
Real Options, Capital Structure, and Taxes

Carmen Aranda León,∗

Andrea Gamba,†

Gordon A. Sick‡

February 15, 2003

Abstract

This paper presents a valuation approach for real options when the
capital structure of the underlying project/firm is levered, assuming
that the goal is the maximization of total firm/project value (i.e., under
a first-best investment policy). We analyze also the effect of different
financing schemes on the value of the real option and on the exercise
policy. The main finding of this work is that a higher leverage reduce
the time-value of the option to delay investment and increases the
probability of exercising the options.
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1 Introduction

In this paper we present a valuation approach for real options when the
financial structure of the real assets underlying the options is levered.

The effect of financing and capital structure decisions on the value of
real options and on dynamic capital budgeting decisions is typically over-
looked in the real options literature. Only few contributions and applications
deal with the interaction between investment and financing decisions. An
early contribution was given by Trigeorgis [17], who analyzed equityholders’
option to default on debt payments, noting potential interactions with op-
erating flexibility, but with no reference to tax benefits from debt financing.
Another important contribution is Mauer and Triantis [9], who presented
a real options model of a flexible production plant with a capital structure
changing over time as a consequence of an optimal dynamic financing pol-
icy. Changes in capital structure entail recapitalization (repurchase and/or
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issuance) costs, so that an optimal capital structure is found and also the
tax benefits of debt financing are included in their analysis. An important
finding of Mauer and Triantis’ research was that operating and financial
flexibility are partial substitute and that operating flexibility have a posi-
tive effect on the cost of capital, since it reduces the probability to default
on corporate debt, thus allowing to sustain a more levered capital structure.
On the other hand, they do not find any influence of debt financing on the
investment policy. A third contribution was given by Mauer and Ott [8] (but
see also Childs, Mauer and Ott [3] for a discrete-time version of the model),
who study the effect of agency costs of debt on the optimal investment policy
according to the real options approach. Their work, following other existing
models (e.g. Mello and Parsons [11]) studies the effect of agency problems of
debt on the optimal investment policy for the firm’s growth options (under-
investment or overinvestment) and provides a measures of the agency cost
of debt.

All the above contributions lack a proper risk-neutral valuation approach
that incorporates the effect of corporate and personal taxation on asset
returns. It is well know (see Ross [13]) that an equivalent (equilibrium)
martingale measure can be found assuming a convex tax schedule and that
such equilibrium probability is different from the usual martingale measure
embedded in financial asset prices, since the latter does not consider the tax
shield. Hence, a valuation approach for real options which incorporates the
effect of both risk and tax benefits is a necessary premise to any real options
model dealing with financial flexibility.

With this aim, Sick [15] provides a risk-neutral valuation approach as-
suming personal and corporate taxes in a Miller equilibrium economy (see
Miller [12]) under the simplifying assumption of a linear tax schedule. Hence,
drawing on Sick’s model, we present a valuation principle for real options
when the decision to invest in a real asset entails also a decision on how to
finance it. Our main result is a valuation formula for real options under a
first-best (i.e., maximizing the total value of the firm/project) investment
policy. Moreover, we study the effect of debt financing both on the value
of the real options and on the investment policy. The main finding of this
analysis is that a higher leverage for an infra-marginal firm/project (i.e., a
firm/project which has an positive tax shield from leverage) increases the
value of the option to delay investment and increases the probability of
investing, thus reducing the time-value of the option to defer investment.
Lastly, we extend the valuation formula above also to cases where more in-
teracting options are available. This case is particularly interesting because
it permits to address also the case where managerial flexibility (regard-
ing investing decision) interacts with financial flexibility (regarding capital
structure decision). Although the results are obtained for the prototypical
case of an option to delay investment on a given real asset, the main results
of our analysis can be easily implemented for any (simplex or complex) real
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options. Moreover, when possible the analysis is carried on by providing an-
alytical solutions (or approximate analytical solutions) for option values and
the probability of investing. When more complex situations are introduce,
we resort to numerical approximations, using a log-transformed binomial
lattice scheme as introduced in Appendix A.

The paper is organized as follows. In Section 2, we introduce the Miller
economy with corporate and personal taxes, and the risk-neutral valuation
approach for levered real assets, as of Sick [15]. In Section 3, we present a
valuation formula for real options assuming that the goal of the firm is to
keep the proportion of debt on real assets constant. Moreover, we discuss
the effect of leverage both on the value of the option to invest and on the
investment policy (here proxied by the probability of investing). Since this
scheme presents some drawbacks in some extreme situations, in Section 4
we introduce a risk-neutral valuation formula for real options based on an
APV approach. The main findings of the previous analysis are confirmed
also under an APV approach. Lastly, in Section 5, we see how the ap-
proach introduced for simple real options can be extended to evaluate many
interacting options.

2 Project valuation and capital structure in a Miller
economy

The setting is an economy with financial markets with both personal and
corporate taxes. Firms issue only bonds and stocks. Following Miller [12],
we denote τc the marginal tax rate for a company; τpb the personal marginal
tax rate for income from bonds, and τpe the personal marginal tax rate for
income from share, with no distinction between capital gains or dividends.
We assume that the financial market is in equilibrium (general tax equilib-
rium) and so there is no overall gain from debt in this economy although
cross-sectionally corporate tax rates, τc, can be different. In particular, there
can be supra- and infra-marginal firms, i.e., firms that have a gain and, re-
spectively, a loss from leverage. So, denoted with τm the (marginal) tax rate
for a marginal firm (i.e., a firm with no gain from leverage), so that

1− τm =
1− τpb

1− τpe
,

an infra- (respectively, supra-) marginal company has a tax rate τc > τm

(respectively, τc < τm).
We will assume that all the above defined tax operators are linear (i.e.,

income and losses are taxed, for the same agent/firm, at the same rate). A
linear tax code implies a symmetric tax system with full loss offset provisions.
At a corporate level, this is the code used by Mauer and Ott [8]. On the
contrary, Mauer and Triantis [9] assume an asymmetric tax system in which
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there are no loss offset provisions but discuss the effect of allowing for full
loss offset provisions. The symmetry can be justified since it is a better
approximation of the current tax systems in place in most countries. At a
personal level, linearity is also a convenient assumption. In addition, τpe is
used for the tax on equity income, without making a distinction between
capital gains and dividends, when in real life tax systems both are treated
differently. A possible solution could be to assume that individuals can
avoid taxes on dividends by borrowing to create interest offsets or through
tax-exempt investment vehicles.

As shown in Ross [13], under the assumption of linear1 tax schedule there
exists an equilibrium martingale measure that can be used to price cash
flows at the market level taking into account personal taxation; i.e., after
corporate taxes and before personal taxes, as if agents were risk-neutral:

pt = Ê
[
e−r(T−t)CT |Ft

]
(1)

where:

Ê is the expectation operator under the martingale measure. Ft is the
information available at time t. Sometimes we will write also Ê[·|Ft] =
Êt[·];

CT is the after-corporate taxes and pre-personal taxes free cash flow from
the project at time T . I.e., given the pre- corporate tax cash flow, XT ,
CT = XT (1− τc);

r is the risk-free rate suited to discount cash flows from T to t;

pt is the time t price of the cash flow from the project.

If we assume that the riskless rate is non-stochastic, then

Ê
[
e−r(T−t)CT |F0

]
= e−r(T−t)Ê [CT |F0]

and Ê [CT |F0] = CEt [CT ] is defined also as the certainty-equivalent operator
at time t.

Given the same assumptions as introduced in Sick [15], in particular the
above mentioned linearity of the tax operators, at least at the personal level,
the following result holds:

Theorem 1 (Sick [15]). The certainty-equivalent operators for pretax flows
to debtholders, after-corporate tax flows to shareholders and after all taxes
(both corporate and personal) are the same.

1Actually, a sufficient condition for a tax-adjusted martingale measure to exist is that
the tax operator is convex. See Ross [13, Proposition 3, Corollary 1].
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This permits us to specialize equation (1): a cash flow to equity, Ce
T , has

value e−rz(T−t)Êt[Ce
T ], where rz is the certainty-equivalent rate of return on

(risky) stocks;2 a cash flow to bondholders, Cb
T , has value e−rf (T−t)Êt[Cb

T ],
where rf is the certainty-equivalent rate of return on bonds.3 According to
Sick [15, Proposition 6] under the same assumptions, CAPM/APT applies
to the bond market with the same market price of risk as in the equity
market, but with a different riskless rate. I.e., in general rz 6= rf and is
rz < rf . Only if τpb = τpe we have rz = rf (or, τm = 0).

In Sections 3 and 4 we will present the valuation criterion for real options
under the hypothesis of debt financing. For definiteness, we illustrate the
case of an option to defer investment in a project financed both with debt
(bond) and equity (stocks) with a prespecified capital structure. Through-
out the paper, we assume that bond and stocks are issued at the date the
option to invest is exercised and the project is implemented. The option is
an American-like contingent claim on the gross value of the project; i.e.,
the underlying asset is the present value of the cash flows from operation
starting at the implementation date. We will proceed from simpler to more
complex situations. First we discuss, in Section 3, a model of real option
valuation in an NPV/WACC environment with a constant debt proportion
of company’s total value, stressing that there could be a potentially unreal-
istic representation of corporate financing. Next, in Section 4, we provide a
different financing scheme based this time not on the proportion but rather
on the level of debt and hence a different valuation formula for an option to
invest in a project in an APV environment.

In what remains of the paper we assume that the hypotheses for continuous-
time valuation hold.

3 Real options valuation with a constant debt pro-
portion

In the current and subsequent section, we will consider a prototypical prob-
lem of investment under uncertainty, in order to illustrate the basics of real
options valuation when debt financing is introduced.

Let there be given a project,4 with marginal (corporate) tax rate τc. For
simplicity, the project is infinite lived, with value V and costs I to implement

2rz can be thought of as the zero-beta rate of return or the intercept of the security
market line for stocks in a CAPM framework.

3I.e., the risk free rate in a CAPM setting.
4Note that, for the time being, and in the sake of simplicity, our setting is different

from the case of an ongoing company with its own capital structure and growth options.
For the latter, different authors (see, among others, Mauer and Ott [8]) remark that this
type of companies may not want to have much debt because that would prevent them from
exercising the options. We will see that the converse may be true: a leverage company
my find it easier to exercise its options.
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it; the capital expenditure is assumed to be constant over time. We have
the opportunity to delay the investment until date T . At the current date,
t < T , we determine the debt proportion L = B/V , 0 ≤ L < 1, where B is
the market value of debt. This means that, although at the valuation date
we have an idea of the debt proportion to finance the project, since B = LV ,
the exact amount of debt raised will not be known until the exercise date,
because V and the exercise date are stochastic. Hence, the funds to finance
the capital expenditure will be raised (by issuing bonds and stocks in the
desired proportions) only if investment takes place at the date the option
is exercised. This assumption is realistic, since there would be no reason to
raise capital before investment, so incurring in a (useless) opportunity cost
of capital. The optimal exercise policy depends on V , the underlying asset,
and consequently the date we will issue securities is a stopping time with
respect to the information about the project value. We assume that, after
the investment will be made, the debt proportion is kept constant. Myers
has pointed out that if the firm maintains a constant debt ratio then debt
is indeed riskless, since the firm must maintain the constant debt ratio by
repurchasing debt when the value of the firm falls, in order to keep the debt
ratio constant. Thus, there is no opportunity for the value of the firm to
fall below the value of the debt.

Given a marginal investment project, we assume that its after corporate
taxes (instantaneous) free cash flow, {Ct}, follows a geometric Brownian
motion (under the actual/empirical probability measure)

dCt = αCtdt + σCtdZt (2)

where α is the expected growth rate. To compute the value of the project
under the (tax-adjusted) martingale measure, or equivalently, using a (tax-
adjusted) certainty-equivalent approach, we need to properly adjust the ac-
tual growth rate (see for instance, Constantinides [4]). To this aim, following
Sick’s [15] notation, let ρ0 be the instantaneous expected rate of return for
an all-equity-financed cash flow, CT . Hence, the time t market value of this
flow is e−ρ0(T−t)Et[CT ] or, under the tax-adjusted and risk-neutral proba-
bility measure, e−rz(T−t)Êt[CT ]. According to Sick [15, Proposition 5], the
tax- and risk-adjusted cost of capital (WACC) for a (after corporate taxes)
free cash flow, CT , is ρ∗ = ρ0 − τ∗rfL, so that the market value of this flow
is

e−ρ∗(T−t)Et[CT ].

Let define the weighted average cost of capital under the martingale measure
(or alternatively, the certainty equivalent WACC) as

ρ = rz − τ∗rfL = (1− L)rz + L(1− τc)rf (3)

where τ∗ = τc−τm is the net tax shield per unit of interest. We can state the
following proposition, a straightforward consequence of linearity of personal
taxation and of the other Sick’s [15] assumptions.
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Proposition 2. The risk-neutral growth rate of {Ct}, i.e., the drift under
the (general tax equilibrium) martingale measure, is independent of capital
structure. That is, the risk-neutral drift, α̂, is the empirical drift, α, less a
risk premium, Φ, independent of capital structure:5

α̂ = α− Φ,

where Φ = ρ0 − rz = ρ∗ − ρ.

Proof. If the project is all equity financed, then ρ0 = rz + Φ and hence we
can determine the risk premium, Φ. If the project is partially financed with
debt, then ρ∗ = ρ + Φ. Hence

Φ = (ρ0 − τ∗rfL)− (rz − τ∗rfL)

and this concludes.

The result in Proposition 2 is expected since free cash flow only bear
operational risk. Therefore, the appropriate growth rate remains unaltered
with changes in financial risk due to changes in capital structure.

As a consequence, the dynamic for the cash flow from the project is,
under the martingale measure,6

dCt = α̂Ctdt + σCtdZt.

Since the project is infinite lived, its value is

Vt = V (Ct) =
∫ ∞

t
Êt[Cs]e−ρ(s−t)ds =

∫ ∞

t
Cte

α̂(s−t)e−ρ(s−t)ds

=
Ct

ρ− α̂
=

Ct

ρ∗ − α

(4)

where we assumed ρ > α̂ (i.e., ρ∗ > α) for convergence.7 As a consequence,
the stochastic process for V under the tax-adjusted and risk-neutral proba-
bility measure is

dVt

Vt
= α̂dt + σdZt.

Under the hypotheses of CAPM, the equilibrium relation on V is

E [dVt] = ρ∗V dt (5)
5Shortly, we will specify Φ by introducing CAPM. For the time being, Φ is defined

with no reference to any equilibrium model.
6With an abuse of notation, we will still denote by dZt the increment of the standard

Brownian motion under the martingale measure.
7Following McDonald and Siegel [10], the difference δ = ρ∗−α = ρ− α̂ > 0 is a rate of

return shortfall with respect to the equilibrium rate of return on a liquid financial asset
with the same systematic risk.
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where ρ∗ can now be specified as

ρ∗ = ρ + λ [(1− L)βE + L(1− τc)βB] = ρ + λβV (6)

with λ is the market price of risk for equity cash flows, βE is “beta” for
equity cash flows, βB is “beta” for bond cash flows, and ρ is the tax-adjusted
discount rate under the martingale measure. In Equation (6), βV is the right
“beta” for a free cash flow for the project, with a debt proportion L.

Let Π denote the payoff at the exercise date, Π(t, Ct) = max{V (Ct) −
I, 0}, and let F denote the value of the investment project including the
time-option to postpone the investment decision. Before going to the main
result of this section, we remark the fact that issuance of debt is contingent
on the decision to invest. Hence, the financing decision is influenced by
the investment decision, in the sense that it happens when (and if) the
investment is implemented. On the other hand, the investment decision is
influenced by the financing decision, since the former is made if the expected
free cash flow from the project can remunerate the cost of capital.

Proposition 3. The value of the option to invest in a project is the NPV8

at the optimal investment date, expected under the martingale probability
measure, discounted at ρ:

F (t, Ct) = max
s∈T [t,T ]

{
e−ρ(s−t)Ê [Π(s, Cs)]

}
(7)

where T [t, T ] is the set of stopping times with respect to {Ft} and ρ is
the weighted average cost of capital under the martingale measure, as in
Equation (3).

Proof. The option value, F , depends on V , the value of the project with debt
proportion L. Hence, also the expected increment of F follows the equilib-
rium relation under the tax-adjusted and risk-neutral martingale measure:

Ê[dF ] = ρFdt. (8)

On the other hand, by Itô’s Lemma

Ê[dF ] = α̂V FV dt +
1
2
σ2V 2FV V dt + Ftdt (9)

Equating the right-hand-sides of (8) and (9) we have

1
2
σ2V 2FV V + α̂V FV + Ft − ρF = 0. (10)

Applying the usual boundary conditions, we obtain Equation (7).
8Note that here we use the standard Free Cash-Flow discounted at WACC approach.

Later on, in Section 4 we will move to an Adjusted Present Value Approach.
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It is important to remark that the certainty equivalent cost of capital,
ρ, is used to discount the expectation of the payoff even if the option to
delay investment (i.e., an unexercised option) sustains an all-equity financial
structure. In fact ρ depends solely on the capital structure after investment.

The above solution, together with equation (3), suggests that the option
to invest in a marginal project (i.e., a project with corporate tax rate τc = τm

and no tax shield) is evaluated according to Black, Scholes, and Merton’s
approach, but using rz instead of rf . Note that in our setting, since a
project cannot be all-debt financed, rf is never used but when τpb = τpe

(which implies τm = 0).
If τc 6= τm, we have to discuss separately the case of an infra- (τc > τm)

from a supra-marginal (τc < τm) project.
Starting from Proposition 3, which states the valuation principle for real

options assuming a levered capital structure, we wish to analyze the effect
of debt and tax shield both on the value of the option to defer and on the
investment policy. To pursue this aim, we provide an approximate solution
for problem (7) applying the analytic approximation proposed by Barone-
Adesi and Whaley [1]. According to this approach, the value of the option
to invest in (7) can be approximated using the following expression

F̃ (t, Ct) =

f(t, Ct) + κ
(

Ct
ρ−α̂

)γ
if Ct < C∗

t

Ct
ρ−α̂ − I otherwise

(11)

where f(t, Ct) is the value of the same option but with given exercise date
T (i.e., a “European” claim):

f(t, Ct) = e−(ρ−α̂)(T−t)N (d1)
Ct

ρ− α̂
− eρ(T−t)N (d2)I

with

d1 =
log Ct

I(ρ−α̂) +
(
α̂ + σ2

2

)
(T − t)

σ
√

T − t
, d2 = d1 − σ

√
T − t

and N (·) denoting the cumulative Normal distribution;

γ =
1
2
− α̂

σ2
+

√(
α̂

σ2
− 1

2

)2

+ 2
ρ

σ2h(T − t)
(12)

with h(t) = 1− eρt,

κ =
(

1
ρ− α̂

− e(ρ−α̂)(T−t)N (d1(C∗
t ))
)

(C∗
t )1−γ (ρ− α̂)γ

γ

and C∗
t is a root of equation (in a neighborhood of I(ρ− α̂))

f(t, C∗
t ) +

(
1

ρ− α̂
− e−(ρ−α̂)(T−t)N (d1(C∗

t )
)

C∗
t

γ
=

C∗
t

ρ− α̂
− I.
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Note that, in equation (11), both γ and κ depend on t (and hence, also C∗
t

depends on t). This means that all the above computations must be done at
any point in time to define a time-dependent investment policy. Equation
(11) can be use to discuss the influence of debt proportion, L, on the value
of the investment opportunity, F .

It is interesting to analyze also the effect of a larger debt proportion on
the investment policy by considering the probability of investing (assuming
that currently the opportunity is still available) within the time horizon T .9

This is equivalent to saying that, assuming that at t the option to defer has
not been exercised yet, the stochastic process {Cs | s > t} touches (from
below) the investment threshold {C∗

s | t < s ≤ T} computed using the
analytical approximation introduced above. According to Harrison [7, pp.
11–14] this probability is10

P̃ (Ct) = N (p1(Ct, C
∗
t )) +N (p2(Ct, C

∗
t ))
(

C∗
t

Ct

)2α/σ2−1

(13)

where

p1(Ct, C
∗
t ) =

log Ct
C∗

t
+
(
α− σ2

2

)
(T − t)

σ
√

T − t
,

p2(Ct, C
∗
t ) = p1(Ct, C

∗
t )−

(
2α

σ2
− 1
)

σ
√

T − t

Since expressions (11) and (13) are not amenable for an analytic treat-
ment, we will analyze the effect of debt both on the value of the option to
defer and on the exercise policy by discussing a numerical example.

Before presenting the numerical examples, we observe that equations
(11) and (13) simplifies when assuming that the horizon for the option to
delay investment is infinite (T → ∞). Indeed, letting T → ∞, expression
(11) becomes11

F∞(Ct) =

κ
(

Ct
ρ−α̂

)γ
Ct < C∞(

Ct
ρ−α̂

)
− I Ct ≥ C∞

(14)

where

C∞ =
γ

γ − 1
I(ρ− α̂), κ =

(γ − 1)γ−1

γγIγ−1
,

9Note that the probability we are interested in is under the actual measure, and not
under the martingale measure.

10Actually, the probability eP is defined as the probability of a first passage time for Ct

through C∗
t , with initial condition Ct < C∗

t . Nevertheless, C∗
t is the investment thresh-

old. Since C∗
t is decreasing over time, eP in equation (13) provides a lower bound of the

probability of investing.
11Note that in this case the solution is exact and not approximated: F∞ = F .
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γ as in equation (12) with h = 1, and C∞ > C∗
t for all t. The above is

consistent with the usual valuation model for a perpetual option to defer
investment (see Dixit and Pindyck [5, Ch. 5]).

Also expression (13) considerably simplifies when T →∞. By straight-
forward algebra, the (actual) probability of investing becomes12

P∞(Ct) =

1 if α− σ2/2 ≥ 0(
C∞

Ct

) 2α
σ2−1

if α− σ2/2 < 0
(15)

where Ct < C∞.
The infinite horizon case permits us to present some general results. If

the project is infra-marginal, the higher the debt proportion, L, the lower
(than rz) is the risk-neutral WACC, ρ. To check the effect of leverage on the
the investment threshold, C∞, let’s note that γ is increasing with respect to
ρ and γ/(γ−1) is decreasing with respect to γ. Hence, C∞ is decreasing in L.
Since the probability of investing (in the only interesting case, 2α/σ2 < 1)
is decreasing with respect to C∞, then we can state a negative effect of L
on C∞ and a positive effect on the probability of investing. The opposite
is true for a supra-marginal project, since in that case ρ is increasing in L.
We have so proved the following proposition.

Proposition 4. When T → ∞, for an infra-marginal project, the invest-
ment threshold, C∞ is decreasing and the probability of investing, P∞, is in-
creasing with respect to L. The opposite is true for a supra-marginal project.

Unfortunately, even in the infinite horizon case, it is not easy to state
by comparative statics if F is increasing or decreasing in L, and hence we
will resort to a numerical example to assess the influence of L on the value
of the option and to see if Proposition 4 is confirmed when T < ∞.

[Figure 1 about here]

[Figure 2 about here]

The base case parameters are13 Ct = 2, α̂ = 0.04, Φ = 0.1, σ = 0.15,
rf = 0.05, rz = 0.07, I = 100, τ∗ = 0.15 for an infra-marginal project and
τ∗ = −0.15 for a supra-marginal project. By running a sensitivity of F̃
and P̃ (applying (11) and (13)) on the above parameters we observe that,
if τ∗ = 0, F̃ and P̃ are not affected by L. Moreover, we have the following
facts:

12Since the investment threshold, C∞, is independent of t, the valuation formula for
probability is exact: P∞ = P .

13The behavior of eF and eP presented in Figures 1 and 2 are observed for a wide set of
parameters.
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1. for an infra-marginal project, at any value of the cash flow rate, Ct,
the value of the option to delay is an increasing function of L. This
is because the higher L, the lower ρ, and hence the higher the funda-
mental value of the project Vt = Ct/(ρ− α̂). The opposite is true for
a supra-marginal project. See Figure 1;

2. for an infra-marginal project, at any value of σ, the value of the real
option is increasing with respect to L for exactly the same reason as
above. The opposite holds for a supra-marginal project. See Figure 1;

3. for an infra-marginal project, at any Ct, the probability of investing
within T is an increasing function of L. The opposite is true for a
supra-marginal project. See Figure 2;

4. for an infra-marginal project, at any σ, the probability of investing
before T is increasing with respect to L and, at any L, decreasing
w.r.t. σ. For a supra-marginal project, things are more involved since,
for very low values of L, P̃ is decreasing w.r.t. σ, and for a high L, P̃
is increasing w.r.t. σ. The same fact can be noted when P̃ is plotted
against σ at different values for L: when L is high, the probability
of investing can be increasing w.r.t. volatility. In any case, P̃ is a
decreasing function of L. See Figure 2.

The effect that, for an infra-marginal project the probability of investing
is an increasing function the proportion of debt can be explained as a conse-
quence of limited liability of equity financing: the higher L, the larger part
of operational risk is born by debtholders and so the investment is imple-
mented less prudentially (i.e., at lower NPV). In a sense, the effect of debt
financing is to mitigate irreversibility of investment under uncertainty from
shareholders standpoints.

The above results can be explained in terms of agency theory. Sharehold-
ers making self-interested investment decisions, as opposed to shareholders
aiming to maximizing the total firm value, tend to underinvest by delaying
exercise of growth options (and hence, by reducing the probability of invest-
ing). This has been explained by Mauer and Ott [8] and Childs, Mauer and
Ott [3] with the motivation that, if the project is all equity financed, while
levered equityholders bear the full cost of the investment, they share benefits
(and especially, a reduction of probability of default) also with bondholders.
Childs, Mauer and Ott prove that this agency issue between bondholders
and equityholders turn into a positive agency cost (i.e., lower value of the
firm) and higher cost of capital (because of higher cost for bonds). More-
over, Childs, Mauer and Ott shows that partially financing the firm growth
options with debt could incentive management (acting on behalf of share-
holders) to adopt an investment policy which maximizes total firm value
(first-best) instead of shareholders value (second-best). In other words, the
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agency cost of underinvestment is reduced when investments is finance with
debt.

Our results are in line with Child, Mauer and Ott’s findings. Moreover,
we remark that the prototypical example of an option to delay investment
entails a first-best investment policy, since the object in problem (7) is to
maximize the (total) net present value of the project (Vt − I).

The result that the probability of investing is a decreasing function of
asset volatility14 is in line with Sarkar [14] and Cappuccio and Moretto [2].
We just want to stress that debt financing mitigates the effect of uncertainty,
since for any σ the probability of investing is an increasing function of L.

Since the prototypical case of a new firm/project discussed in this section
was aimed only to simplify the arguments, it is straightforward to extend
Proposition 3 to the case of a marginal project held by an ongoing firm with
a debt proportion L. The project is marginal in the sense that it does not
change the capital structure, so that to finance the project with value V and
cost I, new debt D = LV is issued.

At the end of this section, we want to stress the implications of the
valuation model presented above:

1. starting from the date of implementation of the project, the level of
debt is changed over time because the debt proportion is kept constant
and the value of the project changes randomly. This assumption is
very restrictive for many real-life projects, and so in the next section
we present a valuation approach that overcomes this limitation;

2. the amount of debt issued at the date of implementation is a proportion
of the value of the project, V , and not of the capital expenditure, I.
This can be seen as a long-term representation of the (desired) capital
structure for the project/firm. Nevertheless, this approach is not fully
satisfactory because, when V is much higher than I and L is relatively
high, this implies that the capital expenditure, I, could be completely
financed by debt, and this is not the case with most real-life projects;

3. a related issue is on the compatibility between the flexibility of the
investment decision and the rigidity of the financing decision. This
issue becomes more relevant when we discuss the case of financing a
new venture, provided that a large part of its value is given by growth
options. Should it be financed proportionally to the value of its growth
options or to the value of the capital expenditure needed to exercise
them? In the first case, debt and equity financing would be provided
before the options are exercised, and proportionally to the value of the
options. If (part of) those options are left unexercised, there would be

14Letting δ = ρ − α̂ > 0, Sarkar [14] Moretto and Cappuccio [2] shows that for some
parameter values when δ < ρ the probability of investing can be increasing with respect
to volatility.
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a large opportunity cost of capital and no return. This suggests that a
new venture should be financed with debt and equity as a proportion of
the capital expenditure at the date the growth options are exercised;
i.e., debt instruments to finance real options should be designed in
order to be (at least) as flexible as the investment decisions they are
aimed to finance.

For the above reasons, in the next section we present a valuation ap-
proach for real options based on Adjusted Present Value, instead of the
approach based on NPV of free cash flows and WACC introduced above.

4 Real options valuation with a constant level of
debt

In order to overcome the limitations of the option valuation approach based
on free cash flows and WACC, we introduce also a valuation approach for
real options based on Adjusted Present Value (APV), under more general
(i.e., less rigid) assumptions on the capital structure.

As a prototypical problem, we consider the opportunity to delay invest-
ment in an infinite-lived project until date T . At the date the project is
implemented, the capital expenditure, I, is partially financed with debt,
D < I. Although the level of debt is prespecified, bonds are issued only if
(and when) the project is implemented.

Given a project with free cash flow rate {Ct} following the dynamics in
Equation (2), the APV of the project at date t, with debt D is (Sick [15,
Eq. (15)] in continuous-time)

Wt = W (Ct) =
Ct

rz − α̂
+

Dτ∗rf

rz
(16)

where, τ∗ = τc − τm, rz is the discount rate for equity flows and rf is
the discount rate for debt flows under the martingale measure. The above
model incorporates default on debt (i.e., the project value can fall below the
value of debt) and so corporate debt is risky. Hence rf is also the certainty
equivalent of R, the risky rate of return on debt.15 We assume rz > α̂ for
convergence. The APV approach in equation (16) allows us to overcome
the before mentioned drawbacks due to its company value decomposition.
Hence, the first addend on the right-hand-side is the present value of free
cash flows as if the project were all equity financed avoiding any reference to
capital structure; the second addend is the tax shield which depends on the
level of debt, D, and not on the proportion, L. As noted in Sick [15], the
debt tax shield is discounted at the rate of return for equity flows because it

15In details, rf = Ê [R], where R is defined so as to ensure that the cash flow to
equityholders is nonnegative.
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accrues to equityholders. Since the tax shield does not depend on the cash
flow, and assuming D constant16

dWt

Wt
= α̂dt + σdZt :

the dynamics of W is the same as the dynamic of V , but for a different
current value.

The value of the option to invest, under a first-best investment policy
(i.e., a policy aiming to maximize the total project/firm value) in this project
depends on the evolution of W .

Proposition 5. The value of the option to invest in a project is the NPV
at the optimal investment date, expected under the martingale probability
measure, discounted at rz:

F (t, Ct) = max
s∈T [t,T ]

{
e−rz(s−t)Ê [Π(s, Cs)]

}
(17)

where T [t, T ] is the set of stopping times with respect to {Ft}.

Proof. Under the martingale measure, Ê [dF ] = rzFdt. On the other hand,
applying Itô’s Lemma,

Ê [dF ] = FC α̂Cdt + Ftdt +
1
2
σ2FCCC2dt.

Comparing the two equations, the usual valuation p.d.e. is obtained

1
2
σ2FCCC2 + α̂FCC + Ft − rzF = 0.

From this equation, with the usual boundary condition, the result in (17)
follows.

Also in this case, to analyze the effect of debt on real option valuation
and on the investment policy we take advantage of Barone-Adesi and Whaley
[1] analytical approximation. Hence, the approximate value of the option to
delay investment is

F̃ (t, Ct) =

f ′(t, Ct) + ϕ
(

Ct
rz−α̂ + Dτ∗rf

rz

)η
if Ct < C̄∗

t

Ct
rz−α̂ + Dτ∗rf

rz
− I if Ct ≥ C̄∗

t

(18)

where, in this case

f ′(t, Ct) = e−(rz−α̂)(T−t)N (d′1)
Ct

rz − α̂
− erz(T−t)N (d′2)

(
I −

Dτ∗rf

rz

)
16Below, in Section 5, we will model also the case of a debt level changing over time as

an effect of financial flexibility.
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with

d′1 =

log Ct/(rz−α̂)„
I−

Dτ∗rf
rz

« +
(
α̂ + σ2

2

)
(T − t)

σ
√

T − t
, d′2 = d′1 − σ

√
T − t

ϕ =
(

1
rz − α̂

− e(rz−α̂)(T−t)N (d′1(C̄
∗
t ))
)(

C̄∗
t

rz − α̂
+

Dτ∗rf

rz

)1−η (rz − α̂)
η

and C̄∗
t is a root of equation

C̄∗
t

rz − α̂
+

Dτ∗rf

rz
− I = f ′(t, C̄∗

t )+(
1

rz − α̂
− e−(rz−α̂)(T−t)N (d′1(C̄

∗
t )
)(

C̄∗
t

rz − α̂
+

Dτ∗rf

rz

)
rz − α̂

η
.

and

η =
1
2
− α̂

σ2
+

√(
α̂

σ2
− 1

2

)2

+ 2
rz

σ2h′(T − t)
> 1,

h′(t) = 1−e−rzt. We can compute also the probability of investing (assuming
that currently the opportunity is still available) within the time horizon T ,
P̃ (Ct) from equation (13) with C̄∗ in place of C∗.

The infinite horizon case (T → ∞) considerably simplifies the above
equations. Following the usual argument, we have

F∞(Ct) =

ϕ
(

Ct
rz−α̂ + Dτ∗rf

rz

)η
Ct < C̄∞

Ct
rz−α̂ + Dτ∗rf

rz
− I Ct ≥ C̄∞

where

C̄∞ =
(

η

η − 1
I −

Dτ∗rf

rz

)
(rz − α̂) ϕ =

(η − 1)η−1

ηηIη−1
.

In the same way, also the probability of investing can be computed using
equation (15) with C̄∞ in place of C∞.

The above equations, together with the fact that, in the infinite horizon
case both η and ϕ are independent of D (h′ = 1), imply the following
proposition.

Proposition 6. When T →∞, for an infra-marginal project

• the value of the option to invest, F∞ is increasing w.r.t. the level of
debt D;

• the investment threshold, C̄∞ is decreasing, with respect to D;

16



• the probability of investment is an increasing function of D.

The opposite is true for a supra-marginal project.

As in Section (3), we will analyze the effect of debt both on the value
of the option to defer and on the exercise policy by discussing a numerical
example.

[Figure 3 about here]

[Figure 4 about here]

The base case parameters are Ct = 2, α̂ = 0.04, Φ = 0.1, σ = 0.15,
rf = 0.05, rz = 0.07, I = 100, τ∗ = 0.15 for an infra-marginal project and
τ∗ = −0.15 for a supra-marginal project. By running a sensitivity of F̃
and P̃ (applying (18) and (13)) on the above parameters we observe that, if
τ∗ = 0, F̃ and P̃ are not affected by L.

Moreover, numerical results confirm what we observed under the as-
sumption that the underlying project sustains a constant debt proportion.

5 Valuation of compound options and change in
capital structure

In this section we generalize the result of Section 4, and in particular Propo-
sition 5, to take into account the opportunity to expand the initial project
after the first investment is made. We assume that expansion is financed
also with debt, so that the debt level is changed because of expansion. As
in the previous section, both the project underlying the first option and the
project underlying the second options are infinite lived.

Although we will present the case of one option to invest followed by
one option to expand, given the recursive nature of our argument, what we
present can be extended to the case of several compound options just at
the cost of more cumbersome notation. The relevant feature of the model
we present below is that level of debt changed only as a consequence of the
exercise of an option.17

The case we will present clearly deals with either operational or strategic
flexibility of an investment project. Nevertheless, it is easy to see that this
case entails also financial flexibility, namely the possibility to change the
level of debt over time.

Let there be given two options to invest into two different (but not
necessarily perfectly correlated) real assets. The first project has a free cash

17In this case, we deal with an option to expand, but the argument we can be easily
extended to the case of an option to reduce (or abandon) with partial (or total) repayment
of debt.
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flow process {C1
t }, and the second project provides a free cash flow {C2

t }.
We assume that the two stochastic processes follow the dynamic (under the
actual/empirical probability measure)

dCi = α̂iC
idt + σiC

idZi, i = 1, 2

with E
[
dZ1dZ2

]
= θdt. We assume that (for some reason) the investment

in the first project is a necessary condition to invest in the second project.
Hence, the second option can be seen as a growth (or expansion) option
with respect to the first project. Let D1 be the level of debt after the first
investment and D2 the level of debt after the second investment. D1 and D2

are prespecified at the date of valuation, although, as in previous section,
debt capital will be raised (or repaid, it depends on the sign of D2 − D1)
only if the project and its expansion are implemented.

Following the APV approach, the value of the first real asset is

W 1
t = W 1

(
C1

t

)
=

C1
t

rz − α̂
+

D1τ
∗rf

rz
(19)

and the incremental value of the second project is

W 2
t = W 2

(
C2

t

)
=

C2
t

rz − α̂
+

(D2 −D1)τ∗rf

rz
. (20)

The intrinsic value of the growth option is

Π2(C2
t ) = max

{
W 2

(
C2

t

)
− I2, 0

}
.

From Proposition 5, the value of the option to expand at t, assuming it has
not been exercised yet, is

F2(t, C2
t ) = max

s∈T [t,T ]

{
e−rz(s−t)Ê

[
Π2(s, C2

s )
]}

. (21)

The intrinsic value of the option to invest is

Π1(C1
t , C2

t ) = max
{
W 1

(
C1

t

)
− I1 + F2(C2

t ), 0
}

and the value of this option is

F1(t, C1
t , C2

t ) = max
s∈T [t,T ]

{
e−rz(s−t)Ê

[
Π1(s, C1

s , C2
s )
]}

. (22)

The above simple scheme can be used also to allow for financial flexibility
within a given project, i.e., the possibility to change the level of debt (and
hence the capital structure). This can be easily seen by putting C2

0 = 0 in
equation (20). In that case, the intrinsic value of the second option is given
only by the change in the tax shield due to a change in the level of debt
(from D1 to D2) and I2 can be interpreted as a cost of changing the capital
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structure (i.e., the cost of repurchasing bonds or the cost of issuing new
bonds). Also in this case, an extension to a sequence of compound options
allowing for financial flexibility is straightforward.

Since neither problem (21) nor problem (22) can be solved analytically,
we employ a numerical methodology. Hence, we will work on a base ex-
ample, providing a sensitivity of the value of the whole project and of the
investment policy on the level of debt. The base case parameters are in
Table 1. The numerical solution is obtained by employing a log-transformed
binomial lattice approach. An outline of the numerical approach is given in
Section A.

Numerical results confirm all the properties we have already observe in
section 4; i.e., the higher Di the higher the value of the whole projects (and
of the embedded options): see Figure 5 (above). Moreover, we analyze also
how the level of debt affects the investment policy of the option to delay
investment, whose value is influenced also by the value of the (subsequent)
expansion option. To this aim, we analyze the investment threshold as
follows. Given F1, the (optimal) value (function) of the option to delay, as
given in equation (22), the continuation region for the option to delay is

C =
{
(t, C1

t , C2
t ) ∈ R3

++ | F1(t, C1
t , C2

t ) > W 1
(
C1

t

)
− I1 + F2(t, C2

t )
}

and the stopping region S = R3
++\C. Hence, there is an unknown investment

threshold, Ω = ∂C ∩ R3
++, given by the frontier of C. Ω is a surface in R3.

For simplicity, we will consider only the investment threshold at t = 0,
Ω0 = Ω ∪ {t = 0}.18 We will assume also that the debt proportion of
the capital expenditure, Di/Ii, i = 1, 2, is the same for both the option to
invest and the option to expand. The results of this analysis are displayed
in Figure 5 (below), where we provide three thresholds Ω0, at different value
of Di. From Figure 5, it is clear that the continuation region C (i.e., the
region below Ω0) shrinks for larger levels of debt. Hence, the intuition that
a higher level of debt increases the probability of investing is true also in
the case of compound options on two underlyings.

18The investment threshold at any 0 ≤ t ≤ T can be obtained using the same method-
ology by changing the time to maturity of both options to Ti− t. The curves representing
Ωt are obtained by searching an approximate 0-level sections of F1(t, C

1
t , C2

t )−W 1(C1
t )−

I1 + F2(t, C
1
t , C2

t ). In fact, the search for exact 0-level curve is very difficult because the
exact 0-level curve degenerates in a region in C1

min, C1
max] × [C2

min, C2
max]. In details, the

graph show an ε-level section for ε = 0.1.
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Table 1: Growth option: base case parameters
rz c.e. return for stocks 0.07
rf c.e. return for bonds 0.05
τ∗ net tax shield 0.15
α̂1 drift of C1

t 0.05
Φ1 risk-premium for C1

t 0.05
α̂2 drift of C2

t 0.16
Φ2 risk-premium for C2

t 0.1
σ1 volatility of C1

t 0.1
σ2 volatility of C2

t 0.2
θ correlation coefficient† 0
T1 expiry of first growth option 3 (years)
T2 expiry of second growth option 5 (years)
I1 capital expenditure for first option 150 ($)
I2 capital expenditure for second option 400 ($)

† Note that the whole project value and the optimal investment policy are independent

of θ. Hence, in the current case for convenience we assume θ = 0.
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A Numerical methods

We summarize here the main features of the improved log-transformed bi-
nomial lattice approach, suited to price options with payoffs depending on a
multidimensional log-Normal diffusion, as proposed in Gamba and Trigeorgis
[6]. We specialize it to the two-dimensional setting of our valuation problem
in Section 5. The log-transformed method maintains the stability feature of
the one-dimensional approach (proposed by Trigeorgis [16]) while extending
the lattice approach to a multidimensional setting. It can be proved that,
according to the log-transformed approach, good approximations can be ob-
tained also with few time steps. This is a very important feature for our
purposes, since in our problem the results presented are computationally
intensive.

Given the dynamics of free cash flows (under the martingale measure)

dC1(t) = α̂1C
1(t)dt + σ1C

1(t)dZ1(t)

dC2(t) = α̂2C
2(t)dt + σ2C

2(t)dZ2(t)
(23)

with E
[
dZ1dZ2

]
= θdt, we take Xi = log Ci, so that

dX1(t) = a1dt + σ1dZ
1(t),

dX2(t) = a2dt + σ2dZ
2(t),

(24)

where a1 = α̂1 − σ2
1/2 and a2 = α̂2 − σ2

2/2. Let a> = (a1, a2),

Σ =
(

1 θ
θ 1

)
, b =

(
σ1 0
0 σ2

)
, Ω = bΣb> =

(
σ2

1 σ1σ2θ
σ1σ2θ σ2

2

)
.

Define

%1,2 =
1
2

(
σ2

1 + σ2
2 ∓

√
σ4

1 + 2(1− 2θ2)σ2
1σ

2
2 + σ4

2

)
,

the diagonal matrix Λ = (%i), and matrix

Ξ =

((
%1

σ1σ2
− σ2

σ1

)
/ (θc1)

(
%2

σ1σ2
− σ2

σ1

)
/ (θc2)

1/c1 1/c2

)
where

ci =

√
1 +

(
%i − σ2

2

θσ1σ2

)2

.

Ξ is a matrix which provides a change of coordinates for the space
(
X1, X2

)
so that the dynamics in (24) are uncorrelated. Hence, denoting x> = (x1, x2)
the vector of variables transformed through Ξ, the diffusion process of x is

dx1 = A1dt + B11dZ1 + B12dZ2

dx2 = A2dt + B21dZ1 + B22dZ2
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where B = (Bij) = Ξ>b and A = Ξ>a. The covariance matrix of dx is
dxdx> = Λdt; that is, dx1 and dx2 are uncorrelated.

We approximate (dx1, dx2) with a discrete process: given the time inter-
val [0, T ], where T = maxi {Ti} from Table 1, and n, we consider subintervals
of width ∆t = T/n. The discrete process is (x̃1, x̃2) with dynamics

x̃1(t) = x̃1(t−∆t) + `1U1(t)

x̃2(t) = x̃2(t−∆t) + `2U2(t)
(25)

t = 1, . . . , n where (U1, U2) is a bi-variate i.i.d. binomial random variable:

(U1, U2) =


(1, 1) with probability p1

(1,−1) w.p. p2

(−1, 1) w.p. p3

(−1,−1) w.p. p4

and
∑4

i=1 pi = 1. We assign parameters

ki = Ai∆t, `i =
√

%i∆t + k2
i , Ki = ki/`i

i = 1, 2 and probabilities

p(s) =
1
4

(1 + Γ12(s)K1K2 + Γ1(s)K1 + Γ2(s)K2) s = 1, 2, 3, 4, (26)

where

Γi(s) =

{
1 if variable i jumps up
−1 if variable i jumps down

for i = 1, 2, and Γ12(s) = Γ1(s)Γ2(s).
We want to evaluate an option whose payoff, Π, is a non-linear function

of (C1(t), C2(t)). According to the change of variable Xi = log Ci, the
payoff becomes

Π(C1(0)eX1(t), C2(0)eX2(t)).

We make the payoff dependent on x> = (x1, x2) by changing the payoff
function as follows:

Π′ (x1(t), x2(t)
)

= Π
(
C1(0)e(Ξx(t))1 , C2(0)e(Ξx(t))2

)
,

where (Ξx(t))i is the i-th component of vector Ξx(t). The risk-neutral price
of Π′, denoted F ′, is equal to the risk-neutral price of Π, denoted F according
to equation (17) (we refer to Gamba and Trigeorgis [6] for further details):

F ′ (x1(t), x2(t)
)

= erz(T−t)E′ [Π′ (x1(T ), x2(T )
)]

= erz(T−t)E
[
Π(C1(T ), C2(T ))

]
= F (C1(t), C2(t))
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where E′[·] denotes the risk neutral expectation with respect the martin-
gale probability of process {(x1, x2)}, and E[·] is the expectation w.r.t. the
martingale probability of process {(C1, C2)}.

In order to compute the value of the growth option when a closed-
form formula is not available, we exploit the above illustrated extended log-
transformed binomial lattice approximation of the diffusion in (23). Hence,
by approximating (x1, x2) with (x̃1, x̃2), as of equation (25), the value of the
second growth option is obtained by backward induction recursively apply-
ing equation

F ′
2

(
x̃1(t), x̃2(t)

)
=

= max
{

Π2

(
x̃1(t), x̃2(t)

)
, e−rz∆tẼ′

t

[
F ′

2

(
x̃1(t + ∆t), x̃2(t + ∆t)

)]}
where

Π2

(
x̃1(t), x̃2(t)

)
= W

(
C2(0)e(Ξx(t))2

)
− I2

from equation (19) and Ẽ′
t[·] denotes conditional expectation, at t, according

to the discrete probability in (26). The same can be done to compute the
value of the first growth option:

F ′
1

(
x̃1(t), x̃2(t)

)
=

= max
{

Π1

(
x̃1(t), x̃2(t)

)
, e−rz∆tẼ′

t

[
F ′

1

(
x̃1(t + ∆t), x̃2(t + ∆t)

)]}
where

Π1

(
x̃1(t), x̃2(t)

)
= W

(
C1(0)e(Ξx(t))1

)
− I1 + F ′

2

(
x̃1(t), x̃2(t), t

)
.

as in equation (20).
The extension of this numerical methodology to a multidimensional prob-

lem (i.e., with more than two underlying assets) and more compounded
growth options is straightforward.
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Figure 1: Constant debt proportion. Value of the option to invest,
F̃ , for different debt proportions, L, different free cash flow rates, C, and
for different volatilities, σ for an infra- (τ∗ = 0.15) and a supra-marginal
(τ∗ = −0.15) project (other parameters: α̂ = 0.04, σ = 0.15, rf = 0.05,
rz = 0.07, I = 100, T = 5).
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Figure 2: Constant debt proportion. Probability of investing, P̃ , for
different debt proportions, L, for different free cash flow rates, C, and for
different volatilities, σ, for an infra- (τ∗ = 0.15) and a supra-marginal (τ∗ =
−0.15) project (other parameters: α̂ = 0.04, σ = 0.15, rf = 0.05, rz = 0.07,
I = 100, T = 5).
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Figure 3: Constant level of debt. Value of the option to invest, F̃ , for
different debt levels, D, different free cash flow rates, C, and for different
volatilities, σ for an infra- (τ∗ = 0.15) and a supra-marginal (τ∗ = −0.15)
project (other parameters: α̂ = 0.04, σ = 0.15, rf = 0.05, rz = 0.07,
I = 100, T = 5).
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Figure 4: Constant level of debt. Probability of investing, P̃ , for different
debt levels, D, for different free cash flow rates, C, and for different volatil-
ities, σ, for an infra- (τ∗ = 0.15) and a supra-marginal (τ∗ = −0.15) project
(other parameters: α̂ = 0.04, σ = 0.15, rf = 0.05, rz = 0.07, I = 100,
T = 5).
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Figure 5: Compound options for an infra-marginal project (Case parameters
are given in Table 1.): (above) Sensitivity of the value of the option to delay
investment, F1, on debt level Di for different volatilities of the underlying
real assets. (below) Sensitivity of investment threshold at time t = 0, Ω0,
on debt levels Di for option to delay.
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