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“ MARKET AND PROCESS RISKS IN PRODUCTION OPPORTUNITIES: 

DEMAND AND YIELD UNCERTAINTY ” 
 
 
 
 

ABSTRACT 
 
By adopting a real options framework, we develop and analyze a production based valuation model that 
jointly incorporates process and market risks. Given this setting, techniques of contingent claims 
analysis and stochastic control theory are employed to obtain value maximizing operating policies in a 
constrained capacity environment. In our analysis, adjustments to operating policies are analogously 
modeled as a sequence of complex (real) options whose optimal exercise maximizes their inherent 
flexibility value.  
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( I )   INTRODUCTION 
 
Contingent Claims methods have now become an industry standard for valuing financial claims. 

Effectively, these techniques accommodate valuation of a claim whose future payoffs depend on the 

uncertain prices (or cash flows) of other assets. Contingent Claims Analysis (CCA) methods may can 

also be adapted for evaluation and analysis of real claims such as production and manufacturing, 

agricultural, real estate, mining and natural resource based investment projects. For instance, CCA 

methods can be applied to estimate the flexibility value arising from a multipurpose production facility 

when demand variability and product substitutability are important factors to the analysis.  CCA 

techniques can be used to characterize the implicit operating risks resulting from exchange rate 

fluctuations in multinational manufacturing ventures. 

  

In this context, review of the real options literature indicates that the majority of CCA applications 

implicate production efforts is mining or extraction based projects with output prices as the typical 

source of uncertainty. Other measures of market risk including exchange rate or demand uncertainty 

have, though to a lesser extent, also found their way into the current (real options) literature. However, a 

notable void in this literature concerns the omission of process risk as typified by reliability issues, lead- 

time uncertainty, system breakdowns or output yield variability. In addition, the application of CCA 

methodology to a broader set of production-based problems is another missing component of the current 

efforts in this arena. Specifically, analysis of manufacturing or other production related projects 

including but not limited to chemical and electronics industries and in the presence of both market and 

process uncertainty is of tremendous interest. In this vein, an objective is to broaden the scope of their 

applicability. 

 

In this paper, we consider the problem of valuing production (primarily manufacturing and mining) 

projects characterized by “market” and “process” uncertainty. In this environment, techniques of 

Contingent Claims Analysis (CCA) and Stochastic Control theory are used to properly account for the 

underlying project risk structure and to adequately establish production polices in a manner consistent 

with a value maximization objective. In our analysis, market uncertainty is defined by demand 

variability, which in many ways also generalizes the scope of applications1.  The notion of “process” or 

“operating” risk is captured by yield uncertainty: which is defined as a random multiplier to the output 

                                                 
1 Since the output is not a traded commodity and in that sense, it’s market risk cannot spanning the market. 
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quantity, reflecting the usable portion of the output levels which are then sold in competitive markets. 

Here, variability in the output yield is introduced to allow for the inevitable variations that can arise in 

the pattern of output quantities typically due to quality or processing reasons. By incorporating output 

yield as an uncertain factor in our analysis, we can also explicitly allow for the inherent operating 

options that maybe available to the managers in the more severe cases of yield variability. For example, 

in a manufacturing setting such an option may be manifest as trigger for system or technology choice 

alternatives: upgrading, or new facility acquisitions, etc.  

 

As recent literature in this arena reveals, most applications of CCA involve projects with well-defined 

risk characteristics. Essentially this involves the class of projects whose costs or revenues directly 

depend on can be linked to the prices of traded assets or commodities, so that data for quantifying their 

risk is, at least partially, available.  For these and other similar type projects, CCA methods can be 

applied to obtain an arbitrage free valuation model where financial risks maybe fully eliminated through 

proper hedging in the futures market. This arbitrage valuation framework is attractive since in the 

absence of priced risk elements the model’s complexity in terms of parameter estimates and discount 

rate derivations is substantially reduced. The use of CCA these methods together with techniques of 

stochastic control theory for the purposes of performing valuations has a further advantage in that the 

combined technology also results in optimal production policies. 

 

The application and advantages of a CCA approach to the analysis of real options has been well cited in 

literature. Brennan and Schwartz (1985) consider production flexibility issues in mining projects with 

multiple options to open, close and to subsequently abandon the project. In their paper, the notion of 

market risk is captured through output prices, which are assumed random in nature. Furthermore, the 

output is also taken to be homogenous in its composition and therefore, not subject to yield variability. 

In some ways, our paper offers a generalization to their elegant findings, as we account for the random 

yield (heterogeneity) inherent in the output levels. The general solution, to the classical “duration” 

problem of the optimal control of a long-term renewable resource is offered by Morck, Schwartz and 

Stangeland (1990). In their production control model, uncertainty is captured by price as well as the 

level of inventories. Audreou (1990) provides a model for valuing flexible plant capacity when demand 

conditions are uncertain whereas He and Pindyck (1992) consider an investment model of flexible 

production capacity. More recently, Kamrad and Lele (1998) consider the notion of price uncertainty 

and system failure risk and develop an optimal production and maintenance expenditure policy in light 

of a warranty on shared failure repair costs. Exchange rate uncertainty and production mode adjustment 
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dynamics are addressed by Kouvelis and Sinha (1994). Related work in the presence of exchange rate 

risk includes Dasu and Li (1993) who develop optimal operating policies, Huchezermeier and Cohen 

(1996) addressing operational flexibility concerns for the purposes of strategic global manufacturing, 

and Kogut and Kulatilaka (1994) who consider production shifts among plants in a network of 

manufacturing centers. Kamrad and Siddique (2003) also consider supply contract valuation problems 

in the presence of multiple exchange rates and adjustment options. 

 

Through adopting a CCA framework, we develop a production control model for analysis of 

manufacturing and mining projects typified by market and process risk. In what follows, market risk is 

characterized by output demand uncertainty.  That is, the uncertainty in the pattern of demand for the 

output. Here, we derive a model in a general equilibrium context that parallels the findings of 

Constantinides (1979) and McDonald and Siegel (1985). Our intent for depicting market risk by demand 

uncertainty is partially triggered by the fact that for a large class of outputs, typically manufactured 

items, price uncertainty is not a serious risk issue. In addition, this choice also addresses the general 

non-tradability concern pertinent to manufactured outputs. Process uncertainty, on the other hand, is 

characterized by output yield and defined as a random multiplier to the output quantity, reflecting the 

refined or the usable output portions. By incorporating the yield factor into the analysis, we can take 

into account that in the case of mining projects, some reserves may be less accessible and more costly to 

extract (i.e. the resource to be exploited is non-homogeneous), therefore, inducing an abandonment 

option consideration in the more severe situations. In a manufacturing environment, however, yield 

variability may induce a system replacement or repair an overhaul option if system calibration fails to 

regulate the yield problem. Through vastly different from the more traditional models of yield 

variability encountered in the operations and manufacturing literature, our approach maintains the 

similarity that the yield variable is modeled as an independent multiplier to the output quantity.2 In this 

light, we formulate a production control model maximizing the value of the operations in an 

environment typified by operating options. For this purpose, techniques of stochastic control theory are 

employed to optimally adjust the rate of production in a manner consistent with a value-maximizing 

criterion.  Given appropriate yet straightforward modifications, the yield variability problem may also 

be modeled as uncertainty in the input quality (or usability) of the locally supplied inputs in a broader 

context of a supply chain problem. 

 

                                                 
2 See for instance, Gerchak, Parlar  and Vickson (1988), Porteus (1986), Lee and Yano (1985). 
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The paper is organized as follows. In the next section we define the notation, state the necessary 

assumptions and develop an arbitrage based production control valuation model resulting in a Bellman 

equation subject to appropriate boundary conditions. We assume that the downside risk of the output’s 

yield is not priced, and therefore does not induce an additional premium. The uncertainty for the 

output’s demand and the uncertainty governing the yield factor are defined as a stochastic processes  

Since the Bellman valuation equation does not yield an analytic solution, it must be solved numerically 

to obtain results. Nonetheless, closed form solutions for the optimal production policies are obtained.  

 

In the next section , by invoking  the Feynmann-Kac results we numerically solve for the solution along 

with the resulting optimal production policy to be followed. To that end, a multinomial lattice method 

offers the needed basis for approximating the stochastic evolution of the state variable , where a dynamic 

programming approach obtains the solutions numerically.  This recursive procedure is then numerically 

illustrated through a stylized example. Section V captures concluding results. 

 

The contributions of this paper are as follows. First, it introduces a framework for the analysis of 

production based projects characterized by both market and process uncertainty.  Second, the paper 

further extends the current literature findings to a much broader class of production problems. In 

particular, to the analysis of manufacturing related production control problems where process outputs 

reflect non-traded assets. In that capacity, this paper also extends an opportunity for further future 

research in production based industries using a CCA approach. Third, and in light of quite robust 

numerical results, the models presented in this paper are sufficiently flexible to allow for capturing other 

sources of market or process uncertainty. Given appropriate adjustments, we can characterize market 

uncertainty by exchange risk and the yield variability by demand uncertainty. 

 
( II )  Assumptions  and Model Development 
 
Let ( )DZ t ∈¡ and ( )YZ t ∈¡ define standard Brownian motions that are martingales with respect to the 

probability space, (Ω,ö,ℑ,-). The filtered probability space, (Ω,ö,ℑ,-) is defined over the pre-

established time interval [0, ]τ  where the augmented filtration, ℑ = {öt :t∈[0,τ ]}, is right-continuous 

and increasing.  In general, let the process depicting uncertainty be defined by {X(t): t ≥ 0},  where its 
sample path is posited by an Ito differential equation of the form: 
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 ( ) ( , ) ( , ) ( )XdX t M X t dt S X t dZ t= +                                                             (1) 

 
The drift function, ( , )M X t denotes the instantaneous change in X(t).  The volatility function, 

( , )S X t denotes the standard deviation of the growth rate, and ( )XdZ t is an instantaneous increment to the 

Brownian motion; ( )Z t ∈¡ , defined above.  

 
We now specify the model assumptions, using (1) as a general form.  In particular, the output’s demand 
process is depicted by { ( ) : 0}D t t ≥ with the specific form of (1): 

 

             ( ) ( ){ } ( ) 0( ) 0 0D D DdD t D t dt dZ t         D Dα σ= + = >                                (2) 

 
In the above expression, the constant drift parameter Dα represents the instantaneous expected growth 

rate in demand; the constant per unit variance of the growth rate is 2
Dσ and the Brownian increment 

is ( )DdZ t which was defined earlier. The demand process captured by (2) implies that the conditional 

distribution of D(t) given D(s), [0, ]t s τ> ∈ , is lognormal and that D(t) > 0 for all [0, ]t τ∈ , if 0 0D > . In 

addition, we assume demand substitutability is not alternative and that there is no back logging. 
Furthermore, the producer does not stockpile finished products and hence there are no finished goods 
inventory concerns.  This implies that given the available production capacity, the producer aims to 
meet as much of the demand as possible. To reduce the potential for the overage costs, we implicitly 
impose a penalty constraint to that effect.  We also assume that the producer’s actions do not affect the 
market demand for the output and that the producer is a value maximizer.  In the current context, 

producer’s actions are depicted by the rate of production, ( , , )q D I t ≡ ( ), [0, ]q t t τ∈ with ( ) ( )0,q t Q∈ and 

where Q defines the current available production capacity. In our set up, { ( ) : [0, ]}q q t t τ= ∈ is an adapted 

positive real-valued process. The flexibility afforded by having the option to revise operating policies in 
reaction to both market (i.e.,demand) and process (i.e.,yield) uncertainty is value additive and as such is 
viewed as a sequence of  (real) nested options. 
 
Given that there are no finished good inventories in meeting the demand for the output, the producer 
simply produces at rate ( )q t in a manner that maximizes the operating profits. The producer, however, 

maintains an inventory of needed raw materials from which finished goods are produced. Let 
( ), [0, ]I t t τ∈  define time t level of input inventory. Supposing 0(0) 0I I= >  defines the initial known 

level of the resource, we have, 
 

   ( )
( ( )) ( )

dI t
q t q t

dt
φ= −               (3) 

 
The function (.)φ is used to determine whether or not the resource in question is renewable. For instance, 

consider the simple functional form, ( ( )) ( )q t q tφ ξ= with0 1.0ξ ≤≤ . In the case where 0ξ = , the resource 
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considered reflects a non-renewable  resource and the RHS of equation (3) simply reduces to ( )q t− . 

When 1.0,ξ = the situation reflects the case of an instantaneously renewable resource or in other words, 

an infinite resource case.  In all other cases (i.e. 0 1ξ< < ), the situation considered represents a partially 

renewable resource with the RHS of equation (3) becoming ( 1) ( )q tξ − .  In this case, the rate of depletion 

or extraction is faster than the rate of replenishment.  Though not used in the context of this paper, it is 
also possible for 1ξ > , implying that rate of inventory replenishment is faster than the depletion rate and 

thereby resulting in excess inventory.  While other functional forms for (.)φ may be also appropriate, for 

modeling purposes we adopt the current one: i.e., ( ( )) ( )q t q tφ ξ= . The production cost function, ( ( ))q tK  is 

assumed to be non-linear, depicting increasing or decreasing marginal cost of producing an additional 
unit of the output. 
 
The net usable output resulting from production at rate ( )q t is defined as ( ) ( )q t Y t .  The yield 

variable { ( ), 0}Y t t ≥ is conceptualized as an independent multiplier to the output rate and is assumed to 

follow a stochastic process that is also characterized by an Ito differential equation: 
 

  ( ) ( , ) ( , ) ( )Y YdY t Y t dt Y t dZ tµ σ= +  0(0)Y Y= >0   (4) 

 
Expression (4) fully characterizes the process depending on the choice of the drift function, (.)µ and the 

volatility function, (.)Yσ . Furthermore, in light of specific functional forms for (.)µ and (.)Yσ , and 

conditional on time [0, ]s τ∈  information, it may be possible to define the probability distribution for 

( )Y t with ( )Y s given, [0, ]s t τ< ∈ . We defer specifying functional forms for (.)µ and (.)Yσ and address this 

concern in our results’ section and in light of a contextually meaningful distribution for ( ) Y t to follow.  

We assume the Brownian increments defined earlier are orthogonal. That is, 
 

   ( )( ) ( ) 0DY D Ydt E dZ t dZ tρ = ⋅ =            (5)       

Let ( ), [0, ]t  tπ τ∈ define the deterministic output price so that the yield-affected revenue resulting from 

producing at rate ( )q t at time t, is ( ) ( ) ( )q t Y t tπ .  To develop the valuation model, let ( , , , ; )V D Y I t q  

represent the production value at time t given that the demand is ( )D t , the yield factor is ( )Y t , the level 

of input inventory (or remaining untapped resource level) is ( )I t , and where the production rate is set at 

( )q t . The function ( , , , ; )V D Y I t q  is taken to be Ito differentiable.   

 
As a preliminary to developing our valuation model, we allow for the existence of a financial security 
that has the same covariance with market return as does demand1. Suppose ( )W t depicts the price of this 

traded security at time [0, ]t τ∈ and that the equilibrium growth rate on this financial asset is Wα . We 

                                                 
1 We will use this condition to arrive at equations (8 and 10). 
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assume that the instantaneous change in the price level of this security is characterized by the following 
stochastic differential equation, 
 

( ) ( ) ( ) ( )W W WdW t W t dt W t dZ tα σ= +                               (6) 

 

Expression (6) defines a geometric Brownian motion, with Wα  and Wσ reflecting the constant drift 

(expected rate of return) and volatility (standard deviation of rate of return) parameters. 

Here, Wα represents the equilibrium rate of return on a financial security having the same covariance 

with the market return as does the demand.  Let Mα and Mσ  define the instantaneous expected rate of 

return (drift) and the standard deviation of the rate of return on the market, respectively. The unexpected 
rate of return component defined by, ( )M MdZ tσ ,with ( )M tZ ∈¡  as a standard Brownian motion that is also 

a martingale with respect to the probability space, (Ω,ö,ℑ,-). The constant and riskless rate of return is 
depicted by r.  Employing Merton’s (1973) Intertemporal Capital Asset Pricing Model, the market  
premium on this financial security is given by WM Wλρ σ , which for valuation purposes is equivalent 

to DM Dλρ σ . Here, WMρ and DMρ define the instantaneous correlation on returns between the financial 

security and the market and that of the demand and the market, respectively2.  By definition,  
 

M

M

rα
λ

σ
−

=                                                                                         (7) 

 

 Furthermore, let the rate of return shortfall be defined by W Dψ α α= − , withψ unrestricted in sign. By 

employing an intertemporal CAPM approach, the equilibrium rate of return on the financial security 
must reflect an adjustment for systematic risk.  In this context, we have:  

  W DM Drα λρ σ= +               (8) 

 
Recall, by definition,

WM W DM D
λρ σ λρ σ= 3. Given this setup, we can obtain V(.) using a replicating portfolio 

approach. In particular, consider portfolio G(t) consisting of a long position in V(.) together with a short 
position of δ  units in security, ( )W t . The instantaneous change in the value of this portfolio, in light of 

the necessary cash flow adjustment is, 
 

   ( ){ }( ) ( ) ( ) ( ) ( ) ( ) ( )dG t dV t dW t q t Y t t K q t dtδ π= − + −                                        (9) 

 

                                                 
 
2 By definition 

DM M D WM M W
ρ σ σ ρ σ σ= ,since by assumption the financial security has the same return covariance with the market as 

does the demand. Therefore,
DM D WM W

ρ σ ρ σ= . Stated more precisely ( ( ) ( )) ( ( ) ( ))
M D D M W W

E dZ t dZ t E dZ t dZ tσ σ⋅ = ⋅ . We use this 
identity to arrive at expression (8) using a CAPM framework. 
 
3 See also Constantinides (1979) and, McDonald and Siegel (1985).  Equation (8) is consistent with the findings of Constantinides 
(1979) and, McDonald and Siegel (1985). 
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To ensure the existence of only diversifiable risks, set ( ) ( )( / ) ( / )tD W V Dδ ⋅ ⋅= ∂ ∂ . Absent arbitrage 

opportunities, this implies that the expected return on this portfolio, ( )( )E dG t should be the risk less rate 

so that, 

   ( )( ) ( )E dG t rV t dt=                                      (10) 

 
Through applying Ito’s lemma to the right hand side of equation (8), taking the resulting expectations, 
and equating it to expression (9) we obtain the desired Bellman valuation equation. It follows without 
loss of generality that3,  

2 2
2 2 2

2 2[0, ]

1 1
( ) ( , ) ( , ) [ (1 )] ( )

2 2
0D Yq Q

V V V V V V
D r Y t D Y t q Y K q rV

D Y t D Y I
Max ψ µ σ σ π ξ
∈

∂ ∂ ∂ ∂ ∂ ∂
− + + + + + − − − −

∂ ∂ ∂ ∂ ∂ ∂

 
= 

 
    (11) 

 s.t.            

0
( , , , ; ) 0

Y
limV D Y I t q

→
=        (12a) 

0
( , , , ; ) 0

D
limV D Y I t q

→
=        (12b) 

( , , , ; )
D

V D Y I t q

D
lim

→∞
< ∞        (12c) 

( ) [0, ]q t Q ∈         (12d) 

( , ,0, ; ) 0V D Y t q =        (12e) 

( , , , ; ) ( , )V D Y I q C Iτ τ=         (12f) 

  ( , , , ; ) ( ) 0V D Y I t q P t+ ≥        (12g) 

( , , , *; ) 0V D Y I t q =  where  ( )* : ( ) , [0, ]t t Y t L tinf τ= = ∈    (12h) 

 
Equations (12a-h) characterize the constraints to the above Bellman equation (11).  The terminal value 
at the close of the project is defined by function ( , )C I τ  via equation (12f). To account for abandonment 

as a flexibility option, equation (12g) ensures that the operating value of the production effort exceeds 
the corresponding abandonment option cost, as reflected by ( )P t . Several issues regarding equation (11) 

are noteworthy. In particular, consider the first term in equation (11) reflecting the quantity ( )r ψ− . This 

quantity has effectively replaced the original drift term of the demand process as a result of a replicating 
strategy barring arbitrage opportunities (see equations (9) and (10)) . In the current context, ( )r ψ−  is an 

equivalent martingale representing the average growth rate for the demand process obtained as a direct 
consequence of financial risk elimination. Specifically,( )r ψ−  characterizes the “market” adjusted 

instantaneous growth rate of demand with ψ  unrestricted in its sign and where W Dψ α α= − . Recall that 

Wα  is the expected rate of return on a financial asset having the same (financial) risk as the demand 

variable. When 0ψ < , it implies that the expected growth rate of demand is greater than the equilibrium 

rate of return on a security (here, proxied by W) that has the same financial risk in the market as the  
demand. In contrast, when 0ψ > , the expected growth rate of demand is less than the aforementioned 

                                                 
3 Note that  changes in the yield uncertainty are assumed independent of the overall economy  and therefore, not priced. 
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equilibrium rate of return4. The above discussion and findings are consistent with results obtained by 
Constantinides (1978) and McDonald and Siegel (1985) whereas in the latter a more detailed and 
intuitive discussion is also furnished5. In light of the above setup and results furnished specifically by 
equation (11), for valuation purposes the demand process can be depicted by, 
 

                  ( ) ( ){ } ( ) 0( ) ( ) 0 0D DdD t D t r dt dZ t         D Dψ σ= − + = >                                 (13) 

 
In the following section, closed form results regarding the optimal policies are provided. We note, 
however, that the value of the project, as characterized by equation (11), must be obtained numerically 
since the Bellman valuation equation does not yield a closed form expression for obtaining the project’s 
value. In section III.2, we solve for the optimal value using numerical techniques.       
 
( III)  Results 
This section provides closed form results for the optimal operating policies. Later, numerically obtained 
results for the project’s value are addressed and reviewed. To this end, we assume that the production 
cost function ( ( ))K q t  is non-decreasing (monotone) in the rate of production, ( )q t .  In particular, we 

assume that the production cost function is quadratic , having the functional form: 
 

2
0 1 2( ( ) ) ( ) ( )K q t k k q t k q t= + +                                                  (14) 

 
where the monoticity conditions imply that 1 2 0,k k ≥ .  We further assume that the drift and volatility 

functions to the yield process are defined by, 

                                                                 
( , )
( , )Y Y

Y t
Y t

µ µ
σ σ

=
=

 

where  and µ σ  are constant parameters.  That is, 

 
( ) ( )Y YdY t dt dZ tµ σ= +                 0(0)Y Y= >0       (15) 

 
thereby implying that the distribution of the yield variable Y(t), given Y(s) with ,and , [0, ]t s t s τ> ∈ is 

normal and that for 0(0)Y Y= >0, zero is a natural absorbing barrier for Y(t). 

 
 
 
 
 

                                                 
5 Demand uncertainty can also be depicted via price uncertainty as an alternative. In the current context, if instead of demand 
uncertainty we were to represent market uncertainty via stochastic prices for the output  and if the output is  a commodity for which 
futures contracts are traded then, ψ  would represent the commodity’s convenience yield, taken as a constant proportion to the spot 
price of the commodity. See Brennan and Schwartz (1985). 
6 See also Majd and Pindyck (1987). See also Trigeorgis(1993). 
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( III.1 )  Optimal Production Policies 
 
Theorem 1:  Assume that for all [0, ]t τ∈ , the inventory level ( )t QI > is finite. Also assume that the 

production cost function, ( ( ))K q t is an increasing convex function in the production rate, ( )q t .The 

optimal production policy { *( ), * [0, ]}, [0, ] q t  q  Q  t τ∈ ∈ is given by: 

 
( ) ( )

* *( ) ( ) ( ) ( ) ( )
*0 ( ) ( )

Q if Y t Y t

q t q t if Y t Y t Y t

if Y t Y t  

 ≥
= < <


≤

%    (16) 

with 

1

2

( )
( ) ( ) ( (1 ))

( )
( )

2

V
t Y t k

I t
q t

k

π ξ∂ ⋅− + −
∂=%      (17) 

2 1

( )
2 ( (1 ))

( )
( )

( )

V
k Q k

I t
Y t

t

ξ

π

∂ ⋅+ + −
∂=      (18) 

 

1 / 2
1 0 2

*

( )
( (1 )) 2( )

( )
( )

( )

V
k k k

I t
Y t

t

ξ

π

∂ ⋅+ − +
∂=  (19) 

 
Proof: See Appendix A 
 

Corollary 1:   Let 00
( ) Q Iq t dt

τ
τ≤ <∫ . Assume further that 1ξ = . In this case, the optimal production 

policy * *{ ( ) , [0, ]}, [0, ]q t  q Q t τ∈ ∈  is given by  
 

* *

*

( ) ( )

( ) ( ) ( ) ( ) ( )

0 ( ) ( )

Q if Y t Y t

q t q t if Y t Y t Y t

if Y t Y t  

 ≥


= < <
 ≤

%    (20) 

                                                  1

2

( )
( )

2
Y t k

q t
k

π −=%                                                                         (21) 

2 12
( )

( )
k Q k

Y t
tπ
+=                               (22) 

1 / 2
* 1 0 22( )
( )

( )
k k k

Y t
tπ

+
=                                  (23) 

Proof: See Appendix A 
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The above Corollary applies more appropriately to mining production opportunities wherein the finite 
resource levels cannot be fully depleted during the venture’s life due to typically limited production 
capacities.  As such, the problem may be analogously viewed and managed as an infinite resource case. 

 

Theorem 2:  Let 2 0k = , and assume the inventory level, ( ), [0, ]t tI τ∈  is finite with ( )I t Q> . Then, the 
optimal production policy { *( ), * [0, ]}, [0, ] q t  q  Q  t τ∈ ∈ is given by: 

*
*

*

( ) ( )
( )

0 ( ) ( )

Q if Y t Y t
q t

if Y t Y t  

 ≥
= 

<
    (24) 

with the critical yield factor, 

1
*

( )
(1 )

( )
( )

V
k

I t
Y

t

ξ

π

∂ ⋅ − +
∂=       (25) 

Proof: See Appendix A 
Equations (24) and (25) characterize a “bang-bang” production policy in that we produce at the 
maximum feasible  rate of production, Q only if the yield factor exceeds the “profit adjusted” variable 
cost of raw material inventory and production.  To offer additional insight, recall that low realizations of 
the yield factor reflect higher profit losses when compared to higher yield realizations.  In effect, when 
yield adjusted revenues exceed the variable cost of inventory and production, as shown by the 
numerator of equation (24), it becomes profitable enough to produce at the maximum rate; otherwise, a 
no production mode is the optimal policy to follow.  In the current context, the level of the raw material 
inventory is considered finite and therefore, the variable inventory cost or more appropriately “shadow 
price”, ( ) ( )/ tV I⋅∂ ∂ has a direct bearing on the optimal production policy.  As ( )I t defines the level of a 

renewable resource, its shadow price in light of this framework can be interpreted as the holding (or 
carry) cost rate of the raw materials’ inventory, excluding the opportunity cost of capital.  The 
opportunity cost of capital has been indirectly incorporated into the analysis when considering the return 
shortfall rate, W Dψ α α= − . 

 

Corollary 2:   Let 00
( ) Q Iq t dt τ

τ
≤ <∫ . Assume further that 1ξ = .  Then, the optimal production policy 

{ *( ), * [0, ]}, [0, ] q t  q  Q  t τ∈ ∈ is given by  
*

*

*

( ) ( )
( )

0 ( ) ( )

Q if Y t Y t
q t

if Y t Y t  

 ≥= 
<

    (26) 

with the critical yield factor,                 * 1( )
( )
k

Y t
tπ

=                                          (27) 

 
Proof: Follows the proof of Corollary 1 and Theorem 2. 

 
Theorem 3:  Let * [ ( , , , : )]

q
MaxV D Y I t qν = with ( ) (0, )q t Q∈ .  *ν is unique. 

 Proof:  See Appendix B 
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( III.2 )  Numerical Results 
 
To obtain solutions numerically, one can select from a rich menu of alternatives.  For our purposes we 
adopt a multinomial lattice approach to approximate the stochastic evolution of the demand and the 
yield processes.  To that end, while the stochastic process defining the demand implies that the demand 
is lognormally distributed , the yield process implies a normal distribution for the yield factor. To 
employ the intented lattice approach appropriately one of the two processes must be converted to the 
other so that a multinomial lattice can approximate their joint stochastic evolution over time. A simple 
log-transformation  is the required adjustment and the relationship between these two processes is well 
established in Karlin and Taylor (1981). For our numerical results, two types of multinomial lattices 
may be used. Here, we use the 4-jump model of Boyle, Evnine and Gibbs (1989).  An alternative 
approach is the 5-jump lattice model by Kamrad Ritchken (1990). As in section III.1, a backward 
recursion is used to dynamically superimpose our production control problem on 4-jumps lattice.7 We 
control for the upper and lower bound values on the yield process by establishing appropriate barriers at 
zero and one. Table (2) below depicts the case parameters and functional forms where τ  = 1.0 year and 
n = 5 production periods.  

Table (2) : Base Case Parameters and Function Coefficients 
 

Production Cost K(q) k0 = 100.00; k1 = 15.00; k2 = 5.00 

Price π  π  = $300.00 per unit 

Initial Inventory I I0 = 20 units 

Initial Demand D0 D0 = 10 units 

Initial Yield Y0 Y0 = 0.70 per annum 

Demand Volatility σD σD = 0.30 per annum 

Yield Volatility σY σY = 0.2 per annum 

Interest Rate r r = 0.08 per annum 

Average Output Yield µ µ = 0.10 per annum 

Adjustments to drift shortfall ψ ψ = 0.03 per annum 

Production Capacity Q Q = 5 units 

Renewable Resource constant ξ  0ξ =  

Switching Cost Function 2
1( )i iq q −−   

Penalty Cost Function 5.0 2( )i iD q−   

Salvage Cost Function:   ( , ) 0.50n n n nC I I Yτ π=  given the state at time tn 

                                                 
7 Due to space limitation the details of lattice set up are omitted.  
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The effect of increasing production capacity on the value function is shown in Figure-1 which is 

precisely the anticipated results. Increase in the average yield and its’ impact on the project’s value is 

depicted by Figure-2. This obviates the need for further discussion. 

[Figure -1]    and    [Figure -2] 

Of interest is the case where increased volatility in the yield process has corresponding increase in the 

value function. As σY increases, so will the upside potential while the downside risks are truncated 

through a “no-production” option. Thus, on an average basis the project’s value improves as the 

revenues are improved. However, when the volatility of the demand is increased, the project’s value 

diminishes. This too is logical in light of the situation at hand. Note that as σD increases, it becomes 

harder to satisfy demand due to limited production capacity and the non-existence of finished goods 

inventory. Beyond this capacity, any discrepancy between demand realization and production levels are 

also penalized as constrained in Table (2). 

[Figure -3]    and    [Figure-4] 

In Figure-5, the effect of ψ on the value function is shown. Here, as ψ increase, the implied average 

growth rate on the demand process drops. All things being equal, and light of our capacity constraint, it 

becomes that much easier to meet demand. This reduction in the total operating costs is manifested by a 

corresponding increase in the project’s value. 

[Figure -5] 

 
V. CONCLUSIONS  

 
In this paper we have developed an option theoretic (or CCA) model for evaluation and analysis of 

production efforts characterized by both market and process uncertainty. In this vein, we have modeled 

the production rate as an adapted positive real-valued process leading to a stochastic control problem 

embodied by a Bellman optimization equation. Extension of the basic model to a more general setting 

was also considered where in all cases closed form solutions to the optimal operating policies were 

provided. In other cases, stylized numerical results provided additional insights to model behavior.  

 

The contributions of this paper are multifold. First, it provides a framework for the analysis of 

production based projects characterized by both market and process uncertainty. In that vein, the initial 

part of the paper offers a generalization to the existing literature by accounting for the inherent 

heterogeneity in the output levels. Second, the paper further extends its initial findings to a much 

broader class of production problems. In particular, to the analysis of manufacturing related production 
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control problems where process outputs reflect non-traded assets. In that capacity, this paper also 

extends an opportunity for future research in production based industries using a CCA technology. 

Third, and in light of quite robust numerical results, the models presented in this paper are sufficiently 

flexible to allow for capturing other sources of market or process uncertainty. Given appropriate 

adjustments, we can characterize market uncertainty by exchange risk and the yield variability by 

demand uncertainty to address other production concerns. 
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Appendix A 
Proof of Theorem 1: 
We have from equation (11), 
 

2 2
2 2 2

2 2

1 1
( ) ( (1 )) ( )

2 2D Y

V V V V V V
D r D q Y K q rV

D Y t D Y I
ψ µ σ σ π ξ

∂ ∂ ∂ ∂ ∂ ∂
− + + + + + − − − =

∂ ∂ ∂ ∂ ∂ ∂
                             (A1) 

From the above equation (A1) the necessary and sufficient conditions imply that for maximization 

purposes, 

1 2

(.)
( ) 2 (1 ) 0

( )
V

Y t k k q
I t

π ξ
∂

− − − − =
∂

                                (A2) 

Soling for the equation’s zero results, 

1

2

( )( ) ( (1 ))
( )( )

2

VY t k
I tq t

k

π ξ∂ ⋅− + −
∂=%                                                                            (A3) 

at ( )q t Q= , (A2) obtains, 

2 1

(.)
2 ( ) (1 )

( )
V

k Q Y t k
I t

π ξ
∂

= − − −
∂

                                                                   (A4) 

implying that the minimum yield level to induce production at capacity is, 

2 1

( )
2 ( (1 )

( )

V
k Q k

IY t
ξ

π

∂ ⋅
+ + −

∂=                                                                             (A5) 

Solving (A1) with ( )q t% results in 

1 / 2
1 0 2

*

( )
( (1 )) 2( )

( )

V
k k k

IY t
ξ

π

∂ ⋅
+ − +

∂=                                                                  (A6) 

This completes the proof. 

Proof of Corollary 1: 

The proof follows from the above in a straightforward manner.  Specifically,  

00

( )
( )   0

( )
V

q t dt Q I
I t

τ
τ

∂ ⋅
≤ < = ∞ ⇒ =

∂∫                                                          (A7) 

Substituting equation (A7) into equations (17)-(19) obtains the desired results.  

 

Proof of Theorem 2: 

From the Bellman equation (11), it follows that ( , , , : )V D Y I t q is maximized if q(t) is either zero or at 

maximumQ since by assumption the production cost function, ( ( ))K q t is linear. Specifically, * ( )q t Q= so 

long as: 
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1

(.)
( ) (1 )

( )
V

Y t k
I t

π ξ
∂

≥ + −
∂

     (A8) 

which results in equation (25). However, if the marginal operating revenues are less than the 

corresponding operating costs then, * ( ) 0q t = . 

APPENDIX B 
 
To prove *ν is unique, we will prove the concavity of the value function ( )V ⋅ in q .  Differentiating 

Bellman equation (11) successively with respect to ( )q t we obtain, 

( ) ( ) ( )
( (1 ))

V K q V
r Y

q q I
π ξ

∂ ⋅ ∂ ∂ ⋅
= − + −

∂ ∂ ∂
    (B1) 

2 2

2 2

( ) ( )V K q
r

q q
∂ ⋅ ∂

= −
∂ ∂

     (B2) 

The second derivative is negative by definition of ( ( ))K q t . Consider (B1) where in perfect competition, 

( ) ( )
(1 )

K q V
Y

q I
π ξ

∂ ∂ ⋅
= + −

∂ ∂
 

and in the case of monopoly, 

( ) ( )
(1 )

K q V
Y

q I
π ξ

∂ ∂ ⋅
> + −

∂ ∂
 

Therefore, the RHS of (B1) is at least zero.  Therefore, it can have at most one real maximum, that is *ν . 
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Figure - 1
Effect of Average Yield on Project Value
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Figure - 2
Effect of Production Capacity on Project Value
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Figure - 3
Effect of Yield Volatility on Project Value
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Figure - 4
Effect of Demand Volatility on Project Value
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Figure - 5
Effect of ψ on Project Value
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