from those just mentioned in a number of ways. To begin with, our model is numerical

while the previous models are based on elegant but difficult to adapt to reality stochastic algebra. Moreover,

since the method chosen is numerical, we were able to apply it to a general model with reversible, switching,
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and irreversible options. Finally, our aim in this paper has been to provide practitioners with the same

string of investment parameters they crave for in the bargaining process to get funds to invest. The crucial

difference is that in this model IRR and PBP are the translation in a different metrics of NPV maximizing

Bellman Dynamic optimal strategy with the exercise of real options to wait, mothball, restart and abandon.

This paper and (Alesii, 2003) strive toward establishing a solid link between real options analysis and

capital budgeting methods that are commonly considered as an alternative to the former. As a matter of

fact, being perceived as a criterion on its own, real options analysis is still used by very few companies and

in very few cases, 25% in (Graham and Harvey, 2001) but much less, 1.6% in (Ryan and Ryan, 2002), 0.5%

in (Leliveld and Jeffery, 2003), nil in (Sandahl and Sjögren, 2003), and with a decreasing trend, see (Rigby,

2002). Proposing to the practitioners’ audience the Kulatilaka-Trigeorgis GROPM extended for its risk

dimensions and translated in other capital budgeting thumb rules mostly used in practice would probably

help real options to take root in corporate culture.

2 The Computation of Thumb Rules in the Presence of Real Options

The procedure we have followed is numerical and it can be easily adapted by practitioners to any kind of

investment project. The model of (Kulatilaka and Trigeorgis, 1994), (hence after KT), has been used to

derive both the expanded NPVs of the investment project at time zero and the real options optimal exercise

thresholds throughout the whole life of the project. Then, an Euler Scheme Monte Carlo simulation of

the same state variable is performed with the same discretization. On each simulated path observation the

exposure mapping equation of the firm is computed taking into account real options exercise thresholds.

Hence, a simulated CF history, which has been managed exercising optimally real options, corresponds to

each path of the state variable.

On these CFs histories it is possible not only to compute expected expanded net present values and its

distribution but also to assess CF variability for each epoch, see (Alesii, 2003).5 Moreover, on the same CF

time series it is possible to compute any path dependent investment parameter such as PBP and IRR at

time t = 0.

In the remaining part of this section, a minor extension of the KT real option pricing model is proposed

motivating its choice among the vast variety of real options models, see section 2.1. Moreover, the scenario

construction method is described giving a graphic portrayal of the CF computation according to optimal

5In essence, we generate scenarios that can be used for both risk management and pricing purposes. In this case, the natural
probability measure used for pricing is shown to be also an EMM, see appendix of (Kulatilaka, 1993). Although that is true, it
is considered correct to use in general an EMM for risk management purposes, while it is not right to use a natural measure of
probability for pricing purposes, see (Tavella, 2002) page 77.
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exercise real options thresholds, see section 2.2. Methods adopted to compute PBP and IRR are reported

in section 2.3.

2.1 An Extension of the Kulatilaka Trigeorgis Model

KT general real options pricing model (GROPM) has been chosen for a variety of reasons.6 To begin with, it

is a general model for pricing simultaneously, or individually, a variety of real options while most of the other

models are ad hoc individual options pricing models. Moreover, it is one of the few not based on a pseudo

asset approach but on a running present value computation of expanded NPV. For these reasons GROPM

accommodates general specifications of the exposure mapping and it enables to assess the variability of CF

in each epoch of the investment project.

The version of the KT model we have used here is univariate, with a stochastic state variable specified

as an arithmetic Ornstein-Uhlenbeck process, see equation (1), discretized in a grid (Kulatilaka, 1993). The

choice of this specification is instrumental to the numerical example we have developed in section 3 where

the state variable we have chosen evolves like a mean reverting process.

d θt = η ·

(
θ − θt

)
d t + σθ dZ (1)

where,
η : the speed of reversion, e.g. for η = 0 the process becomes a geometric Brownian motion while for 0 < η < 1

the process tends to be mean reverting, negative levels are excluded to avoid mean aversion, one is excluded
to avoid overshooting ;

θ : the normal level of θ, i.e. the level at which θ tends to revert;
σ2

θ : instantaneous variance rate;
d t : time differential;

dZ : standard Wiener process, normally distributed with E (dZ) = 0 and V ar (d Z) = E
(
(d Z)2

)
= d t.

In essence, GROPM is based on a Bellman Dynamic Programming (hence after DP) method on a finite

horizon solving an impulse control problem. Controls available to the firm are its various operating modes,

namely, in this case, being idle before investing, operating, being mothballed, abandoned. Real options,

then, are the capabilites to pass from one operating mode to the other, respectively option to wait, option

to mothball, to restart and option to abandon. Because of this, GROPM accommodates several degrees of

irreversibility of investment decisions being possible to specify a transition cost for each passage between

operating modes. 7

The solution of a dynamic optimization problem has two faces: the max argument derived from recursions

of the Bellman equation, see expression (2); and the argmax argument or optimal policy , see expression (3).

We claim that the derivation of the latter for the whole life of the project is an original contribution of

6The definition of a general model of real option is in (Kulatilaka, 1995) in (Trigeorgis, 1995). The acronym is ours.
7Bellman’s Optimum Principle has been applied to the pricing or real options also by (Dixit and Pindyck, 1994) page 95.
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this paper. These thresholds have been constructed simply recording the argmax function during each

backward induction recursion, hence in a numerical procedure that can be easily generalized to any number

of operating modes. 8

F
(
θt, ℓ

′, t
)

=
max
ℓ′

{
Π

(
θt, ℓ

′, t
)
− cℓ,ℓ′ + ρ · E

θ∗t+1
t

[
F

(
θt+1, , ℓ

′, t + 1
)]}

(2)

θj,t =⇒

θj,t ⇐⇒





ℓ̂′j,t =

argmax
ℓ′

{
F

(
θt, ℓ

′, t
)}

(3)

where,

F (θt, ℓ, t) := value of the plant for the level of the state variable θt, for an optimizing operating mode ℓ at
time t;

E
θ∗

t+1

t [ ] := expectation operator on equivalent martingale measure, hence starred, of the process θt;

ρ = 1/
(
1 + i1/m

)
:= present value factor, in which i1/m = (1 + rf )1/m

− 1.

cℓ,ℓ′ := operating mode transition cost, being l the beginning mode and l′ the ending mode;
Π (θt, ℓ

′, t) := individual period operating cash flow.

(Kulatilaka, 1993) shows that under the restrictive condition of the investment project having a β = 0,

lemma 4 of (Cox et al., 1985) is applicable and the drift of the arithmetic Ornstein Uhlenbeck can be

considered a certainty equivalent drift rate. Hence, EMM and natural probability measure coincide under

this restrictive hypothesis. Without loss of generality we consider an individual risk free rate. However, the

model could easily accommodate a whole term structure of interest rates.9

2.2 Scenario Construction

The optimal exercise thresholds partition the discretized space of the state variable in regions in which

different operating modes are optimal according to a Bellman DP procedure, see upper graph in figure 1.

We run an Euler Scheme Monte Carlo simulation of the solution of the SDE in expression (1) and we obtain

recursively an approximation to the path of the levels of θt ∀t = 0, . . . , T , see equation (4).10 This path

meanders on the grid going through the thresholds, passing from an hysteresis, θj,t =⇒ ℓ̂′j,t in (3), to a one

mode region, θj,t ⇐⇒ ℓ̂′j,t in (3), and the other way around, see upper graph in figure 1.

θt = θt−1 · e
−η∆ t + θ ·

(
1 − e−η∆ t

)
+ ǫt (4)

8For details of the numerical procedure followed see (Alesii, 2000).
9We wish to thank Professor Richard Stapleton for pointing out this issue.

10See page 87 in (Tavella, 2002). In practice we simulate the Markov Chain that has a one step transition probability matrix
given for each level θt by the discretization of the normal distribution of the arithmetic Ornstein Uhlenbeck additive shocks. It
is worth noting that although a solution to the OU SDE does exist, see equation 4, the Euler scheme discretization has been
adopted to maintain the same metrics on which results were derived in the backward induction procedure. We wish to thank
Christian Schlag for pointing out this issue.
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where, in addition to the previous notation:

ǫt ∼ N
(
0,

σ2
θ

2·η
·
(
1 − e−η∆ t

))
: noise term distributed normally with mean zero and variance as a fraction of σ2

θ .
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Figure 1: Path of θ and CF computation
Legend:
The upper graph in the figure represents the real options optimal exercise thresholds in a time - state variable Cartesian space,

time unit is the dynamic system resetting period. To be specific, the highest represents the investment trigger threshold, the

lowest, in bold, represents the abandonment threshold. In the middle, the higher is the restarting threshold while the lower

is the mothballing threshold. An indicative path of θt is represented on the same graph. In the lower graph in the figure the

corresponding time series of CFt is represented in bold, together with an indicator function, in bars, representing the operating

mode in which CFs at that epoch were generated. 2:= operating mode; 3:= mothballed mode; 4:= abandoned mode.

For each θt in each path we were able to compute Π (θt, ℓ, t) netting these cash flows of the transition

costs when and if they are due. Therefore, a θt path corresponds to a time series of CFs optimally managed

according to Bellman Optimum Principle, see lower graph in figure 1 in which also a mode indicator function

is reported between the two graphs.

In the example represented in figure 1, the investment project, e.g. a ship, is implemented at time t = 0

since the θt series starts at a level higher than the investment threshold, (operating mode=2). The very
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low CF at the beginning is the result of the lump sum initially invested and the first operating CF. After

three epochs the time charter rate goes below the mothballing threshold. Hence the ship is laid up for four

periods (operating mode=3) until the time charter rate reaches the restarting threshold. Even if in the

following epoch it goes below it, the project is kept in operating mode, hysteresis situation. The same kind

of situation takes place just before epoch 20 and 30. At period 47 the time charter rate goes below the

abandonment threshold and the ship is scrapped for its salvage value (operating mode=4).

On this CFt time series it is possible to compute NPV expanded for real options using the same

risk free rate used in the backward induction process. Averaging these results across different Montecarlo

experiments, expected values converge to those found using expression (2). This has been thoroughly shown

in the Appendix. The extension for a passively managed project is trivial implying simply the computation

of CFt without taking into account real options exercise thresholds.

2.3 Forward Computation of IRR and PBP

On these cash flows it is possible to compute several thumb rules widely used in the practice of capital

budgeting. Payback period (PBP) and Internal Rate of Return (IRR) can be computed in a path wise way

only going forward on each optimally managed cash flow time series.

PBP computation is straightforward, see for instance (Lefley, 1996), (Kruschwitz and Loffler, 1999),

(Yard, 2000). As a matter of fact, it implies simply the cumulation of CFt until the initial investment is

completely recovered, see expression (5).

PB = pb ⇔ I =

int(pb)∑

t=1

CFt + [pb − int (pb)] · CFint(pb+1) (5)

where:
PB := payback period, expressed in the same frequency units as CFt;

int (pb) := integer number of periods before the last;
CFint(pb+1) := cash flow of the last period. Under the hypothesis of equally distributed cash flows within each

period, a fraction of the last cash flow covers the initial capital which is still to be recovered at time
int (pb).

In CFt histories in which investment does not pay back, i.e. inflows do not recover completely initial

investment, we have computed a fractionary recovery ratio to show how much of the initial capital is actually

recovered.

IRR computation, instead, can be computationally burdensome.11 A textbook like version of this in-

vestment parameter is simply not applicable to the generality of the CFt histories both with and without

real options. As a matter of fact, CFt series change sign more than once. We have discarded the truncation

11For some analytical proofs about existence of internal rates of returns and computational feasibility of NPV see (Saak and
Hennessy, 2001) and (Oehmke, 2000).
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theorem solution and we have adopted a generalized version of the internal rate of return according to Te-

ichroew, (Teichroew et al., 1965b), (Teichroew et al., 1965a), (Teichroew, 1964). In essence, IRR according

to Teichroew IRRT is the internal rate of return which equals the running compound value (RCV) to the

last cash flow produced by the investment project, taken with the negative sign, compounding positive RCV

with the opportunity cost of capital, in our case rf , and negative ones with IRRT , see expressions (6)-(8).

In other words, IRR according to Teichroew sets to zero the compound value of cash flows produced by an

investment at the end of its life. This is equivalent to setting up to zero its present value. Because of this,

the simple textbook like IRR is a particular case of IRRT . Results have been found using a simple grid

search combined with a secants algorithm. IRRT does not exist in the cases in which cash flows have all

negative signs, or are not “well behaved”, see last column in table 1. The probability of these occurrences

is very low.

at t = 0:

RCV0, 1 =






CF0 · (1 + r)

CF0 · (1 + IRR)
for CF0






> 0

< 0
(6)

∀ t = 1, . . . N − 2:

RCVt,t+1 =






[CFt + RCVt−1,t] · (1 + r)

[CFt + RCVt−1,t] (1 + IRR)
for [CFt + RCVt−1,t]






> 0

< 0
(7)

at t = N :

RCVN−1,N = −CFN (8)

In order to get the annualized interest rate for IRR, linear compounding was used, i.e. IRR = IRR1/h ·h

for a subperiod ∆ t = 1/h. As a matter of fact, subannual compounding does not allow to compute equivalent

annual rates for IRR < −100%. Both PBP and IRR computed on each of the Montecarlo experiments were

averaged to get expected payback period and internal rate of return of the project. Moreover, we could

provide the whole distribution of these investment parameters.

3 Numerical example in shipping finance

In this section we apply to a stylized case study in shipping finance the methods previously devised for

computing PBP and IRR in the presence of real options. The choice of the shipping industry has been

motivated both on positive and normative capital budgeting grounds. A short comparison with other case
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studies in recent literature is drawn to show that our approach is definetly a new contribution to the

field. Setup and motivation of the numerical example and results obtained conclude the section. The main

conclusion is that real options are effective in reducing downside risk in IRR and in increasing its expected

value. Moreover, real options accelerate recovery of capitals invested, reducing both payback period and the

expected life of the project and increasing the expected recovery rate.

Investments in the shipping industry has been often studied using real options, see for instance (Dixit

and Pindyck, 1994) on page 237, (Goncalves de Oliveira, 1999) page 185. This is due to the fact that in

tramp shipping services, strategic interactions among competitors are really meaningless. This allows us to

apply a reduced model in which a representative agent is faced by a whimsical nature generating the most

important profitability driver of the industry, time charter rates. The data generating process of this series

has been specified as a driftless GBM by (Dixit and Pindyck, 1994) and a GBM with drift by (Goncalves de

Oliveira, 1999). Instead, it is possible to show, see appendix A in (Alesii, 2003), that tramp shipping time

charter rates are well described by an Arithmetic Ornstein Uhlenbeck.

Moreover, both these models are derived in a infinite time horizon, being based on stationary dynamic

programming. Being a ship a finite lived asset, we have preferred to study the opportunity to invest in

a ship over a finite time horizon, T=10 years. Because of these specific features, we were able to derive

exercise thresholds for the whole life of the project while this was not the case for the two papers previously

mentioned in which only individual levels of the state variable are given as thresholds. Finally, while (Dixit

and Pindyck, 1994) on page 237 evaluates the vessel with all the real options we have considered here,

namely option to wait, to mothball and to restart, and option to abandon, (Goncalves de Oliveira, 1999)

page 185 studies only the switching options to mothball and to restart. Is it worth emphasizing the fact

that both the previous models are based on expanded NPV only and that, to our knowledge, there is not

in the current literature any extension of the elegant symbolic stochastic algebra that derives the implied

values of PBP and IRR.

Although any textbook in financial management shows that the use of these thumb rules does not lead to

shareholders’ value maximization, practitioners in the shipping industry use them thoroughly. For instance,

leading shipping management consultants propose together with second hand ship evaluations also PBP and

IRR, see (Drewry and Jupe, 2001) and (Drewry and Kellock & Co, 1999). A recent survey by (Cullinane and

Panayides, 2000) reports IRR as the mostly used decision rule, followed by NPV and PBP. These analyses

are usually performed on an expected scenario discounted using a risk adjusted rate. Risk is taken into

account through sensitivity analysis. Optimal dynamic decisions are simply ignored.
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The widespread use of IRR in the evaluation of shipping investment is mirrored in some normative

literature that applies risk analysis à la Hertz to IRR distribution, see (Haralambides, 1993) in (Gwilliam,

1993). There a distribution of returns is derived under a probability assigned by the representative agent,

more or less subjectively. In conclusion, the derivation of the whole distribution of PBP and IRR in the

presence of real options for a shipping industry investment can be of some interest to ship owners and

financiers being these thumb rules more easily understood by both the industrial and the banking practice.

The numerical example has been set up as follows. The initial investment is c1,2 = 40, or cost to move

the dynamic system from mode 1, wait, to mode 2, operate. Costs to mothball the project are c2,3 = 2, cost

to move from mode 2, to mode 3, laid up ship, e.g. Fujairah anchorage off Oman coast. Costs to restart

the project are c3,2 = 4. If the project is abandoned it yields c3,4 = 5, cost to move from mode 3 to mode

4, abandoned, e.g. Bangladesh wrecking yard. 12

The project has an expected technical life of 10 years and its operating mode can be revised every six

months exercising the options to start the project, to mothball, to restart or to abandon it. In operating

mode the profit is πO = 20 · θs − 7 while in mothballing mode it is πM = −1.5. In both waiting mode and

abandonment mode cash flows are nil. 13

The state variable has been specified as an arithmetic Ornstein Uhlenbeck with the following parameters:

η = .125, θ = .5, σθ = .125, in a grid with θmin = 0 and θmax = 1 with ∆ θt = 1%. This process has been

chosen after estimating the process parameters on 53 years of monthly time series reported in appendix A

of (Alesii, 2003). The proportions between the normal value and volatility are equivalent to those of dry

bulk time charter computed in appendix B of (Alesii, 2003). Reversion speed resembles that of the same

time series.

We have derived the value of the investment project at time t = 0 in a backward induction procedure

applied to equation (2). Results are represented by the smoothed lines without markers in figure 2. The

same procedure has been run both for dynamic active management and passive management. From the

same procedure we have derived the real options exercise thresholds, see equation (3), for the whole life of

the project as represented in figure 1.

We have performed 80,000 Euler Scheme Monte Carlo simulations of the state variable θt approximating

equation (4) with the same discretization used in the backward induction. Then, on each of these time series

12We consider the wreckage profit instead of the second hand ship price because the former can be considered deterministic
while the latter varies considerably in the horizon chosen for the model. Hence, a better specification to take into due account
second hand ship price would be as a second state variable. We save this extension for another paper.

13It is worth noting that this specification of the model does not consider that different real options have different lags between
their exercise and their effect. For instance, the option to wait is effective at least after two or three years the ship has been
ordered to the shipyard. This would require a new specification of the model. We save this extension for another paper.
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we have computed CFt net of transition costs taking into due account the optimal operating modes indicated

by real options exercise thresholds. Results are reported in figure 1 as smoothed lines with markers. As

a matter of fact, while the RPVs have been derived for 100 different initial values simultaneously, Monte

Carlo simulations have been performed for 10 initial values θ0 = 0.0, 0.1, 0.2, . . . , 0.8, 0.9, 1.0.

At a first glance on figure 2 forward and backward computed expected values seem to be the same both

with and without real options. This is confirmed by convergence tests performed in Appendix A in which

expected values for actively managed projects differ on the average at most 1.5% for θ0 = 0 and absolute

differences are really meaningless with respect to the sum initially invested. This assures that both backward

induction and forward computation are modeling the same optimal dynamic behavior. Convergence for pas-

sively managed projects expected values is, instead, complete. Results on NPV distributions are thoroughly

commented in (Alesii, 2003) where it is shown that real options are effective not only in enhancing value

but also in taming risk, reducing the so called project at risk.
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Figure 2: RPV and Monte Carlo Markov Chain Expected Expanded NPVs
Legend: The graph reports RPVs for both the active and passive management of the project, with and without real options, smoothed

line without markers. Together with these values, the corresponding averages from the Monte Carlo Markov Chain for selected levels of

θt=0 are reported, namely θt=0 = 0, .1, .2, . . . , .9, 1. These are represented with markers, circles and squares respectively.

In this paper we focus on IRR and PBP which were computed on the same CFt series both passively

and actively managed with the optimal exercise of real options. Table 1 reports results about internal rate

of return computed according to Teichroew, while tables 2 and 3, to be read together with table 4, report

results about the payback period, the recovery rate when the investment is not completely repaid and the

life of the project in the case in which it is actively managed. As a matter of fact, passively managed projects

last just as much as the technical life of the project.
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A. Passive management:

θ0 Pr(IRR < 0) Pr(IRR < rf ) q.99 q.95 q.50 M(IRR) std(IRR) max(IRR) Skco Kuco Pr(CF < 0 ∀t) Pr(IRR = n.a.)

0.0 92.3% 96.7% -493% -430% -30% -100.6% 143.5% 28.8% -1.53 3.88 18.6% 0.026%
0.1 86.8% 92.9% -486% -417% -25% -92.4% 139.2% 35.4% -1.59 4.12 14.9% 0.025%
0.2 77.4% 85.4% -481% -401% -18% -81.2% 134.7% 40.5% -1.69 4.54 10.5% 0.013%
0.3 65.2% 73.8% -482% -386% -10% -69.5% 131.3% 47.3% -1.82 5.10 5.1% 0.015%
0.4 51.4% 59.6% -481% -361% -1% -52.4% 123.5% 52.3% -2.12 6.50 1.5% 0.015%
0.5 36.4% 42.9% -453% -304% 10% -28.8% 106.6% 62.2% -2.65 9.61 0.2% 0.015%
0.6 22.9% 27.0% -392% -217% 21% -4.7% 85.5% 68.5% -3.37 15.03 0.0% 0.000%
0.7 12.7% 14.8% -318% -84% 33% 17.6% 65.5% 76.0% -4.31 24.54 0.0% 0.003%
0.8 6.3% 7.2% -223% -11% 47% 38.0% 47.8% 83.1% -5.38 40.41 0.0% 0.001%
0.9 2.6% 2.9% -82% 22% 63% 57.1% 34.2% 89.4% -6.77 71.90 0.0% 0.001%
1.0 1.0% 1.1% 0% 46% 79% 74.1% 22.9% 96.1% -7.02 89.46 0.0% 0.003%

B. Active management:

θ0 Pr(IRR < 0) Pr(IRR < rf ) q.99 q.95 q.50 M(IRR) std(IRR) max(IRR) Skco Kuco Pr(Not taken) Pr(IRR = n.a.)

0.0 25.1% 30.7% -79% -43% 18% 13.4% 28.7% 75.9% -1.19 5.19 88.9% 0.000%
0.1 24.8% 30.3% -75% -42% 18% 13.3% 28.2% 84.6% -1.13 4.80 84.5% 0.000%
0.2 24.5% 29.9% -74% -45% 19% 13.8% 28.5% 76.5% -1.11 4.56 77.1% 0.000%
0.3 23.7% 28.8% -71% -46% 20% 14.1% 28.4% 79.9% -1.10 4.35 65.3% 0.000%
0.4 23.7% 28.4% -71% -47% 20% 14.1% 28.4% 83.1% -1.13 4.36 49.7% 0.000%
0.5 22.0% 26.6% -72% -47% 21% 14.9% 28.4% 80.8% -1.20 4.51 29.4% 0.000%
0.6 20.5% 25.0% -70% -49% 21% 14.8% 27.5% 68.5% -1.31 4.55 0.0% 0.000%
0.7 10.0% 12.3% -56% -21% 34% 29.1% 24.2% 76.0% -1.46 5.81 0.0% 0.000%
0.8 3.9% 4.9% -34% 6% 47% 44.1% 21.3% 83.1% -1.46 6.61 0.0% 0.000%
0.9 1.1% 1.4% -2% 27% 63% 60.1% 18.3% 89.4% -1.50 7.17 0.0% 0.000%
1.0 0.2% 0.3% 27% 48% 79% 75.5% 14.8% 96.1% -1.69 8.38 0.0% 0.003%

Table 1: IRR Variability
Legend: q.99:= 99th quantile; q.95:= 95th quantile; q.5:= median; M(IRR):= average of the simulated generalized Teichroew IRRs; std(IRR):= standard deviation

of the simulated generalized Teichroew IRRs; Skco = µ3

σ3

E[(x−µ)3]
σ3 : standardized skewness coefficient according to Irving Fisher; Kuco = µ4

σ4 := standardized kurtosis

coefficient, a value of 3 indicates a normal, less than 3 a platicurtic, more than 3 a leptocurtic; Pr(CF < 0 ∀t):= probability of all negative cash flows for passively

managed projects or of a never taken investment for actively managed ones; Pr(IRR = n.a.):= probability of non existence of Teichroew IRR.



14 Rules of Thumb in Real Options Analysis - September-2003 - Giuseppe Alesii

From table 1 we can conclude that real options 14 are effective not only in increasing expected return

from investment but also in reducing downside risk. As a matter of fact, both expected values and medians

for the actively managed project are definetly higher than those of the passively managed ones. This is true

for all the levels of θ0 but those above the initial investment threshold θ1→ 2 = .59.

Hence, we can conclude that the option most effective in increasing expected value is the option to wait.

Instead, the options to mothball and to restart are the least effective. No conclusion we can reach for the

option to abandon being this thoroughly used for all the initial θ0.

Moreover, downside risk in actively managed projects is definetly reduced. Not only the probability

of having a negative return is decreased many times, see first two columns in table 1, but also, V aR.99

and V aR.95 are definetly reduced. In essence, real options reduce negative skewness of IRR distributions,

decreasing occurrences in which IRR is below 100%, i.e. occurrences in which investment projects not only

burn all the initially invested capital, namely c1,2, but also require additional capital to be maintained over

the project horizon. This dovetails with the results found by (Alesii, 2003) in which expanded NPV is rarely

found to be lower than minus the initially invested sum. The fact that we have used here a version of IRR

which ex ante does not always exist does not prevent us to draw this parallelism since it was not possible

to get an IRR in a negligible number of cases, see last column in table 1.

It is worth noting that these results are obtained following a very specific dynamically optimal behavior.

To limit ourselves to the exercise of the option to wait, higher IRRs are obtained because investment is

implemented in slightly more than 10% of the cases for θ0 = 0 or more than 70% for θ0 = .50. Obviously,

investment project is always implemented for levels above the investment threshold. 15 In this way, repre-

sentative agent discards also all the occurrences in which every cash flow from investment is negative, see

last but one column in panel B in table 1.

Payback Period is definetly reduced by real options, see mean and median columns in table 2. Although

that is true, the most effective option in reducing PBP seems to be the option to wait. As a matter of fact,

for levels of θ0 above the investment threshold, mean and median are the same or not significantly different.

From results reported in the same table, real options appear even more effective in reducing downside

risk for PBP, see q.99 and q.95 columns. Probabilities of not finding a PBP are drastically reduced because

investment is not taken in a high percentage of cases as already noticed above for IRR results. As a matter

of fact, probabilities that investment does not pay back are very low in the neighborhood of the investment

14In this case the option to wait, to mothball, to restart and to abandon, typically downside risk real options.
15To give a thorough understanding of this optimal behavior, the probability of exercising the option to mothball once, twice

etc should be included. This would help to understand whether the optimal behavior endogenous to the expanded net present
values is actually feasible or it is a simple abstraction. We save this extension for another paper.
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threshold while are nil for the other initial levels of θ0. Hence, probabilities that investment pays back when

and if it is taken are very high.

Even when investment project does not pay back completely, real options allow to recover a higher

percentage than in the case of a passively managed project, see table 3. For instance for θ0 = .6 in almost

20% of the cases investment does pay back initially invested capital only fractionally, see table 2. Recovery

rates that can be read in table 3 are much higher expecially in the lower tail.

The beneficial effects of real options on both IRR and PBP, both in terms of improved expected values

and reduced downside risk, are due to an investment behavior that delays investing until the state variable

reaches the threshold level for exercising the option to wait and abandons the investment as soon as the

abandonment threshold is reached. This shortens the expected life of the project when it is implemented,

see table 4. For instance, for levels lower than the investment threshold θ1→2 = .59, investment projects

have a very short expected life being implemented late and abandoned early.

Considered all together, tables 1 - 4 give a whole string of parameters on which negotiation can take

place between headquarters and division managers or between the shipowner and her banker. For instance,

for a level of θ = .6, the expected level of net present value is E(NPVp) = 27.18 for the passively managed

project while it is E(NPVe) = 30.51 for the actively managed one, being the difference the value of the

switching options to mothball, to restart and to abandon.16 This present value has been translated into

PBP and IRR. The levels of expected IRR are respectively E(IRRT )p = −5% and E(IRRT )e = 15%. It is

worth noting that rates of return are more effective in underlining the difference between an active and a

passive management. Instead, the corresponding expected levels of PBP are not significantly different since

the option to wait has been exercised for θ0 > .59. Although that is true, the option to abandon together

with the switching options, to mothball and to restart, are effective in increasing the recovery rates. As a

matter of fact, not only occurrences in which capital is not recovered are drastically reduced, from 7.8% to

0.5%, but also cases in which only a fractional recovery takes place are increased, from 12.0% to 19.8%. Even

in those cases, capital recovered in the worst 5% occurrences is 11.8% if real options are used to manage the

project, while it is 5.5% in cases in which it is passively managed.

In conclusion, in this paragraph we apply the methods previously devised to a sketched case study in

shipping finance deriving the distributions of IRR, PBP together with recovery rates and life of the project.

This allows us to reach conclusions not only about the value enhancing properties of real options but also

about the risk reducing ones. As a matter of fact, IRR is not only increased in its expected values but

also its downside risk is definetly trimmed down by real options. To the same token, PBP is reduced in its

16Results about NPV are provided in (Alesii, 2003).
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expected values and its upside risk is definetly decreased.

Computing these thumb rules has allowed us to give a more intuitive insight into the optimal behavior

endogenous to real options valuation. As a matter of fact we have shown what is the probability of exercising

the option to wait and how the life of the project is affected by optimal investment delaying and abandoning

strategies.

A. Passive management:

θ0 q.01 q.05 q.50 M(PBP ) std Skco Kuco Pr(Not taken) Pr(No PB) Pr(PB) Pr(Frac Rec)

0.0 10.0 9.9 8.6 8.4 1.2 -0.69 2.84 0.00% 79.6% 6.3% 14.1%
0.1 10.0 9.8 8.2 8.0 1.3 -0.50 2.43 0.00% 69.8% 11.3% 18.8%
0.2 10.0 9.8 7.6 7.5 1.5 -0.27 2.16 0.00% 56.2% 20.5% 23.3%
0.3 9.9 9.6 6.9 6.9 1.7 0.00 2.01 0.00% 40.8% 33.7% 25.5%
0.4 9.9 9.4 6.0 6.2 1.8 0.31 2.11 0.00% 26.6% 49.2% 24.2%
0.5 9.8 9.0 4.9 5.3 1.8 0.71 2.62 0.00% 15.2% 65.7% 19.1%
0.6 9.6 8.2 3.8 4.4 1.7 1.25 4.00 0.00% 7.8% 80.2% 12.0%
0.7 9.0 6.6 3.0 3.5 1.4 2.02 7.43 0.00% 3.4% 90.7% 5.9%
0.8 7.6 4.5 2.4 2.7 1.0 3.24 16.81 0.00% 1.2% 96.6% 2.2%
0.9 4.6 3.0 1.9 2.1 0.6 5.25 45.73 0.00% 0.3% 99.1% 0.6%
1.0 2.7 2.1 1.7 1.7 0.3 8.86 159.02 0.00% 0.0% 99.9% 0.1%

B. Active management:

θ0 q.01 q.05 q.50 M(PBP ) std Skco Kuco Pr(Not taken) Pr(No PB) Pr(PB) Pr(Frac Rec)

0.0 6.3 5.1 3.0 3.2 1.0 1.17 4.44 88.86% 0.0% 8.3% 2.8%
0.1 6.8 5.5 3.1 3.3 1.1 1.27 4.85 84.44% 0.0% 11.7% 3.9%
0.2 7.2 5.8 3.2 3.5 1.1 1.26 4.72 77.00% 0.0% 17.3% 5.7%
0.3 7.6 6.1 3.3 3.6 1.2 1.26 4.60 65.25% 0.0% 26.5% 8.2%
0.4 8.1 6.6 3.4 3.8 1.4 1.26 4.43 49.62% 0.1% 38.5% 11.8%
0.5 8.6 7.1 3.6 4.0 1.5 1.23 4.21 29.36% 0.2% 55.2% 15.2%
0.6 9.5 8.0 3.8 4.3 1.7 1.25 4.04 0.00% 0.5% 79.7% 19.8%
0.7 8.8 6.5 3.0 3.4 1.4 1.99 7.39 0.00% 0.0% 90.3% 9.6%
0.8 7.3 4.5 2.4 2.7 1.0 3.14 16.25 0.00% 0.0% 96.4% 3.6%
0.9 4.5 3.0 1.9 2.1 0.6 4.93 41.52 0.00% 0.0% 99.1% 0.9%
1.0 2.7 2.1 1.7 1.7 0.3 7.64 122.96 0.00% 0.0% 99.8% 0.2%

Table 2: PBP Variability
Legend: q.01: first centile; q.05:= first ventile; q.5: median; M(PBP ): mean of computed payback periods; std: standard

deviation of computed payback periods; Skco = µ3

σ3

E[(x−µ)3]
σ3 : standardized skewness coefficient according to Irving Fisher;

Kuco = µ4

σ4 := standardized kurtosis coefficient, a value of 3 indicates a normal, less than 3 a platicurtic, more than 3 a

leptocurtic; Pr(Not taken):= probability of not taking the investment project; Pr(No PB):= probability that the investment

project does not pay back at all; Pr(PB):= probability that the investment pays back completely and more; Pr(Frac Rec):=

probability that the investment project yields back only a fraction of the initially invested lump sum, see table 3 for the

distribution of these fractional recovery.
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A. Passive management:

θ0 Min q.99 q.95 q.5 M(ReRa) std max Skco Kuco

0.0 00.0% 00.5% 3.0% 39.0% 42.2% 28.0% 99.5% 0.30 1.95
0.1 00.0% 00.5% 3.5% 41.5% 44.2% 28.4% 99.5% 0.23 1.89
0.2 00.0% 00.5% 4.0% 45.5% 46.5% 28.3% 99.5% 0.13 1.84
0.3 00.0% 01.0% 4.5% 47.5% 48.1% 28.4% 99.5% 0.06 1.83
0.4 00.0% 01.0% 5.0% 50.0% 49.7% 28.3% 99.5% -0.02 1.84
0.5 00.0% 01.0% 5.5% 51.5% 50.8% 28.0% 99.5% -0.05 1.86
0.6 00.0% 01.0% 5.5% 52.0% 51.1% 28.0% 99.5% -0.07 1.86
0.7 00.0% 01.0% 6.0% 52.5% 51.5% 27.8% 99.5% -0.09 1.88
0.8 00.0% 00.5% 5.0% 53.0% 51.6% 27.6% 99.5% -0.13 1.92
0.9 01.0% 02.3% 7.3% 54.5% 52.2% 27.3% 99.5% -0.12 1.91
1.0 00.0% 00.0% 6.5% 51.8% 51.6% 26.3% 96.5% -0.11 2.05

B. Active management:

θ0 Min q.99 q.95 q.5 M(ReRa) std max Skco Kuco

0.0 01.5% 15.6% 28.5% 72.3% 68.3% 22.3% 99.8% -0.55 2.34
0.1 00.3% 13.8% 25.5% 70.3% 66.9% 23.1% 99.8% -0.50 2.27
0.2 01.3% 10.3% 22.8% 69.3% 65.5% 23.8% 99.8% -0.48 2.23
0.3 00.3% 08.5% 19.3% 66.0% 62.9% 24.5% 99.8% -0.39 2.13
0.4 00.3% 07.1% 17.8% 63.8% 61.2% 25.3% 99.8% -0.32 2.03
0.5 00.0% 04.8% 14.8% 60.8% 58.5% 25.9% 99.8% -0.24 1.98
0.6 00.0% 03.4% 11.8% 55.1% 54.5% 26.5% 99.8% -0.09 1.89
0.7 00.0% 10.8% 22.8% 65.8% 63.4% 22.9% 99.8% -0.38 2.25
0.8 01.3% 21.3% 36.8% 75.3% 72.0% 19.0% 99.8% -0.71 3.01
0.9 24.8% 35.3% 48.0% 79.8% 77.4% 15.2% 99.8% -0.77 3.16
1.0 52.8% 53.3% 63.3% 81.8% 81.1% 11.6% 99.3% -0.26 2.16

Table 3: Recovery Rate Variability
Legend: The table reports descriptive statistics for recovery rates of fractionary recovering investments. The probability of

these occurrences are those reported in the last column of table 2. q.99:= 99th quantile; q.95:= 95th quantile; M(ReRa)=

average of the recovery rates; std: standard deviation computed on recovery rates; Skco = µ3

σ3

E[(x−µ)3]
σ3 : standardized skewness

coefficient according to Irving Fisher; Kuco = µ4

σ4 := standardized kurtosis coefficient, a value of 3 indicates a normal, less than

3 a platicurtic, more than 3 a leptocurtic. Values of -1 in both coefficients indicate degenerate distributions on which it was not

possible to compute them.
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θ0 Min q.99 q.95 q.5 M(Project Life) std max Skco Kuco

0.0 0.5 1.0 3.0 5.0 5.1 1.4 9.0 -0.24 3.05
0.1 0.5 2.0 3.0 5.5 5.4 1.5 9.0 -0.24 2.80
0.2 0.5 2.5 3.0 6.0 5.9 1.6 9.5 -0.30 2.65
0.3 0.5 2.5 3.5 6.5 6.4 1.7 9.5 -0.40 2.53
0.4 0.5 3.0 4.0 7.5 7.1 1.8 9.5 -0.63 2.62
0.5 0.5 3.0 4.5 8.5 7.9 1.8 9.5 -1.08 3.29
0.6 2.0 3.5 5.5 10.0 9.3 1.5 10.0 -2.20 7.00
0.7 2.0 4.5 6.5 10.0 9.5 1.2 10.0 -2.72 10.00
0.8 2.5 5.0 7.5 10.0 9.7 1.0 10.0 -3.29 14.04
0.9 3.0 6.0 8.0 10.0 9.8 0.8 10.0 -3.89 19.33
1.0 3.0 6.5 8.5 10.0 9.8 0.6 10.0 -4.36 23.87

Table 4: Life of the Actively Managed Project Variability
Legend: The table reports descriptive statistics for actively managed projects lives. The probability of these occurrences are the

complement to one of Pr(Not taken) reported in table 2. q.99:= 99th quantile; q.95:= 95th quantile; M(Project Life)= expected

life of the actually taken projects; std: standard deviation computed on recovery rates; Skco = µ3

σ3

E[(x−µ)3]
σ3 : standardized

skewness coefficient according to Irving Fisher; Kuco = µ4

σ4 := standardized kurtosis coefficient, a value of 3 indicates a normal,

less than 3 a platicurtic, more than 3 a leptocurtic. Values of -1 in both coefficients indicate degenerate distributions on which

it was not possible to compute them.



September-2003 - Giuseppe Alesii 19

4 Conclusions

In this paper it is devised a new method to translate into two of the most used thumb rules, namely PBP and

IRR, the effect of the optimal exercise of real options. Using a numerical method already used by (Alesii,

2003) to derive project at risk in the presence of real options, we were able to derive the whole distribution

of the Teichroew version of the internal rate of return and of simple payback period together with fractional

recovery rate and life of the project in the presence of the option to wait, to mothball, to restart and to

abandon.

The effect of these downside risk options on the computed thumb rules is not only in improving their

expected value but also in reducing their shortfall. Moreover, this paper explores when real options are

actually exercised giving a more intuitive insight into the endogeneity of real options valuations models with

respect to actual optimally dynamic behavior. This in turn could help to consider real options models not

as a black box but simply as a way of quantifying optimal management of an industrial project.

A possible extension of this paper would be in delving into the description of this dynamic optimal

behavior giving practitioners a probable sequence of optimal actions they should conform to in order to

create value with the optimal exercise of real options, e.g. in this case how many time the options to

mothball and to restart are exercised. This would allow to compare current practice with optimal project

management according with real options and to conclude whether these are a simple pure abstraction or a

realistic model.
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A Convergence Tests

The gist of the present paper stays in the convergence of the expected Running Present Value in the DP

procedure and the average of the Markov chain Monte Carlo simulations. This fact guarantees that these two

procedures model the same dynamic optimal behavior although the former is based on backward induction

while the latter is based on a forward computation of the expanded net present value.

Therefore, this appendix reports some results about convergence of expected value of Markov chain

Monte Carlo simulations towards the values produced by the Dynamic Programming procedure. We have

checked both the results based on active and passive management. Moreover, we have checked whether the

initial level has some influence on convergence choosing a level in the middle of the discretized state variable

space θ0 = .5 together with the minimum and the maximum, θ0 = 0 and θ0 = 1.

To test convergence we have computed for 500 experiments expected values of the Markov chain Monte

Carlo simulations for several number of trials n, namely 1000, 5000, 10000, 20000, 40000 and 80000. Chang-

ing the step allowed us to test the variability of the results in different neighborhoods of n. Because of

this, experiments have a higher degree of granularity in the hundreds while this decreases as the number

of experiments increases. This experiment design was chosen to show that results variability decreases as

the number of experiments increases. We have considered the relative difference between the averages as

computed above and the corresponding RPV, see expression (9), where the exponents f and b indicate

respectively forward and backward computation.






Relative

Difference



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=

M1

(
NPV f

θ0

)
− E∗

(
RPV b

θ0

)

E∗

(
RPV b

θ0

) (9)

Results are reported in table 5. Observing means and medians together with skewness and kurtosis

coefficients, we can conclude that results distributions fairly approximate normal distributions expecially

for high number of trials. Because of this we can reasonably detect convergence from mean and standard

deviations of (9).

Passive management results show a complete convergence in the mean and a fast convergence in the

standard deviation of the results. This is true for all the three levels of θ0 that have been chosen. Instead,

active management results depend on the initial level of θ0. While for low levels relative difference converges

to around 1.5%, for middle and high levels this is definitely good, between 0.06% and 0.003%. However it

should be stressed that absolute differences are really meaningless when compared to the initial investment.

It is impressive that in both active and passive management results, convergence in standard deviation
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follows the same proportions for the same increases in the number of trials. Convergence in standard

deviation does follow the usual square of the number of trials rule. As a matter of fact, to double the

accuracy of a simulation we must quadruple the number of trials.

In conclusion, passive management results convergence is not dependent on the initial value of θ0, while

active management results depend, to a certain extent, on the initial value. However, averages of forward

computed NPV from the Markov chain Monte Carlo simulations converge to the Running present values

computed in the backward induction process with a relative difference that at most, on the average, reaches

1.5% and is never lower than 0.003%. A possible explanation of this difference, which would be hardly

acceptable for financial derivatives models, stays in the short life of the project and in the coarse time

discretization chosen.
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A) Passive Management: B) Active Management:

θ 1000 5000 10000 20000 40000 80000 1000 5000 10000 20000 40000 80000

0 M1 0.064% -0.027% 0.006% 0.007% 0.017% 0.002% M1 -3.041% -1.577% -1.464% -1.547% -1.982% -1.582%
median 0.045% 0.001% 0.008% 0.010% 0.014% 0.004% median -2.249% -1.675% -1.525% -1.685% -2.162% -1.487%

std 1.423% 0.650% 0.447% 0.325% 0.243% 0.163% std 18.939% 8.344% 6.323% 4.407% 3.292% 2.192%
skew 0.205 -0.057 0.017 0.209 -0.173 0.023 skew 0.241 0.013 0.111 0.135 0.056 0.076
kurt -0.209 -0.016 -0.023 0.518 0.147 -0.431 kurt -0.109 -0.192 -0.078 0.062 -0.029 0.073
min -3.444% -1.856% -1.407% -0.838% -0.812% -0.433% min -45.645% -25.913% -20.502% -13.689% -13.106% -7.567%
max 4.671% 2.042% 1.411% 1.367% 0.653% 0.441% max 66.389% 24.944% 16.498% 12.580% 6.553% 5.193%

0.05 M1 1.777% 0.117% 0.146% -0.381% 0.108% -0.018% M1 0.202% -0.144% -0.121% -0.175% -0.052% -0.063%
median 1.816% 0.174% 0.040% -0.516% 0.126% -0.010% median 0.231% -0.149% -0.109% -0.215% -0.050% -0.067%

std 16.699% 7.404% 5.576% 3.793% 2.814% 2.075% std 5.380% 2.487% 1.825% 1.199% 0.932% 0.684%
skew 0.134 -0.023 0.014 0.132 0.044 -0.074 skew 0.138 -0.047 0.000 0.198 -0.106 0.098
kurt 0.157 0.074 -0.088 0.270 0.466 0.041 kurt 0.110 -0.071 -0.341 0.215 0.203 -0.047
min -44.995% -24.301% -17.876% -14.204% -7.972% -5.848% min -13.925% -9.673% -5.252% -4.340% -2.878% -1.949%
max 64.374% 21.155% 13.731% 11.593% 9.494% 6.260% max 17.990% 7.064% 5.370% 3.978% 2.850% 1.977%

1 M1 0.040% -0.037% -0.038% -0.005% 0.005% 0.001% M1 0.033% -0.036% -0.036% -0.008% 0.002% -0.003%
median 0.025% -0.048% -0.048% -0.011% -0.002% -0.005% median 0.026% -0.034% -0.043% -0.015% -0.005% -0.009%

std 1.271% 0.540% 0.381% 0.279% 0.194% 0.141% std 1.199% 0.512% 0.362% 0.262% 0.182% 0.133%
skew -0.100 0.055 -0.046 0.039 -0.059 0.005 skew -0.093 0.107 -0.026 0.059 -0.058 0.006
kurt 0.238 0.275 -0.038 -0.144 0.010 0.263 kurt 0.281 0.302 -0.014 -0.106 0.024 0.267
min -4.607% -1.810% -1.202% -0.860% -0.527% -0.434% min -4.410% -1.754% -1.168% -0.822% -0.480% -0.419%
max 3.993% 1.601% 1.009% 0.861% 0.579% 0.469% max 3.613% 1.558% 0.947% 0.843% 0.556% 0.449%

Table 5: Convergence Tests Results
Legend:Monte Carlo simulations have been replicated 500 times for different number of trials, namely 100, 500, 1000, 2000, 4000 and 8000 for three different initial levels
of the state variable θ = 0.0, 0.5, 1.0. Statistic have been computed on the difference between the average of the trials and the the Running Present Value at time t = 0
in the DP procedure divided by the latter. Skewness and kurtosis have been computed according to the following expressions:

γ̂ =
n

(n − 1) · (n − 2)
·

n∑

i=1

(
xi − x

s

)3

δ̂ =

{
n · (n + 1)

(n − 1) · (n − 2) · (n − 3)
·

n∑

i=1

(
xi − x

s

)4

}
− 3 ·

(n − 1)2

(n − 2) · (n − 3)


