
Evaluating Natural Resource Investments

Using the Least–Squares Monte Carlo

Simulation Approach∗

Andrianos E. Tsekrekos† Mark B. Shackleton‡

Rafa�l Wojakowski‡

March, 2003

Abstract

The idea that Monte Carlo simulation can not be applied to the
pricing of options (real or financial) with early exercise features has
been overridden in the light of new research results in the last decade.
This paper attempts to contribute to this revived interest on Monte
Carlo simulation valuation, by applying the proposed least–squares
simulation method to the valuation of a hypothetical natural resource
investment. Results seem to suggest that the Monte Carlo framework
might be a natural way forward in the valuation of investments under
multiple uncertainties and project–specific complexities.

∗Very preliminary. Please do not quote without permission.
†Corresponding author, Department of Economics & Finance, University of Durham,

23–26 Old Elvet, Durham, DH1 3HY, United Kingdom. Phone: +44 (0)191 3346347. Fax:
+44 (0)191 3747289. e-mail: a.e.tsekrekos@durham.ac.uk.

‡Department of Accounting & Finance, Management School, Lancaster University, Lan-
caster, LA1 4YX, United Kingdom. e-mail: [m.shackleton, r.wojakowski]@lancaster.ac.uk.

1



1 Introduction

Even though it is now widely accepted amongst academic and corporate

practitioners that investment alternatives can in principle be evaluated via

contingent claim techniques, it is also often acknowledged that there are

several aspects of corporate decision–making that do not conform to the cel-

ebrated Black–Scholes–Merton pricing framework (Black and Scholes (1973),

Merton (1973)).

One such aspect, which partly motivates this paper, questions the suit-

ability of the Black–Scholes–Merton geometric Brownian motion assumptions

in evaluating real investment options. Contrary to the Black and Scholes

(1973) setting, most investment opportunities can be undertaken at any point

in time and not just at a pre–specified expiration date. Thus their award–

winning, European–style option pricing formula can hardly be considered a

realistic valuation tool for the options embedded in most investment deci-

sions of interest. Furthermore, unlike the American–style option formula of

Merton (1973) which forms the basis of much theoretical research in real op-

tions, investment decisions are almost never perpetual in nature. Regardless

how proprietary or unique a project is, it is rather simplistic to assume that

the option to exploit the project will last forever. Moreover, the option to

invest in a project is in many cases exposed to more risk factors than the

basic financial option pricing framework will by construction admit.

Incorporating American–style exercise features, finite option maturities

and multiple stochastic variables might be desirable features of a real op-

tions valuation framework, however the mathematical complexity that such

features introduce often makes analytical solutions impossible. Thus, for con-

tingent claim valuation of an investment opportunity to be realistic, decision–

makers will most likely have to resort to numerical methods.

Fortunately, there is a plethora of numerical methods (initially proposed

in the traded derivatives literature) which could in principle be applied to

the valuation of real investment options. In this paper, we initially attempt

a brief (and by no means comprehensive) overview of the numerical meth-

ods proposed, before concentrating on the applicability of a newly–proposed

method based on Least–Squares Monte Carlo simulation.

This new approach, proposed by Longstaff and Schwartz (2001), adds
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to a recently revived interest in evaluating American–style and/or path–

dependent, finite–horizon, multidimensional options by simulation. Prior

contributions to this stream include Tilley (1993), Carriere (1996), Bar-

raquand and Martineau (1995), Broadie and Glasserman (1997), Broadie,

Glasserman and Jain (1997), Reymar and Zwecher (1997), Ibáñez and Zap-

atero (1998), Carr (1998) and Tsitsiklis and Van Roy (2001).1

In this paper we attempt to assess the applicability of the Longstaff and

Schwartz (2001) algorithm for valuing real investment opportunities. In Sec-

tion 2, we start with an overview of the most important numerical methods

applied in option pricing, which could in principle be used in a real options

valuation framework. In Section 3 a detailed step–by–step account of the

Longstaff and Schwartz (2001) algorithm is presented for completeness. In

Section 4 the algorithm is applied to the pricing of American options un-

der constant (Section 4.1) and mean–reverting (Section 4.2) interest rates,

and the results are benchmarked against alternative pricing methods and

published research. In Section 5 we turn our attention to the valuation of

a natural resources investment with several option–like characteristics. The

valuation is initially benchmarked against an existing model (Section 5.1),

before extended to account for multiple state variables (Section 5.2). Finally,

Section 6 concludes.

2 Numerical methods

2.1 Lattice or tree approaches

Discrete trees representations of stochastic processes and their use in option

valuation have first been proposed by Cox, Ross and Rubinstein (1979) and

Rendleman and Bartter (1979). In its simplest form, the multiplicative bi-

nomial lattice has proved an excellent pedagogical and pricing tool. The

method’s power lies in that it is easy to set up, it can accommodate any

pattern of cash flow payments of an underlying and it can handle early ex-

ercise features that are essential for American–style derivatives. An example

of binomial tree valuation of real asset investments is provided by Smit and

Ankum (1993).

1Some of these papers are more extensively reviewed in Section 2.3.
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However the problem of the method is that handling more than a couple

of stochastic factors using a lattice seems computationally infeasible. In

particular, the required number of tree nodes grows geometrically when we

allow for multiple stochastic factors such as interest rates, dividend yields,

volatilities, or multiple underlying assets. Among others Boyle (1988), Boyle,

Evnine and Gibbs (1989), Trigeorgis (1991) and Gamba and Trigeorgis (2001)

have proposed lattice methods for (real) contingent claims that can handle

more than one stochastic variable. However in these contributions, all the

underlying stochastic variables have to be jointly lognormally distributed, an

assumption difficult to justify for many factors such as the interest rate or

the convenience yield of commodities.2

2.2 Finite difference method

Brought to finance from engineering, Brennan and Schwartz (1977) used

finite difference methods to value a derivative by solving the security differ-

ential equation numerically. The differential equation is first approximated

by a set of difference equations, which are then solved iteratively from known

boundary conditions.

The appealing feature of the method is its speed: in an accompanying

paper, Brennan and Schwartz (1978) establish the relation of finite differences

with numerical integration, which is available as a standard procedure in most

mathematical software packages. In another important paper, these authors

demonstrated the applicability of the method in the evaluation of natural

resource investments (Brennan and Schwartz (1985)).

However, much like lattice methods, the finite difference approach suffers

from the curse of dimensionality, i.e. it is computationally impossible to

extend it to several stochastic underlying factors.3

2For empirical evidence on the stochastic behaviour of interest rates and convenience
yields readers are referred to Chan et al. (1992) and Schwartz (1997) respectively.

3It has been shown that the Kamrad and Ritchken (1991) extension of the basic lattice
framework, if properly parameterised, is a special case of the explicit finite difference
method (see Rubinstein (2000) for the correspondence). This relation between the two
approaches seems to rationalise their common inability to handle multiple state variables.
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2.3 Monte Carlo simulation

Boyle (1977) was the first to apply Monte Carlo (MC from now on) simula-

tion to option pricing. Simulation–based techniques are straightforward, easy

to set up and can handle both discrete and proportional dividend payments.

Their most appealing feature however is that the computational complexity

involved only grows linearly with the number of the underlying stochastic

processes introduced. Furthermore, MC simulation is perhaps unique vis–

á–vis other numerical methods in that the distribution(s) used to generate

returns on the underlying asset(s) need not have closed form analytic ex-

pressions, thus opening the possibility of deriving prices using empirically

observed distributions.

Despite its desirable features, until very recently it has been perceived

that it would be impossible to use MC simulation to price American–style

derivatives (see Campbell, Lo and MacKinley (1997, p. 390) and Hull (1997,

p. 364)). The reason is the early exercise possibility inherent in American

options, which can not be captured by a forward–induction technique like

simulation.

The first attempt to determine the early exercise strategy of American

options via simulation was by Tilley (1993). He proposed a MC algorithm

that mimicked the standard lattice method by determining the value of keep-

ing the option alive as the present value of the expected one–period–ahead

values. Carriere (1996) used the theory of stopping times to establish that

the value of the early exercise privilege of American options is equivalent

to calculating a number of conditional expectations. These are usually dif-

ficult to evaluate explicitly but can be approximated using nonparametric

regression involving simulated stock price trajectories. He also suggested

that the estimators proposed by Tilley (1993) were biased. Barraquand and

Martineau (1995) developed a method similar in spirit to Tilley (1993), but

easier to extend. The key idea (so called “stratified state aggregation along

the payoff”) was to partition the time–state space into a number of bins, in

such a way that the option payoff was approximately the same for all paths

in the particular bin. From the simulated paths, the transition probabili-

ties of moving to a different bin next period conditional on the current bin

could be calculated and used to determine the expected option continuation
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value. Broadie and Glasserman (1997) and Broadie, Glasserman and Jain

(1997) proposed a method that simulated the evolution of underlying assets

via random trees that branch at each of the possible early exercise dates

and two consistent price estimates (which constituted a confidence interval

for the option price) were obtained from their method. Broadie, Glasser-

man and Jain (1997) have criticised the methods suggested by Tilley (1993)

and Barraquand and Martineau (1995). They suggested that the price es-

timates by Tilley were upward biased since the same simulated values were

used to construct the lattice–like state space and estimate the optimal early

exercise policy. They argued that the same should apply to the method by

Barraquand and Martineau and provided a simple example that showed that

convergence to the correct prices was not guaranteed. They concluded that

among the larger class of price estimators that used path stratification and

lattice mimicking, there is no unbiased estimator of the American option

price.

The method we adopt in this paper, which takes a different approach to

the computation of the early exercise value, has been proposed by Longstaff

and Schwartz (2001) (henceforth L&S). Their idea is to approximate the

conditional expectation of continuation value at each possible exercise date

from a cross–sectional regression of simulated paths. In their paper, L&S

demonstrated the applicability of the method by pricing a wide range of

option types (American–style, path dependent, multidimensional, options

on jump–diffusion processes, etc.). In the next section a description of the

L&S method is presented for the sake of completeness.

3 The Longstaff and Schwartz approach

The L&S method consists of three sequential steps: First, path trajectories

for all the relevant stochastic state variables that determine the price of an

option are simulated. Then, working backwards from the option maturity,

a matrix detailing the time (if any) at which the option is optimally ex-

ercised along each path is determined (the option payoff matrix). This is

accomplished by using least–squares regression on the cross–section of in–

the–money paths to approximate the early exercise boundary at each point
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in time. Finally, the option price is determined by discounting and averaging

the relevant option payoffs across all matrix entries.

We proceed by providing a detailed description of the L&S, three–step

method. The specification is kept as general as possible; however in some

instances, reference is made to specific option contracts for clarity.

1. Simulation of underlying asset(s) paths

(a) Simulate a large number (M) of paths of asset(s) prices or returns.

If the option has Bermudan features (i.e. it can only be exercised

at a finite number of times up to and including the option matu-

rity), the number of steps is set equal to the number of possible

exercise dates. Otherwise the number of steps (N) must be suffi-

ciently large to limit the discretisation bias and approximate the

continuous possible exercise. Let S
q
j (ti) denote a 1 × q vector of

underlying state variable(s) along a given path j at a given time

ti corresponding to step i, where j = 1, . . . ,M , i = 1, . . . , N and

q is the number of stochastic factors that the value of the option

depends on. In the case of an American put option on a stock,

q = 1 and S
1
j (ti) = Sj (ti) is the stock price along path j for times

ti.

2. Calculation of the payoff matrix

(a) Let F
(
S
q
j (ti)

)
denote the immediate exercise value of the option

along path j at time ti, j = 1, . . . ,M , i = 1, . . . , N . For ex-

ample, in the case of a put option on a stock, F
(
S
q
j (ti)

)
would

correspond to F (Sj (ti)) = E − Sj (ti) where E is the exercise

price. For a put option on the minimum of L assets, we would

have F
(
S1
j (ti) , . . . , S

L
j (ti)

)
= E−min

[
S1
j (ti) , . . . , S

L
j (ti)

]
, while

for an average strike Asian put option F (Sj (ti)) =
1
i

∑i
l=0Sj (tl)−

Sj (ti). Let P be the option payoff matrix, with dimensionsM×N
and typical elements fj,i. At time tN ≡ T (the expiration date of

the option) the payoff along each path would be the maximum of

zero and of the intrinsic value of the option, i.e.

fj,N = max
[
0, F

(
S
q
j (T )

)]
1 ≤ j ≤M (1)
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If an estimate, p̂, of the “true” European option price p is needed,

this can be done immediately by discounting and averaging the

last column of the P matrix,

p̂ =
1

M

M∑
j=1

fj,NB0,T (2)

where Bτ,s denotes the price at time τ of a zero–coupon bond with

a face value of $1, maturing at time s (s ≥ τ).
(b) For non-European option prices P , working backwards from the

option maturity T , at any time ti, 0 < i < N and for the subset

of in–the–money paths, M̃ ⊆M , M̃ =
{
j : F

(
S
q
j (ti)

)
> 0

}
, a de-

cision between immediate exercise or continuation must be made.

The optimal decision depends on a comparison between the im-

mediate exercise value, F
(
S
q
j (ti)

)
, and the conditional expected

payoff from keeping the option alive (conditional on the current

state, S
q
j (ti)) which is denoted E

[
P |Sqj (ti)

]
. Using next period

values along each path to determine the latter would lead to bi-

ased price estimates, as this would be equivalent to assuming that

the option holder has perfect foresight.4 On the other hand, again

simulating several paths from each possible exercise point would

result in the curse of dimensionality that lattice methods suffer.

L&S suggest approximating the conditional expectation of con-

tinuation using the theory of Hilbert spaces and the information

in the cross–section of the M̃ paths.

(c) The theory of Hilbert spaces tells us that any function g (x) be-

longing to the space can be represented as a countable linear com-

bination of bases for this vector space, i.e.

g (x) =
∞∑
k=0

βkφk (x) (3)

where {φk (x)}∞k=1 form a basis. To use this in practice, we repre-

sent g (x) using a finite linear combination of only K terms which

4This is the point raised by Broadie, Glasserman and Jain (1997) in their critique on
previous work by Tilley (1993) and Barraquand and Martineau (1995).
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we denote

gK (x) =
K∑
k=0

βkφk (x) (4)

One possible way to approximate gK (x) is by least–squares re-

gression: use M ≥ K + 1 observation points (g (xi) , xi) to get

estimates of the coefficients {βk}Kk=0 by solving

min
{βk}K

k=0

M∑
i=1

(
β0φ0

(
xi

)
+ β1φ1

(
xi

)
+ . . .+ βKφK

(
xi

) − g (
xi

))2

(5)

Using the resulting estimates
{
β̂k

}K
k=0

from (5), we can calculate

the approximation as

ĝK (x) =
K∑
k=0

β̂kφk (x) . (6)

According to the theory, under very general conditions, ĝK (x) →
gK (x) as M → ∞.

(d) For the problem at hand, the theory translates to the following:

for any time ti, 0 < i < N , E
[
P |Sqj (ti)

]
, the conditional expec-

tation of keeping the option alive when the current state is S
q
j (ti)

corresponds to the unknown function g (x) in (3). This is the

function we wish to approximate through least–squares regression

in order to determine the times at which early exercise is optimal.

To employ least–squares for the approximation, we will use the

cross-section of the observations provided by the simulated in–

the–money paths. That is for any j ∈ M̃ , the payoff from keeping

the option unexercised is the payoff at some point along the path

until the expiration date, discounted back to current time

yj (ti) =
N∑

n=i+1

fj,nBti,tn . (7)

This is the dependent variable, i.e. g (xi) in equation (5). The

independent variables (the firstK terms of the squared parenthesis

in equation (5)) are

Xj (ti) = H
(
S
q
j (ti)

)
(8)
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where H
(
S
q
j (ti)

)
is a transformation of the state variable(s) based

on the choice of the basis functions. Using OLS regression, a set

of coefficient estimates can be obtained

β̂ (ti) =
(
X (ti)

′X (ti)
)−1
X (ti)

′ y (ti) ,

which can then be used as in equation (6) to get an approximate

estimate of the “true” g (x) = E
[
yj (ti) |Sqj (ti)

]
, the expected

continuation value, conditional on the current state.

(e) The fitted values from the regression, ŷ (ti) = X (ti) β̂ (ti) are

now used to determine whether at time ti it is indeed optimal

to exercise the option given the state. They are compared to the

value of immediate exercise F
(
S
q
j (ti)

)
. If the latter is greater, fj,i

is set equal to F
(
S
q
j (ti)

)
and all other values in P, fj,n i < n ≤ N ,

are set equal to zero, since options can only be exercised at most

once along each path. In all other cases, fj,i is set equal to zero.

fj,i =



F

(
S
q
j (ti)

)
and fj,n = 0, i < n ≤ N if F

(
S
q
j (ti)

)
> ŷj (ti)

j ∈ M̃
0 if F

(
S
q
j (ti)

) ≤ ŷj (ti)

3. Calculating the option price

(a) At time ti = 0 an estimate P̂ of the price of the option with early

exercise features (i.e. American, Bermudan, etc.) can be found

by discounting payoffs to time zero and averaging across paths

P̂ =
1

M

M∑
j=1

N∑
i=1

fj,iB0,ti .

4 Financial options: Results and benchmarks

In this section we describe how the method is implemented in order to price

financial American–style options. In order to benchmark our implementa-

tion of the method, results are compared against alternative option pricing

numerical methods and other published research.
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4.1 One factor American puts

Initially we price American–style put options on a dividend–paying share

of stock, where the risk–neutral stock price process follows the stochastic

differential equation (SDE)

dS (t) = (r − δ)S (t) dt+ σS (t) dZ (t) (9)

with r, δ ≥ 0, σ > 0 constants and Z (t) a standard Brownian motion.

Since the solution to the SDE in (9) is known in closed–form, a sequence

of stock prices at dates 0 < t1 ≤ t2 ≤ . . . ≤ tN = T can be obtained by

S (ti+1) = S (ti) exp

{(
r − δ − 1

2
σ2

)
(ti+1 − ti) + σ

√
ti+1 − tiZ (ti+1)

}
(10)

where Z (ti+1) ∼ i.i.d. N (0, 1).

In each simulation, a total of M = 100, 000 paths and N = 50 time–steps

per year are used. The default random number generator in GAUSS is used to

simulate the stock price paths5 (experimentation with other random number

generation procedures such as those in Box and Muller (1958) and Marsaglia

and Bray (1964) made little difference in the price estimates produced).

Antithetic simulation is used as an easy variance reduction technique.

The basic idea of the technique is to introduce negative correlation between

the simulated paths. This is done by sampling M
2
, i.i.d. N (0, 1) random

numbers Z (t), and use these together with −Z (t) to generate the simulated

paths. It can be shown that this method reduces the sampling variance of

the option price estimator produced.6

To approximate the conditional expectation, we follow L&S and use the

family of Laguerre polynomials given by

Lk (x) =
ex

k!

dk
(
xke−x

)
dxk

(11)

(k = 0, 1, . . . , K) as the basis functions in the H (.) transformation in (8).

As in Longstaff and Schwartz (2001), we use the first three terms of (11) as

5The seed is set equal to 100, 000.
6Interested readers can refer to Hammersley and Handscomb (1964) for an introduction

to this technique.
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a base case, i.e. k = 0, 1 and 2 and each of the three terms is multiplied by

the weighting function e−
x
2 . Thus, at all times ti, 0 < i < N , the following

least–squares regression is performed

y (ti) = β0 + β1e
−S(ti)

2 + β2e
−S(ti)

2 (1− S (ti))

+ β3e
−S(ti)

2

(
1− 2S (ti) +

S2 (ti)

2

)
+ ε (ti) (12)

where y (ti) is given by equation (7) and ε (ti) is an error term.7

We price options ranging from deep out–of–the–money to deep in–the–

money and for different volatilities and expiration dates. Simulated American–

option prices (denoted P̂ ) are reported in column 5 of Tables 1–3. In all cal-

culations E = 40, r = 6% and δ = 0. In Table 1, put prices are benchmarked

against an implicit finite difference scheme with 40, 000 time steps per year

and 1, 000 steps for the stock price (PFD in column 4).

In all but one case, pricing errors are less than 1 cent (or 0.13% in rela-

tive terms). The maximum absolute error is 1.1 cents (0.65% in percentage

terms). In just one of the twenty option specifications priced in Table 1 is the

hypothesis H0 : P̂ = PFD rejected at a 5% significance level. We also report

simulated European put prices in column 10 (denoted p̂) which are bench-

marked against the closed–form Black and Scholes (1973) formula (pBS in

column 9). The simulation algorithm also prices the European counterparts

very accurately.

In Table 2, the same simulated prices are benchmarked against the bi-

nomial tree approach of Cox, Ross and Rubinstein (1979) with 4, 000 time

steps (PCRR). The comparison yields similar results, with all errors less than

1%. In all but one cases the hypothesis that the simulated put estimates are

equal to the binomial model prices is accepted.

Table 3 compares our results with those reported by Longstaff and Schwartz

(2001) in their original paper. Results are relatively close, with the highest

percentage error being 0.5% (2.5 cents in absolute terms). Unfortunately,

Longstaff and Schwartz (2001) do not report any details concerning the ran-

dom number generation of their implementation, thus a closer calibration

can not be achieved.
7It is recommended that all payoffs and stock prices are normalised by dividing with

the exercise price E to avoid numerical overflow.

12



S T σ PFD P̂ (s.e.) ∆US
a ∆%

US pBS p̂ (s.e.) ∆EU
b ∆%

EU

36 1 0.2 4.478 4.481 0.005 0.003 0.073 3.844 3.846 0.006 0.002 0.052

36 2 0.2 4.840 4.845 0.008 0.005 0.112 3.763 3.755 0.007 -0.008 -0.213

36 1 0.4 7.101 7.105 0.023 0.004 0.055 6.711 6.715 0.016 0.004 0.060

36 2 0.4 8.507 8.504 0.031 -0.003 -0.036 7.700 7.690 0.020 -0.010 -0.130

38 1 0.2 3.250 3.249 0.005 -0.001 -0.017 2.852 2.855 0.005 0.003 0.105

38 2 0.2 3.745 3.748 0.008 0.003 0.089 2.991 2.982 0.006 -0.009 -0.301

38 1 0.4 6.147 6.149 0.022 0.002 0.040 5.834 5.840 0.014 0.006 0.103

38 2 0.4 7.670 7.673 0.030 0.003 0.044 6.979 6.972 0.018 -0.007 -0.100

40 1 0.2 2.314 2.315 0.005 0.001 0.049 2.066 2.070 0.003 0.004 0.194

40 2 0.2 2.884 2.891 0.007 0.007 0.246 2.356 2.348 0.004 -0.008† -0.340

40 1 0.4 5.312 5.316 0.020 0.004 0.071 5.060 5.066 0.012 0.006 0.119

40 2 0.4 6.920 6.917 0.029 -0.003 -0.047 6.326 6.323 0.017 -0.003 -0.047

42 1 0.2 1.617 1.618 0.004 0.001 0.032 1.465 1.466 0.002 0.001 0.068

42 2 0.2 2.212 2.213 0.006 0.001 0.058 1.841 1.837 0.003 -0.004 -0.217

42 1 0.4 4.582 4.585 0.018 0.003 0.066 4.379 4.385 0.011 0.006 0.137

42 2 0.4 6.248 6.242 0.028 -0.006 -0.102 5.736 5.737 0.015 0.001 0.017

44 1 0.2 1.110 1.115 0.003 0.005 0.446 1.017 1.017 0.002 0.000 0.000

44 2 0.2 1.690 1.679 0.005 -0.011† -0.647 1.429 1.427 0.003 -0.002 -0.140

44 1 0.4 3.948 3.955 0.017 0.007 0.185 3.783 3.789 0.009 0.006 0.159

44 2 0.4 5.647 5.647 0.026 0.000 0.004 5.202 5.209 0.014 0.007 0.135

Table 1: This Table compares American put prices from a finite difference method (PFD) to the L&S simulation

algorithm (P̂ ). The exercise price is E = 40, the interest rate is r = 6% and the dividend yield δ = 0. S is the initial

stock price, T the time to maturity, and σ the volatility of the underlying stock price returns. In each simulation

100, 000 (50, 000 plus 50, 000 antithetic) paths and 50 possible exercise dates per year are used.
a ∆US = P̂ − PFD. A † means that the H0 : P̂ = PFD is rejected at the 5% level.
b ∆EU = p̂− pBS. A † means that the H0 : p̂ = pBS is rejected at the 5% level.
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S T σ PCRR P̂ (s.e.) ∆US
a ∆%

US

36 1 0.2 4.487 4.481 0.005 -0.005 -0.121

36 2 0.2 4.848 4.845 0.008 -0.003 -0.059

36 1 0.4 7.109 7.105 0.023 -0.004 -0.061

36 2 0.4 8.514 8.504 0.031 -0.010 -0.121

38 1 0.2 3.257 3.249 0.005 -0.008 -0.238

38 2 0.2 3.751 3.748 0.008 -0.003 -0.081

38 1 0.4 6.155 6.149 0.022 -0.005 -0.083

38 2 0.4 7.675 7.673 0.030 -0.002 -0.020

40 1 0.2 2.320 2.315 0.005 -0.004 -0.189

40 2 0.2 2.890 2.891 0.007 0.001 0.043

40 1 0.4 5.318 5.316 0.020 -0.002 -0.044

40 2 0.4 6.923 6.917 0.029 -0.006 -0.094

42 1 0.2 1.621 1.618 0.004 -0.004 -0.230

42 2 0.2 2.217 2.213 0.006 -0.004 -0.160

42 1 0.4 4.588 4.585 0.018 -0.003 -0.070

42 2 0.4 6.251 6.242 0.028 -0.009 -0.142

44 1 0.2 1.113 1.115 0.003 0.002 0.182

44 2 0.2 1.693 1.679 0.005 -0.014† -0.848

44 1 0.4 3.953 3.955 0.017 0.002 0.055

44 2 0.4 5.647 5.647 0.026 0.000 0.003

Table 2: This Table compares American put prices from a binomial pricing

model (PCRR) to the L&S simulation algorithm (P̂ ). The exercise price is

E = 40, the interest rate is r = 6% and the dividend yield δ = 0. S is

the initial stock price, T the time to maturity, and σ the volatility of the

underlying stock price returns. In each simulation 100, 000 (50, 000 plus

50, 000 antithetic) paths and 50 possible exercise dates per year are used.
a ∆US = P̂ − PCRR. A † means that the H0 : P̂ = PCRR is rejected at the

5% level.
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S T σ PL&S (s.e.) P̂ (s.e.) ∆US
a ∆%

US

36 1 0.2 4.472 0.010 4.481 0.005 0.009 0.207

36 2 0.2 4.821 0.012 4.845 0.008 0.024† 0.506

36 1 0.4 7.091 0.020 7.105 0.023 0.014 0.196

36 2 0.4 8.488 0.024 8.504 0.031 0.016 0.187

38 1 0.2 3.244 0.009 3.249 0.005 0.005 0.168

38 2 0.2 3.735 0.011 3.748 0.008 0.013 0.357

38 1 0.4 6.139 0.019 6.149 0.022 0.010 0.170

38 2 0.4 7.669 0.022 7.673 0.030 0.004 0.057

40 1 0.2 2.313 0.009 2.315 0.005 0.002 0.092

40 2 0.2 2.879 0.010 2.891 0.007 0.012 0.420

40 1 0.4 5.308 0.018 5.316 0.020 0.008 0.147

40 2 0.4 6.921 0.022 6.917 0.029 -0.004 -0.061

42 1 0.2 1.617 0.007 1.618 0.004 0.001 0.032

42 2 0.2 2.206 0.010 2.213 0.006 0.007 0.330

42 1 0.4 4.588 0.017 4.585 0.018 -0.003 -0.070

42 2 0.4 6.243 0.021 6.242 0.028 -0.001 -0.022

44 1 0.2 1.118 0.007 1.115 0.003 -0.003 -0.272

44 2 0.2 1.675 0.009 1.679 0.005 0.004 0.243

44 1 0.4 3.957 0.017 3.955 0.017 -0.002 -0.043

44 2 0.4 5.622 0.021 5.647 0.026 0.025 0.449

Table 3: This Table compares American put prices from Table 1 in Longstaff

and Schwartz (2001) (PL&S) to our implementation of the simulation algo-

rithm (P̂ ). The exercise price is E = 40, the interest rate is r = 6% and the

dividend yield δ = 0. S is the initial stock price, T the time to maturity,

and σ the volatility of the underlying stock price returns. In each simulation

100, 000 (50, 000 plus 50, 000 antithetic) paths and 50 possible exercise dates

per year are used.
a ∆US = P̂ −PL&S. A

† means that the H0 : P̂ = PL&S is rejected at the 5%

level.
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However, the results in Tables 1–3 suggest that our implementation of

the method is also very accurate.

We also assess the sensitivity of the method on the number of terms K

used in the approximation of the expected continuation value (Equation (4)).

In Table 4, panel (A) we price two in–the–money (row specifications 8 and

12 of Table 1), two at–the–money (specifications 1 and 20) and two out–

of–the–money (specifications 9 and 13) options by increasing the Laguerre

family members k in (11) from 1 to K = 5. As evident from the results,

increasing the number of regressors from one to two increases the price es-

timate in all six specifications. The average increase is 2.5 cents, and the

increase in each specification is significant at the 5% level using a standard

population means test. In most cases, increasing the regressors to two makes

the prices very close to the benchmark (the finite difference method). Only

two prices (specifications 12 and 20) are now significantly different from the

benchmark prices at a 5% level. IncreasingK to three does not have the same

dramatic effect, even though all price estimates increase. None of the price

estimates are now different from the finite difference benchmark. Thus using

two or three members of the Laguerre polynomials family should produce

very accurate option prices.

In the remainder of the Table, we assess the sensitivity of the method

to family of the basis functions used for the approximation. Instead of the

Laguerre polynomials in (11) we use ordinary polynomials
{
S (ti)

k
}∞

k=0
in

panel (B). Even though not orthogonal, ordinary polynomials are very easy

to use from a computational point of view and it has been suggested by

L&S that they might be sufficient for pricing purposes. As the results of

panel (B) suggest, for the case of American put options, monomials can

produce very accurate prices and these results seem to converge faster since

none of the estimates is significantly different from the benchmark for as few

regressors as K = 2. Following Stentoft (2001), in panel (C) we use the

family of General Chebyshev polynomials Tk (x) = cos (k arccos (2x− 1)).

When weighted with the function
(
1− (2x− 1)2

)−0.5
these polynomials are

orthogonal on the interval [0, 1] where our regression independent variables

reside. The results in panel (C) seem to suggest that nothing is gained by

using a more complex polynomials family than simple polynomials.

In all remaining applications, simple polynomials are used in the cross-
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Panel A: Laguerre

Nr. K = 1 K = 2 K = 3 K = 4 K = 5

1 4.450†,‡ (0.006) 4.473‡ (0.005) 4.481 (0.005) 4.482 (0.005) 4.477 (0.004)

8 7.623‡ (0.031) 7.657‡ (0.015) 7.673 (0.030) 7.671 (0.029) 7.670 (0.027)

9 2.287†,‡ (0.005) 2.312‡ (0.005) 2.315 (0.005) 2.315 (0.004) 2.316 (0.004)

12 6.857†,‡ (0.030) 6.887†,‡ (0.015) 6.917 (0.029) 6.919 (0.024) 6.918 (0.022)

13 1.601†,‡ (0.004) 1.612‡ (0.004) 1.618 (0.004) 1.619 (0.004) 1.620 (0.004)

20 5.583†,‡ (0.027) 5.610†,‡ (0.013) 5.647 (0.026) 5.650 (0.024) 5.652 (0.019)

Panel B: Polynomials

Nr. K = 1 K = 2 K = 3 K = 4 K = 5

1 4.433†,‡ (0.006) 4.474‡ (0.005) 4.482 (0.005) 4.482 (0.005) 4.481 (0.002)

8 7.562†,‡ (0.033) 7.657‡ (0.030) 7.674 (0.031) 7.675 (0.030) 7.676 (0.030)

9 2.277†,‡ (0.005) 2.312‡ (0.005) 2.316 (0.005) 2.319 (0.005) 2.319 (0.004)

12 6.797†,‡ (0.031) 6.892‡ (0.029) 6.916 (0.029) 6.914 (0.029) 6.913 (0.027)

13 1.591†,‡ (0.004) 1.613‡ (0.004) 1.617 (0.004) 1.626 (0.004) 1.622 (0.003)

20 5.531†,‡ (0.028) 5.612‡ (0.026) 5.619 (0.026) 5.622 (0.026) 5.622 (0.026)

Panel C: Chebyshev

Nr. K = 1 K = 2 K = 3 K = 4 K = 5

1 4.265†,‡ (0.003) 3.953†,‡ (0.001) 4.476‡ (0.006) 4.484‡ (0.003) 4.483 (0.005)

8 6.460†,‡ (0.016) 7.010†,‡ (0.021) 7.247†,‡ (0.024) 7.685‡ (0.024) 7.677 (0.028)

9 2.065†,‡ (0.003) 1.382†,‡ (0.002) 2.316‡ (0.005) 2.317 (0.005) 2.316 (0.005)

12 5.843†,‡ (0.016) 6.333†,‡ (0.021) 6.518†,‡ (0.023) 6.943‡ (0.024) 6.922 (0.027)

13 1.473†,‡ (0.002) 0.931†,‡ (0.002) 1.616‡ (0.004) 1.616 (0.004) 1.617 (0.004)

20 4.827†,‡ (0.016) 5.180†,‡ (0.020) 5.297†,‡ (0.021) 5.628‡ (0.022) 5.661 (0.025)

Table 4: Numbers in parentheses are standard errors of the price estimates. A † indicates that the estimate is

significantly different from the benchmark values in Table 1. A ‡ indicates that the change is significant at a 5%

level, when the number of regressors is increased from K − 1 to K.
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sectional regressions unless otherwise stated. To conclude, the Longstaff and

Schwartz (2001) method can provide accurate and reliable price estimates

for American–style one factor stock options.

4.2 Two factor American puts

Next we test the method in the context of a two state–variable pricing prob-

lem. Namely, we price American style put options on a dividend–paying

share of stock, where the stock price follows the dynamics specified in equa-

tion (9), and the short rate of interest is stochastic. Specifically, we assume

that r in (9) is no longer constant but follows an extended Vasicek diffusion

of the form

dr (t) = η

(
θ (t)

η
− r (t)

)
dt+ νdW (t) (13)

This model, initially proposed by Hull and White (1990), has the unique

feature that it allows interest rates to revert to a time–dependent level θ(t)
η

in the long run. Parameter η is the speed of mean reversion, while the time–

dependent function θ (t) can be calculated from the initially observed term

structure of interest rates prevailing in the market. Stock prices and interest

rates are assumed to be exposed to correlated shocks, dZ (t) dW (t) = ρdt,

with ρ a constant correlation coefficient.

Of course, the flexibility of simulation methods permits more general

processes for the short rate (for example those studied in Amin and Bodurtha

(1995)) to be accommodated easily. The specification in (13) is chosen so

that our implementation is benchmarked against the results of Menkveld and

Vorst (1991, Table 5). Details of the risk–neutral valuation framework in a

stochastic interest rate economy are omitted; interested readers can refer to

Ho, Stapleton and Subrahmanyam (1997).

To generate discrete simulation paths for the interest rate process in (13),

we use an AR (1) approximation of the form

r (ti+1) =
(
1− e−η(ti+1−ti)) θ (ti)

η
+ e−η(ti+1−ti)r (ti) +W (ti+1)

where W (ti+1) ∼ i.i.d. N (0, υ (ti+1)), υ (ti+1) =
ν2

2η

(
1− e−2η(ti+1−ti)).

In each simulationM = 100, 000 (including antithetic) paths and N = 50

time–steps per year are used. Since it was shown in the previous section that
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ordinary polynomials achieve a good regression fit, the following regression

specification is employed for every ti, 0 < i < N

y (ti) = β0+β1S (ti)+β2r (ti)+β3S
2 (ti)+β4r

2 (ti)+β5S (ti) r (ti)+ε (ti) (14)

In Table 5, simulated American–style put prices (P̂ ) are compared to those

reported by Menkveld and Vorst (1991, Table 5) and their numerical integra-

tion method (PMV in column 3). Errors range from 2 cents to slightly over

half a dollar. The highest discrepancies appear in the case of an upward–

sloping initial term structure of interest rates. In half of the specifications

priced, estimates are statistically indistinguishable from the benchmark.8

The correlation coefficient between interest rates and stock price changes

seems to play a more important role in the range of put prices than that

reported by Menkveld and Vorst (1991).

We conclude that as Longstaff and Schwartz (2001) suggest, the simula-

tion method can price multidimensional American style options easily and

accurately.

5 Real Options applications

In the previous sections we have demonstrated that the least–squares MC

simulation method of Longstaff and Schwartz (2001) provides a promising

and reliable framework for pricing financial options. In this section we turn

to assess the appropriateness of this method for valuing projects that involve

several decision modes for real operating assets.

5.1 Valuation of a copper mine: The benchmark

We first apply the method in the valuation of the classic copper mine nu-

merical example in Brennan and Schwartz (1985). In this highly influential

paper, Brennan and Schwartz laid the foundations for applying option pric-

ing arbitrage arguments to the valuation of flexibility inherent in natural

8The other half of the specifications however are statistically different from the bench-
mark. It should be stressed though that the method of Menkveld and Vorst (1991) against
which our prices are benchmarked, is based on numerical integration, which although fast
is an approximation.
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σ ρ PMV P̂ (s.e.) ∆US
a

Flat 0.2 -0.5 6.52 6.30 0.006 -0.22† c1 = 0.0382

0 6.53 6.43 0.007 -0.10 c2 = 0

0.5 6.54 6.52 0.007 -0.02 c3 = 0

0.3 -0.5 10.25 10.13 0.015 -0.12

0 10.27 10.24 0.015 -0.03

0.5 10.28 10.33 0.015 0.05

0.5 -0.5 17.85 17.75 0.038 -0.10

0 17.87 17.84 0.038 -0.03

0.5 17.89 17.92 0.039 0.03

Upward 0.2 -0.5 6.52 5.96 0.006 -0.56† c1 = 0.08

0 6.53 6.07 0.006 -0.46† c2 = −0.05
0.5 6.54 6.16 0.006 -0.38† c3 = −0.18

0.3 -0.5 10.32 9.75 0.014 -0.57†

0 10.33 9.86 0.014 -0.47†

0.5 10.34 9.95 0.015 -0.39†

0.5 -0.5 17.92 17.39 0.037 -0.53

0 17.93 17.48 0.037 -0.45

0.5 17.95 17.57 0.038 -0.38

Downward 0.2 -0.5 6.37 6.70 0.007 0.33† c1 = −0.00353
0 6.39 6.82 0.007 0.43† c2 = 0.05

0.5 6.41 6.91 0.007 0.50† c3 = −0.18

0.3 -0.5 10.18 10.54 0.016 0.36†

0 10.2 10.65 0.016 0.45†

0.5 10.23 10.74 0.016 0.51†

0.5 -0.5 17.79 18.11 0.039 0.32

0 17.82 18.23 0.039 0.41

0.5 17.84 18.31 0.038 0.47

Table 5: This Table compares put prices under stochastic interest rates from

Menkveld and Vorst (1991, Table 5) (PMV ) to the L&S simulation algorithm

(P̂ ). The term structure is of the form r (t) = c1 + c2e
c3t. The stock and

exercise prices are S = E = 100, the dividend yield δ = 0, the short rate

volatility ν = 0.01, the mean reversion rate η = 0.1 and the option maturity

T = 1 year. σ is the volatility of stock returns and ρ the correlation between
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resource investments. They demonstrate that the value–maximising policy

in the face of stochastic output prices involves the optimal exercise timing

of path–dependent, American–style options to initiate, temporarily cease or

completely abandon production.

In brief, if the price S (t) of the homogenous commodity produced by the

mine is assumed to evolve exogenously according to equation (9) in nominal

terms (where δ is now interpreted as the constant and proportional conve-

nience yield that accrues to the owner of the physical commodity but not

to the holder of a contract for future delivery of the commodity), the value

(in real terms) of the mine when open u (s,Q, t) and when closed w (s,Q, t)

must satisfy

1

2
σ2s2uss + (r − δ) sus − q∗uQ + q∗ (s− a)− τ − (r + λ1)u = 0 (15)

and
1

2
σ2s2wss + (r − δ) sws − f − (r + λ0)w = 0 (16)

respectively, subject to

w (s∗0, Q) = 0 (17)

u (s∗1, Q) = max [w (s∗1, Q)− k1 (Q) , 0] (18)

w (s∗2, Q) = u (s
∗
2, Q)− k2 (Q) (19)

w (s, 0) = u (s, 0) = 0 (20)

ws (s
∗
0, Q) = 0 (21)

us (s
∗
1, Q) =



ws (s

∗
1, Q) if w (s∗1, Q)− k1 (Q) ≥ 0

0 if w (s∗1, Q)− k1 (Q) < 0

(22)

ws (s
∗
2, Q) = us (s

∗
2, Q) (23)

where r is the real interest rate; Q is the physical inventory of the mine; q∗ is
the feasible extraction rate assumed constant; s is the commodity price in real

terms (i.e. deflated, s = Se−πt with inflation rate π); a is the average deflated

cash cost rate of producing at rate q∗; f is the after–tax fixed–cost rate of

maintaining the mine when closed; τ = t1q
∗s + max [t2q

∗ (s (1− t1)− a) , 0]
is the total income tax and royalties in real terms, t1 is the royalty rate and

t2 is the income tax rate; λi, i = 0, 1 are property tax rates when the mine
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Mine

Output rate (q∗): 10 million pounds/year

Inventory (Q): 150 million pounds

Initial average production cost (a (q∗, Q)): $0.50/pound

Initial cost of opening (k2 (Q)): $200, 000

Initial cost of closing (k1 (Q)): $200, 000

Initial maintenance cost (f): $500, 000/year

Copper

Convenience yield (δ): 1%/year

Price variance (σ2): 8%/year

Taxes

Real estate (λ1, λ2): 2%/year

Income (t2): 50%

Royalty (t1): 0%

Interest rate (r): 2%/year

Table 6: Parameter inputs for the hypothetical copper mine from Brennan

and Schwartz (1985).

is open (λ1) or closed (λ0); k1 and k2 are the deflated costs of closing and

opening the mine respectively; s∗0 is the deflated commodity price at which

the mine is abandoned if already closed; s∗1 is the deflated commodity price

at which the mine is closed down or abandoned if it was previously open and

s∗2 is the commodity price (in real terms) at which the mine is opened up if

previously closed.

Equations (17)–(19) and (21)–(23) are standard value–matching and smooth–

pasting conditions at the optimal decision thresholds, while equation (20) is

the boundary condition that applies when inventory is depleted.

Brennan and Schwartz (1985, pp. 147-150) provide a numerical example

of the model by using a finite difference approximation scheme to solve the

partial differential equations in (15) and (16). The parameters used in the

numerical example are summarised in Table 6.

To evaluate the copper mine using MC simulation we again use equa-

tion (10) to produce copper price trajectories. At each time ti the optimal

decision depends on the current state. If the mine is open with n units of

22



reserves remaining, the decision maker has two “options”: either suspend op-

erations and close the mine temporarily or permanently abandon it. These

alternatives have different payoffs (−f − k1 and zero respectively) while the

continuation value assumes the mine remains open and reserves are reduced

to n − 1. On the other hand if the mine is currently closed with n units

remaining, it can either be opened (with payoff q∗ (s− a)− τ − k2 and n− 1

units now remaining) or abandoned (zero payoff). The continuation value

comes from keeping the mine closed and incurring the maintenance cost −f
for another time period. From the discussion above it is clear that in con-

trast to the financial options treated in Section 4, valuation of the copper

mine is highly path–dependent since not only the current copper price S (ti),

but also the current operating mode, as well as the remaining reserves level,

need to be monitored for determining the optimal policy. Despite the extra

computational burden that path–dependence introduces however, the L&S

method can still be applied.

Table 7 compares the results of the simulation valuation with those re-

ported in Brennan and Schwartz (1985, Table 2) for a range of initial copper

prices. In all cases, valuation errors are less than 1%, suggesting that the sim-

ulation approach can adequately evaluate investments with multiple option

characteristics.

What should be stressed from this valuation exercise however is the wide

range of extensions that simulation methods offer compared to other numeri-

cal methods in the real options valuation framework. For example, the simple

random walk in (9)—used in this section for comparability with the Brennan

and Schwartz (1985) model—is a very strong assumption given the extensive

research in commodity prices. Given that simulation is much more efficient

in solving problems with multi–factor processes, our simple numerical appli-

cation could easily be extended to include more underlying processes like a

stochastic convenience yield (Gibson and Schwartz (1990), Schwartz (1997))

or more complex process specifications.

5.2 Valuation of a copper mine: An extension

To demonstrate this wide range of possible extensions, we re–evaluate the

copper mine, this time under a two factor price model. Specifically, the
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Copper Price Brennan–Schwartz Longstaff–Schwartz Error

(US$/lb) Finite Difference Monte Carlo ∆(%)

S (t0) Open Closed Open Closed Open Closed

0.4 4.15 4.35 4.17 4.37 0.006 0.004

0.5 7.95 8.11 7.93 8.06 -0.002 -0.007

0.6 12.52 12.49 12.48 12.49 -0.004 0.000

0.7 17.56 17.38 17.59 17.42 0.002 0.002

0.8 22.88 22.68 22.81 22.63 -0.003 -0.002

0.9 28.38 28.18 28.31 28.11 -0.003 -0.002

1.0 34.01 33.81 33.92 33.73 -0.003 -0.002

Table 7: This Table compares evaluations of the hypothetical copper mine

treated in Brennan and Schwartz (1985) with those produced by the Monte

Carlo Least–Squares simulation method of Longstaff and Schwartz (2001).

All values are in $ millions.
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commodity price model of Schwartz (1997) is used, according to which the

commodity price S (t) still follows the process in (9), but the proportional

convenience yield δ is now stochastic

dδ (t) =
[
κ

(
δ − δ (t)) − λ] dt+ γdB (t) (24)

and changes in δ (t) are correlated with changes in the commodity price S (t),

i.e. dZ (t) dB (t) = :dt (with : constant). Equation (24) implies that the

convenience yield of the commodity reverts to a long–run mean δ at a speed

of κ, and λ is the market price of convenient yield risk, assumed constant.

To produce trajectories for the convenience yield δ in (24), the following

approximation is used

δ (ti+1) =
(
1− e−κ(ti+1−ti)) (

δ − λγ
κ

)
+ e−κ(ti+1−ti)δ (ti) +B (ti+1)

where B (ti+1) ∼ i.i.d. N (0, v (ti+1)), v (ti+1) =
γ2

2κ

(
1− e−2γ(ti+1−ti)).

Tables 8 and 9 report values (in $ millions) for the hypothetical copper

mine (when initially open and closed respectively) for the parameter inputs

of Table 6 and a wide range of input values for the convenience yield process

(:, δ, γ and κ). In each valuation, S (t0) = 0.7, λ = 0 and M = 100, 000

(50, 000 plus 50, 000 antithetic) simulation paths are used.

As evident from Tables 8–9, the correlation between commodity prices

and convenience yields : has a decreasing effect on the value of the invest-

ment. In accordance with intuition, the more correlated the two risk factors,

the less valuable the flexibility to alter the operating mode of the project. For

the same reason, the more volatile the convenience yield of the commodity

(the higher γ is), the more valuable the options embedded in the operation

of the mine ceteris paribus.

However, mean reversion in the convenience yield process appears to have

a less straightforward effect on valuation. First of all, the higher the level

towards which the convenience yield reverts (δ), the less valuable the project

is. This makes intuitive sense, since a relatively high long–run mean increases

the probability of lower spot prices in the future, thus making production less

attractive.

Secondly, the speed with which the convenience yield mean–reverts seems

to have a secondary effect on the value of the investment. The resulting val-

uations appear relatively insensitive to the speed of mean reversion: project
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Open mine, Panel (a): : = 0.20

δ = δ0 = 0.01 δ = δ0 = 0.10 δ = δ0 = 0.15

γ = 0.05 γ = 0.10 γ = 0.15 γ = 0.05 γ = 0.10 γ = 0.15 γ = 0.05 γ = 0.10 γ = 0.15

κ = 0.65 20.11 36.34 104.5 5.083 9.870 31.05 2.379 4.554 15.32

κ = 0.85 19.12 28.42 57.07 4.820 7.423 16.31 2.279 3.396 7.730

κ = 1.05 18.65 25.02 42.19 4.707 6.413 11.61 2.237 2.943 5.369

Open mine, Panel (b): : = 0.50

δ = δ0 = 0.01 δ = δ0 = 0.10 δ = δ0 = 0.15

γ = 0.05 γ = 0.10 γ = 0.15 γ = 0.05 γ = 0.10 γ = 0.15 γ = 0.05 γ = 0.10 γ = 0.15

κ = 0.65 17.38 28.24 73.79 4.100 6.884 20.74 1.878 2.932 9.653

κ = 0.85 17.16 23.36 43.99 4.114 5.544 11.60 1.917 2.393 5.100

κ = 1.05 17.11 21.30 34.03 4.147 5.036 8.591 1.946 2.215 3.688

Open mine, Panel (c): : = 0.80

δ = δ0 = 0.01 δ = δ0 = 0.10 δ = δ0 = 0.15

γ = 0.05 γ = 0.10 γ = 0.15 γ = 0.05 γ = 0.10 γ = 0.15 γ = 0.05 γ = 0.10 γ = 0.15

κ = 0.65 14.81 21.32 51.34 3.192 4.327 12.95 1.441 1.629 5.368

κ = 0.85 15.27 18.81 33.31 3.442 3.875 7.664 1.576 1.549 2.951

κ = 1.05 15.61 17.86 26.98 3.612 3.787 5.952 1.673 1.581 2.280

Table 8: The value of an open copper mine (in $ millions) when the copper price and convenience yield evolve

according to equations (9) and (24) respectively. In all cases, the copper price is 0.7 US$/lb, the convenience yield

price of risk is assumed zero, and the rest of the mine characteristics are as in Table 6. δ is the long–run convenience

yield level, κ is the speed of mean reversion in the convenience yield process, γ is the convenience yield volatility

and : is the correlation between changes in commodity prices and the convenience yield.
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Closed mine, Panel (a): : = 0.20

δ = δ0 = 0.01 δ = δ0 = 0.10 δ = δ0 = 0.15

γ = 0.05 γ = 0.10 γ = 0.15 γ = 0.05 γ = 0.10 γ = 0.15 γ = 0.05 γ = 0.10 γ = 0.15

κ = 0.65 19.94 36.16 104.3 4.926 9.713 30.89 2.235 4.411 15.18

κ = 0.85 18.95 28.24 56.90 4.664 7.265 16.16 2.135 3.252 7.587

κ = 1.05 18.48 24.84 42.02 4.550 6.256 11.46 2.093 2.799 5.226

Closed mine, Panel (b): : = 0.50

δ = δ0 = 0.01 δ = δ0 = 0.10 δ = δ0 = 0.15

γ = 0.05 γ = 0.10 γ = 0.15 γ = 0.05 γ = 0.10 γ = 0.15 γ = 0.05 γ = 0.10 γ = 0.15

κ = 0.65 17.20 28.06 73.61 3.940 6.719 20.57 1.731 2.780 9.498

κ = 0.85 16.98 23.18 43.81 3.954 5.380 11.43 1.770 2.242 4.946

κ = 1.05 16.94 21.12 33.85 3.988 4.872 5.952 1.800 2.064 3.535

Closed mine, Panel (c): : = 0.80

δ = δ0 = 0.01 δ = δ0 = 0.10 δ = δ0 = 0.15

γ = 0.05 γ = 0.10 γ = 0.15 γ = 0.05 γ = 0.10 γ = 0.15 γ = 0.05 γ = 0.10 γ = 0.15

κ = 0.65 14.63 21.13 51.16 3.028 4.156 12.77 1.289 1.468 5.199

κ = 0.85 15.10 18.62 33.12 3.279 3.705 7.487 1.425 1.390 2.784

κ = 1.05 15.43 17.68 26.79 3.449 3.617 5.776 1.522 1.423 2.114

Table 9: The value of a closed copper mine (in $ millions) when the copper price and convenience yield evolve

according to equations (9) and (24) respectively. In all cases, the copper price is 0.7 US$/lb, the convenience yield

price of risk is assumed zero, and the rest of the mine characteristics are as in Table 6. δ is the long–run convenience

yield level, κ is the speed of mean reversion in the convenience yield process, γ is the convenience yield volatility

and : is the correlation between changes in commodity prices and the convenience yield.
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values decrease only slightly most of the times as κ increases. Interestingly,

there are two exceptions to this pattern. The first is that the negative relation

between speed of mean reversion and project value appears more pronounce

for cases of high volatility (the γ = 0.15 scenarios in all panels). The second

is that this relationship actually reverses (i.e. mine value increases with κ)

for cases of high correlation and low yield volatility (the γ = 0.05 scenarios

in panel (c)). The reason behind this reversal can be better understood once

one establishes the fact that under stochastic output prices and convenience

yields, the total volatility of the natural resource investment is a non–linear

function of σ, γ, : and κ.9 It seems that in these cases of high correlation and

strong mean–reversion, the total volatility of the investment might actually

increase, increasing the value of switching operating status and thus bringing

the mine valuations up.

As a means of summary, it should be stressed that the ease with which

the copper mine example of Brennan and Schwartz (1985) is extended in this

subsection to include a stochastic convenience yield, demonstrates clearly the

applicability of the L&S simulation–based method for corporate decision–

making. Being a very transparent method, simulation can help to improve

the realism of the modelling approach: features like time–dependent infor-

mation, inflation, taxes, royalties and finitely lived concessions can also be

introduced at no significant computational burden.

6 Conclusions

Monte Carlo simulation, despite its advantages over other traditional numer-

ical methods, was until recently considered inappropriate for most option

pricing applications of interest. A growing stream of literature has demon-

strated that simulation algorithms can indeed be employed for more complex

9In the context of the two–factor model of Schwartz (1997), it is easy to show that the

variance of futures contracts returns on the commodity is given by σ2
F = σ2+γ2 (1−e−κT )2

κ2 −
2�σγ

(1−e−κT )
κ2 in our notation (see for example Bjerksund (1991)). Even though here we

are evaluating a commodity mine with several operating possibilities and not futures on
the commodity, it is reasonable to expect that a similar dependence—at least in terms of
the parameters involved—would characterise the total variance of the investment, i.e. it
would depend on σ, γ, � and κ.
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derivatives types and several different approaches have been proposed.

In this paper we contribute to this literature by assessing the applicability

of a promising approach introduced by Longstaff and Schwartz (2001). Our

focus is on whether this newly proposed Monte Carlo simulation technique

can provide a flexible framework for real options valuation. Initially, a step–

by–step outline of the algorithm is presented before applying it to the pricing

of American–style financial options written on one and two stochastic pro-

cesses. When benchmarked against traditional lattice and finite difference

methods, the simulation approach is found to produce accurate and fast–

converging option price estimates.

We then turn to the evaluation of natural resource investments. We

evaluate the hypothetical copper mine considered in Brennan and Schwartz

(1985, Table 2), where the decision maker has to optimally time production

of the commodity in the face of stochastic copper prices, entry and exit sunk

costs, finite reserves quantity, income and property taxes, inflation, royalties

and flexible production modes.

The simulation algorithm provides valuations within 1% of those reported

in the original Brennan and Schwartz (1985, Table 2) paper. Unlike their

numerical method however, the Monte Carlo approach can readily be ex-

tended to accommodate issues like stochastic convenience yield and interest

rates, uncertain level of commodity reserves and multiple underlying prices.

We demonstrate these possible extensions by valuing the same hypotheti-

cal copper mine with the extra complexity of an uncertain, mean–reverting

convenience yield. To our knowledge such results have not been reported

before.

Thus it seems that Monte Carlo simulation methods provide a flexible

and transparent valuation tool which can accommodate the majority of issues

important in a real options valuation framework.
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