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I Introduction

We show how to price options in the “real world” rather than in a risk-neutral

world. That is, we demonstrate option pricing without using the change of

probability measure required to price in the risk-neutral world. Our method

is appealing to researchers and practitioners faced with real-option valua-

tion problems where risk-neutral pricing may only serve to create practical

problems on the one hand or conceptual problems on the other. Practical

problems with risk-neutral pricing arise when inferred option pricing param-

eters do not apply to the real world. For example, the probability of success

of a real-option project, the probability of default on a corporate bond, the

probability that an American-style option will finish in the money, and the

likelihood of a jump in a jump process are each different in the real and risk-

neutral worlds.1,2 Similarly, if higher moments (e.g., skewness and kurtosis)

play a part in the asset pricing model, then practical problems arise because

the variance and higher moments can differ between the real and risk-neutral

worlds. On the other hand, conceptual problems arise because it is difficult to

understand why we need event probabilities from an economy that does not

compensate risk bearing, even though we are pricing assets from a real-world
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economy that does compensate risk bearing. By performing the real-option

analysis using the probability distributions of the real-world economy, we

avoid these difficulties—the final answer is, of course, the same (Cox et al.

(1985)).

In Section II we derive the model (with details relegated to Appendix A).

Section III discusses implications of the model. Section IV discusses risk-

neutral versus real-world option pricing when higher moments (e.g., skewness

and kurtosis) appear in the asset pricing model. We give a numerical example

of a real-option application in Section V. Section V also includes a pedagog-

ical by-product of our model—a simple illustration of why non-option based

NPV rules are difficult to implement in real-option settings. Section VI con-

cludes with a summary of our findings and potential future research topics.

Appendix A contains mathematical derivations and an extended numerical

example.

II The Model

A continuous-time option pricing model under the real-world probability

measure requires a stochastic risk-adjusted discount rate; no single risk-
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adjusted discount rate will do the job.3 Black and Scholes recognize this with

their “instantaneous CAPM” approach to deriving the Black-Scholes PDE

(Black and Scholes (1973)). However, the Black-Scholes model that results

is difficult to interpret with respect to the real world because the real-world

probability measure parameters fall out. Our model is a discretized version

of the original Black-Scholes instantaneous CAPM derivation that allows for

changing risk-adjusted discount rates. The discretization allows us to infer

real-world parameters—an inference not explicitly available in the continuous

time limit of the model.

Our model—in both its one-period and multi-period forms—is a direct

generalization of the Cox, Ross, and Rubinstein (CRR) binomial option pric-

ing model (Cox et al. (1979)). CRR do not give enough information to

price options in the real world. Cox and Rubinstein (1985), however, do give

enough information to deduce real-world option pricing (see discussion in our

Appendix A.3), but the information is not used explicitly for that purpose.

Rather, they present the information to help evaluate option performance

in a portfolio theory context (Cox and Rubinstein (1985), p. 185). We take

their analysis one step further and generalize their model in the sense that

options are priced under any discount rate. Using the risk-free rate em-
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ploys the probability measure for the risk-neutral economy that yields the

CRR model; using the underlying security’s actual discount rate employs the

probability measure for the actual economy (i.e., the “real world”).4 Like

the CRR model, our generalized model prices both European- and American-

style options.

Inferring probabilistic information from option prices is not new. Like us,

Stutzer (1996) also infers “subjective” (i.e., real world) probability densities

from options data. He differs from us, however, in that he uses diffusions

instead of binomial trees, he uses historical data which we do not need,

and he uses the subjective density to estimate the risk-neutral density for

risk-neutral pricing (the focus of his paper), whereas we price in the real-

world. Like us, Jackwerth and Rubinstein (1996) infer probabilities from

option prices using binomial trees. They differ from us because they use risk-

neutral probabilities. They also use nonparametric techniques that require

large data sets, whereas our methods require very little data. Ait-Sahalia

and Lo (1998) and Jackwerth (2000) also infer probabilities densities from

option prices. They differ from us in that they use diffusions rather than

binomial trees, they infer risk-neutral densities not real-world ones, and they

use nonparametric techniques.
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Our model is derived in three different ways in Appendix A: a general

proof in Appendix A.1; a certainty equivalent argument related to but slightly

different from that in Constantinides (1978) and Bogue and Roll (1974) in

Appendix A.2; and a CAPM-based proof using the fact that the Sharpe ratio

of a security and the Sharpe ratio of a call option on the security are the same

in a one-period binomial model in Appendix A.3 (c.f. Cox and Ross (1976),

Equation (15)).5 A similar argument can be given using Treynor measures

(also in Appendix A.3).

Let S0 and ST be the underlying asset price at time t = 0, and time

t = T , respectively. Assume the asset pays no dividends,6 then RS ≡ ST

S0

is the total (or “gross”) discretely-compounded return on the asset from

time 0 to time T (e.g., a realized value of RS = 1.15 indicates 15 per-

cent growth). RF is similarly the total risk-free rate from time 0 to time

T (so RF = 1.10 represents 10 percent growth). Let SD(·) denote stan-

dard deviation, E(·) denote expectation under real-world probability, and

E∗(·) denote expectation under the risk-neutral measure. Following Cox

and Rubinstein (1985), we use “ν” to denote standard deviation of total

discretely-compounded return to distinguish it from σ, which we reserve for

standard deviation of continuously-compounded returns. Let rF be the an-
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nualized continuously-compounded risk-free rate [so that erF T = RF ], kS be

the annualized continuously-compounded expected return on the stock (so

that ekST = E(RS)), and use u = eσ
√

T and d = e−σ
√

T as the one-period mul-

tiplicative stock price growth factors as per the CRR specification.7 With

these definitions, Appendices A.1 through A.3 derive the one-period option

pricing formulae in Equations (1) and (2).

V0 =
1

RF

[
E(VT ) −

(
Vu − Vd

u − d

)
(E(RS) − RF )

]
(1)

V0 = e−rF T

[
E(VT ) −

(
Vu − Vd

eσ
√

T − e−σ
√

T

) (
ekST − erF T

)]
. (2)

Note that although Equations (1) and (2) involve discounting at the risk-

free rate, this is not risk-neutral pricing. There is no change of probability

measure. The expected cash flow E(VT ) is in the real world, not a risk-neutral

world, and it is not directly discounted at the risk-free rate. Rather, the risk-

adjusted expected cash flow (i.e., the certainly equivalent) is discounted at

the risk-free rate. This risk-adjusted expected cash flow is the real-world

expected cash flow less a risk premium.

The relationships we use to derive our option pricing formula hold only

for the one-period case of the binomial option pricing model. A multi-stage
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binomial tree is a set of iterative single-period binomial models. Thus, we

may apply our generalized one-period option pricing model (GOPOP) in an

iterative manner to create a multi-stage binomial tree that prices American-

and European-style options.8

The expectation operator E(·) in all of the equations is evaluated un-

der the probability measure that exists in the real-world economy, assum-

ing we have the correct discount rate for the underlying security. As will

be seen shortly, the probability measure—and consequently the expectation

operator—are dependent on the discount rate assigned to the underlying

asset. Technically, many different discount rates produce the correct option

price because the probability measure changes endogenously to adjust for the

discount rate. If the discount rate is set to the risk-free rate then the model

reduces to a risk-neutral option pricing model [set RS to RF and kS to rF in

Equations (1) and (2), and replace E(·) by E∗(·)]. As long as the discount

rate for the underlying security is the real-world discount rate, we are using

the real-world probability measure to value options. Any other discount rate

changes the probability measure to that of a different economy (i.e., an econ-

omy in which the agents have different risk preferences). However, the option

price is correct no matter which discount rate (and its related economy) we
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are using. We can assume a risk-neutral world to price options correctly but

we find it difficult to make inferences about the real-world economy based

on the probability density function of prices and returns in this risk-neutral

world. Further, we may find it difficult to explain the risk-neutral pricing

logic to non-academics.

We now apply the GOPOP model in a multi-stage CRR binomial model

form, creating a generalized multi-period option pricing model (GMPOP).

The main difference between GMPOP and CRR is the use of the real-world

underlying security discount rate in place of the risk-free rate in the assess-

ment of the two probability measures that allow the underlying security price

to increase and decrease at a given stage in the binomial tree.9

Given all of the assumptions of the CRR model, the real-world probability

of a price increase in the one-step binomial model is p ≡
(

ekST−d
u−d

)
where kS

is the continuously-compounded annualized risk-adjusted expected rate of

return for the underlying security, T is the proportion of a year for one stage of

the binomial tree, and u = eσ
√

T and d = e−σ
√

T are the multiplicative growth

factors for one stage of the binomial tree. Allowing S to denote the current

price of the underlying security, we develop a five-stage binomial tree in

Table I. To value an option on this security, we go to the possible underlying
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security prices in the terminal period and determine the option value at each

one of these security prices. We can consider the option payoffs to be Vuuuuu,

Vduuuu, Vdduuu, Vddduu, Vddddu, and Vddddd (where the subscript denotes what

has occurred to the security price over the five periods without respect to

ordering). We can calculate the option prices in period four recursively. For

example, we can find Vuuuu using p, 1 − p, RF , u, d, k, Vuuuuu, and Vduuuu in

the GOPOP model.

Vuuuu = e−rF T

{
[pVuuuuu + (1 − p)Vduuuu] −(

Vuuuuu − Vduuuu

eσ
√

T − e−σ
√

T

) (
ekST − erF T

) }
. (3)

More formally, we let “i” be the number of upward price movements and

“j” be the number of downward price movements. Then for stage “i + j”

(where i + j is less than the terminal stage), the option price V (i, j) follows

the recursive scheme given in Equation (4).

V (i, j) = e−rF T

{
[pV (i + 1, j) + (1 − p)V (i, j + 1)]

−
(

V (i + 1, j) − V (i, j + 1)

eσ
√

T − e−σ
√

T

) (
ekST − erF T

) }
. (4)
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By using the GOPOP model iteratively we generate the GMPOP model

shown in Table II.

Again, the probabilities generated for the price movements are from the

actual economy and not a risk-neutral economy. If we generate the model

using the risk-free rate rF instead of the underlying security’s discount rate,

kS, the GMPOP model becomes risk neutral and is the same as the CRR

model.

The GMPOP model in Equation (4) is set up to price a European-style op-

tion. However, if at each node we take the maximum between the GOPOP so-

lution V (i, j) and the option’s immediate exercise value, the GMPOP model

can price American-style options. This added condition at each node is the

same condition for pricing American-style options under the CRR model.

It follows that our model can give traders real-time, real-world probabili-

ties that individual American-style options will finish in the money. On a

Bloomberg terminal, for example, our model builds on Bloomberg’s beta

function to get the expected return on the underlying (you can define your

own market index proxy and confidence intervals on the estimated beta then

flow through to confidence intervals on option value and on probability of

success).
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We conclude this section with a numerical example (adapted from Hull

(1997), pp. 346–347) of a European put and an American put using the

GMPOP model. Let the current price for a non-dividend paying stock be

$50, the continuously-compounded annualized risk-free rate be rF = 0.10, the

stock’s annualized continuously-compounded expected return be kS = 0.15,

and the annualized volatility of continuously compounded stock returns be

σ = 0.40. We value the five-month put option with strike price $50 using a

five-stage tree. The European put appears in Table III and the American put

is in Table IV. Table VIII is an extended version of Table III with further

details of the calculation (see discussion in Appendix A.4). Let us remind the

reader that the tree for the underlying is the same whether we use real-world

or risk-neutral world valuation. The probabilities and discount rates are, of

course, different.

III Some Implications

Note the difference between the real-world economy probability measure of

future events and the risk-neutral economy probability measure of future

events in Tables III and IV. Given that the underlying security’s discount
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rate is greater than the risk-free rate (i.e., a positive risk premium), risk-

neutral valuation takes probability from higher value states and redistributes

the probability to lower value states (where “higher” and “lower” refer to the

price of the underlying security). The proof of this implication is seen in the

construction of the probability of a price increase in the underlying security in

a single period of the binomial tree. Compare the price increase probability

p under the GOPOP model using the real-world security return to the price

increase probability q under the GOPOP model using the risk-free return

(i.e., the CRR model).

k > rF ⇒ p =

(
ekT − d

u − d

)
>

(
erF T − d

u − d

)
= q. (5)

The inequality in Equation (5) is reversed if the underlying security’s risk

premium is negative.

This means that research concerned with parameters inferred from option

prices such as tail probabilities (e.g., “value at risk”), jump models, skewness

in return distributions, and kurtosis in return distributions is susceptible to

error if a risk-neutralized option pricing model is employed (assuming these

parameters/measures are desired for the real-world economy). The amount of
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error is a function of the absolute value of the risk premium for the underlying

security.10

IV Beyond Mean-Variance

We have discussed several benefits of pricing options under the real-world

probability measure. When the goal is merely to price the option, however,

then it may seem that the GOPOP/GMPOP model provides no benefit be-

yond those already provided by risk-neutral valuation, because the pricing is

the same. In fact, there is an additional benefit to pricing options under the

real-world measure, but it does not become apparent until we move beyond

the traditional mean-variance framework used for asset returns in continuous

time (e.g., beyond the Black-Scholes world).

If we are working in a Black-Scholes framework (i.e., geometric Brownian

motion with constant diffusion coefficient) then the instantaneous variance

takes the same value in both the real and risk-neutral worlds and no higher

moments matter, so risk-neutral pricing is not difficult to implement. If the

only goal is to price the option, then, in this case, there is little incentive to

modeling risk premia using the real-world probability measure.
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For more than a decade, however, continuous-time option pricing mod-

els have incorporated higher-order moments, such as skewness and kurtosis,

in the underlying data generating process via stochastic volatility with or

without jumps (Hull and White (1987); Scott (1987); Wiggins (1987); Bates

(1996a); Bakshi and Chen (1997); Scott (1997)). In this case, the instanta-

neous variance is not necessarily the same in the real and risk-neutral worlds,

and higher order moments can also differ (Cont (1997), Section 6; Madan et

al. (1998), Footnote 14).11 Risk-neutralization of these models is more prob-

lematic than in the Black-Scholes world. It depends upon the selection of

a utility function rather than incorporating a model for risk premiums for

the underlying asset and the option (Bates (1996b), Section 2.1; Jackwerth

(2000)).12

A second problem with risk-neutral pricing when higher-order moments

matter is that the risk-neutral moments must be inferred from, rather than

matched to, the associated real-world moments and might depend upon the

utility function used. In other words, the risk-neutralized variance, skewness,

and kurtosis cannot be calculated directly from real-world returns. This issue

is not new.

There is now, however, a movement toward the use of statistical moments
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beyond the second moment in models of asset returns (e.g., Harvey and

Siddique (2000); Leland (1999)). The GOPOP/GMPOP framework allows

such asset pricing models to be incorporated directly into the pricing of

options. This provides a rich context for option pricing and has distinct

advantages over risk-neutral pricing. The primary advantages are the ability

to use real-world moments from which our data are generated and to avoid

the use of utility functions.

The GOPOP/GMPOP model relies upon only two conditions (the same

two conditions it always requires) to be valid with three or more moments

in the asset return distribution: (1) the underlying discount rate correctly

incorporates compensation for the moments, and (2) the asset pricing process

can be generated by a binomial tree (the tree need not necessarily recombine).

This result follows from the existence of certainty equivalents and the form

of the elasticity of the option price relative to the underlying price in the

one-period binomial framework (see Appendix A.1). In other words, given

the two conditions mentioned, Equations (1) and (2) hold. It follows that

the GOPOP model and, iteratively, the GMPOP model, are both valid.

There are asset pricing models that incorporate skewness (mentioned ear-

lier in this section) and there is a risk-neutral binomial option pricing model
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that incorporates skewness (Johnson, Pawlukiewicz, and Mehta (1997)). Blend-

ing these models under the GOPOP/GMPOP framework can provide an op-

tion pricing model in the real world—assuming the real world compensates

variance and skewness in the asset return. Once one moves beyond the mean-

variance framework, differences between real and risk-neutral world moments

imply that the GOPOP/GMPOP models are necessary to be able to incorpo-

rate directly information readily available from real-world data (Rubinstein

(1998), for example, allows only for risk-neutral higher moments).

V Real Options and Why Discounted Cash

Flow Methods Fail

Real-option analysis has many decision tree applications where risk-neutral

pricing and risk-free discount rates are at odds with practitioners’ “gut

instincts.” At a minimum, management prefers that a risk-adjusted rate

(e.g., the cost of capital) be used as a discount rate. Management may

also be interested in the probability of the success of a project being val-

ued as a real option. A risk-neutral option pricing model does not provide
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the probability of success in the real-world economy. However, the GMPOP

model can provide this probability. We demonstrate this using a product

development decision tree example.

Suppose a firm is considering entering a particularly volatile product mar-

ket. Once a product hits the market, it must recoup all of its investment in

the initial year because the industry is prone to fads where the product must

be different from what customers already own in order to be marketable. If

the product is introduced today, it will generate $200 million in sales, but

at a production cost of $300 million. There are also initial development and

design costs to add to the production costs, so entering the market today is

certain to lead to financial failure. What if the firm develops the product now,

but delays going into production until the market has had the opportunity to

expand? The downside to immediate development is that the developmental

and design costs must be incurred now; the upside is that patents will be

obtained ahead of competitors, thus establishing a toehold. The benefit to

delaying production is that the uncertain dollar value of sales in the future

has at least the potential to cover the future production costs.

Let us ignore taxes (or assume that all cash flows are calculated after

taking account of taxes). Suppose the continuously-compounded expected
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growth in dollar sales available to the firm in this market is 18 percent per

annum, with the standard deviation estimate for the growth rate being 60

percent per annum. The expected growth rate of sales and its associated

standard deviation are the return and volatility of the “underlying” in the

model. The product market payoffs are an asset available for future purchase

if the appropriate development expenditure is made today. Given a 5 percent

annual risk-free rate, we need to determine the value of establishing a toehold

by developing the product now. If this value exceeds the developmental and

design costs, then the project has a positive NPV.

The development of this product provides the right, but not the obli-

gation, to take the product to market in the future. Suppose we restrict

ourselves to considering a five-year horizon at which time the costs of going

into production will be $400 million. Then development now provides us

with a five-year, European-style call option on the annual sales with a strike

price of $400 million (we get the sales if we spend the production costs). To

value the option, we first model the sales using a five-stage binomial tree

(Table V). The tree of possible annual sales levels is displayed using both

the real-world and risk-neutral world probability measures.

In Table VI we determine the value of the European call option (i.e., the
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value of developing the product) using the GMPOP model: $73.25 million.

If development and design expenditures are less than $73.25 million, then

the firm should develop the product. The probability that the product will

produce profit is 19.92 percent. Let us emphasize that the GMPOP model in

this application requires only forecast growth rate of sales, forecast standard

deviation of this growth rate, the risk-free rate, and future production costs—

each arguably available to an experienced manager. The sales growth is the

“discount rate” consistent with the actual probability measure.

Using the CRR model (and thus the risk-neutral probability measure)

produces the same option value. However, the CRR model does not provide

the real-world probability that the product will be profitable. By setting our

GMPOP model firmly in the real world, we make real-option analysis more

lucid to skeptical managers. We also gain probabilistic information about

the actual economy.13

In addition to comparing the GMPOP model to the CRR model, we can

use the GMPOP model to illustrate the advantage of real-option analysis

over traditional non-option-based DCF analysis. Traditional DCF analysis

generally fails in a real-option based project analysis for one of two reasons:
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1. DCF does not model management’s ability to exit a project. In essence,

traditional DCF assumes the option must be exercised.

2. Even if the DCF analysis is rigged to capture the option-like nature

of the project, the appropriate discount rate is not the cost of capital,

nor is it the discount rate for the underlying security. Rather, it is the

path-dependent stochastic discount rate of the option.

For us to value the product development decision using a traditional DCF,

we must take a weighted average of all 32 possible future values (FVs) where

negative FVs are set to zero when poor market conditions would lead us to

abort production (24 such cases).14 The discounting varies between each of

the six positive FV cases, but all of the cases use single-period option discount

rates. The calculation is summarized in Table VII: No particular discount

rate is appropriate for each of the cases where the FV is positive. Using real-

world probabilities, there does exist a single discount rate that discounts the

FVs to give the correct present value, but it is a peculiar non-linear weighted

average of the path-dependent discount rates.15

One major flaw with the traditional DCF analysis is that we had to

perform the real-option analysis to generate the correct discount factors for
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the DCF valuation. That is, we had to find the real option’s value only to re-

find it using traditional DCF methods. It is this flaw that makes real-option

analysis a better alternative to traditional DCF analysis in the first place.

The GOPOP and GMPOP models illustrate this issue clearly.

VI Conclusion and Extensions

We develop generalized one-period and multi-period binomial option pricing

models (GOPOP and GMPOP) that can employ different probability mea-

sures, including those of the real-world economy and of the risk-neutral world

economy. Our model allows parameter inference from the real-world proba-

bility density function of the underlying security (e.g., real-world likelihood

of success of a real-option project, real-world as opposed to risk-neutral world

likelihood of default by a bond issuer, real-world likelihood of bankruptcy in

a model of a venture-capital-backed startup, real-world probability that an

American-style option finishes in the money). Similarly, our model allows

real-world statistical information (e.g., historical or forecast volatility) to be

incorporated into option pricing. This is particularly important when higher

moments appear in the asset pricing model and variance and higher moments
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need not be the same in the real and risk-neutral worlds even in continuous

time. In addition, our model allows stochastic parameters throughout the

option’s life, which are here omitted for clarity of presentation.

We give three proofs. The first proof is general enough that the CAPM,

APT, or multifactor empirical asset pricing models (e.g., Fama and French

(1996); Carhart (1997)) apply. The second proof applies in a general mean-

variance framework. The third proof applies only to the CAPM.
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VIII Footnotes

1. The potential future values of a particular security’s price affect the

value of an option on that security. However, the probability measure

of those future values does not, and it is adjustable (Baxter and Ren-

nie (1996), p. 30). If a researcher infers the probability density of the

underlying security using implied binomial trees (Rubinstein (1994);

Jackwerth and Rubinstein (1996)) then the derived parameter and dis-

tributional information may apply only to a risk-neutral economy and

not the real-world economy.

2. In rare cases, a simple correction already exists. For example, N(d2)

of the Black-Scholes model (Black and Scholes (1973)) provides the

probability that the European call option finishes in the money under

the risk-neutral measure and can be adjusted directly to a real-world

probability (Baz and Strong (1997))—but most traded options and

most real options are American style, so their applications are limited.

In other cases, the real-world and risk-neutral world parameters are

the same: beta, implied volatility, and the optimal exercise boundary

for an American-style option are some that come to mind—at least in
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continuous-time models.

3. Other things being equal, as the stock price rises (falls), the degree of

leverage implicit within a call option on that stock falls (rises), and thus

the risk-adjusted discount rate for the call option also falls (rises). It

follows that the risk-adjusted discount rate for the option that applies

over the entire life of the option is a path-dependent random variable

driven by the randomness of the stock price, and no single determinis-

tic number can capture this real-world required rate of return on the

option.

4. We make these assertions because, conditional upon the binomial na-

ture of the model, the measure is uniquely determined. We note, how-

ever, that the measure is “unique” only up to the structure of the

binomial model. Other binomial representations exist and each has a

slightly different measure (Tian (1993)). The binomial model is an ap-

proximation to an assumed real-world diffusion or pure jump process,

and our “real-world” probability measure is, similarly, just such an ap-

proximation. Different approximations give slightly different measures.

5. Simple intuition tells you that in a one-period binomial model (or in an
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infinitesimal time step in continuous time) the call option as a leveraged

investment in the underlying must have the same Sharpe ratio. The

leverage simply moves the asset along a straight line in expected return-

standard deviation space. For graphical illustration, see Figure 5-1 in

Cox and Rubinstein (1985).

6. Dividends—either continuous or lump-sum—can be incorporated quite

easily (Jackwerth and Rubinstein (1996); Hull (1997)).

7. Caution must be exercised in translating between discretely and continuously-

compounded returns. The Sharpe ratio equality result that drives

our model is exactly true only for discretely-compounded returns. If

we begin with parameters based on continuously-compounded returns,

then they must be translated to their discretely-compounded counter-

parts before employing this equality. For example, if σ is the stan-

dard deviation of annualized continuously-compounded returns on a

stock, then SD(ST ) = p(Su − E(ST ))2 + (1 − p)(Sd − E(ST ))2, where

E(ST ) = pSu + (1 − p)Sd, u = eσ
√

T , d = e−σ
√

T and p = ekST−d
u−d

.

8. We get a closed-form formula in the limit as step size tends to zero

only in the same cases that the risk-neutral version of the model leads
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to a closed-form formula—because the pricing is the same. Our work

is related to Rubinstein (1976) but differs on two dimensions. First, he

gets exact pricing formulae assuming a geometric Brownian motion and

discrete trading opportunities, whereas we provide approximations by

simplifying to a binomial world. Second, his analysis is demonstrated

only in the European-style option case, whereas we demonstrate our

analysis for both European- and American-style options. If we restrict

attention only to European-style options and let our step size go to zero,

then we get the same result as Rubinstein (1976): the Black-Scholes

formulae.

9. We can use a stochastic underlying stock return and/or risk-free rate

at any given stage within the GMPOP model. We omit this for clarity

of presentation.

10. One special property of our model is that the pricing is completely

robust to the choice of k. That is, any k used leads to the correct

derivative price because the measure adjusts endogenously. The real-

world inferences, however, like probability of success, are not robust in

this fashion and incorrect discount rates lead to incorrect inferences.
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11. If prices are driven solely by diffusion processes (e.g., the Black-Scholes

world, or a stochastic volatility model without jumps) then instanta-

neous volatility is the same in both the real and risk-neutral worlds.

With stochastic volatility, however, the expected future path of volatil-

ity is not necessarily the same in both worlds. If the process is discon-

tinuous, then the instantaneous variance, skewness, and kurtosis can

differ between real and risk-neutral worlds. Of course, even in the CRR

model the real-world and risk-neutral world variances are not the same

in the one-step model. They do, however, coincide in the limit as the

step sizes go to zero if the process becomes a continuous-state diffusion

(Cox et al. (1979), p. 253).

12. If the jump process is a pure jump (i.e., a Poisson jump process with

no diffusion coefficient) and if the jump size is non-random, then the

jump can be perfectly hedged without a utility function or any risk

adjustment (Cox and Ross (1976)). Similarly, if the jump process is

a jump-diffusion with a diversifiable jump, then the non-jump portion

of the process can be hedged, and the remainder has risk-free required

return and a PDE can be solved (Merton (1976)). Otherwise, either
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a utility function or an adjustment for a risk premium is needed. The

former is standard practice, but the latter is not—because asset pric-

ing models for the risk premium can create problems with risk-neutral

pricing (Bates (1996), p. 571).

13. Conversely, experienced management may have a good estimate of the

actual probability of success of a project being valued as a real op-

tion. The GMPOP model may be calibrated to this probability and

a discount rate for the underlying may be inferred directly. A risk-

neutral model has no use for such information and does not allow such

“real-world” information to influence valuation.

14. A five-step binomial tree has 25 = 32 paths from the initial node to the

possible ending nodes. The payoff to this option is not path-dependent:

the future value at a given ending node is the same no matter which

path was followed to get there. However, the discount rates in the

GMPOP model are path-dependent: they differ depending upon the

path followed through the tree. Thus, a traditional DCF analysis in

this setting must separate the cases path-by-path before discounting.

15. In the case of a European-style option, Cox and Rubinstein (1985,
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p. 324) give a closed-form formula for the real-world expected return on

the option. A related, but different concept, is Mark Garman’s “fugit”

of an option (Garman (1989)). This is the risk-neutral expected time

until exercise.

16. Cox and Rubinstein (1985, pp. 186–187) give some useful formulae:

νS =
√

p(1 − p)(u − d)2, νC ≡
√

p(1 − p)
(

Cu−Cd

C

)2
.

17. Unfortunately, we cannot produce a closed-form solution even with

Normality because of the stochastic risk premium of the option under

the real-world probability measure.

18. Although the Sharpe ratio relationships are all stated for European op-

tions, the equality of Sharpe ratios in the one-period model also holds

for American-style calls. Of course, if early exercise of the American

call is optimal at some node and the optimal strategy is followed, then

the American call’s Sharpe ratio is not defined. This does not, how-

ever, have any impact on our pricing technique because we exploit the

equality of Sharpe ratios for the European-style call when we value the

American-style call.
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19. Note that nonlinearity of the natural logarithm function implies that

the annualized continuously-compounded expected return on an asset

is not the same as the expected annualized continuously-compounded

return. That is 1
T

ln[E(RS)] 6= E[ 1
T

ln(RS)]. We use the former (de-

noted kS), not the latter.
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A Derivations

Appendix A.1 presents a general proof that applies to the CAPM, APT, or

any multifactor asset pricing model (e.g., Fama and French (1996); Carhart

(1997)). In the latter cases, the asset pricing models are neither equilibrium

models nor arbitrage-free. It can be argued, however, that the Fama-French

three-factor model accounts for an errors-in-variables problem in the tradi-

tional CAPM. As such, the extra factors are simply proxies for measurement

error in the market index and are being used to get better estimates of the

equilibrium CAPM expected return than a single factor model can give (see

Ferguson and Shockley (1999)). Appendix A.2 presents a certainty equiva-

lent proof that works in a general mean-variance framework. Appendix A.3 is

a more traditional proof restricted to the CAPM framework. Appendix A.4

gives a numerical illustration.

Each proof uses the following definitions. Let S0 and ST be the asset

price at time t = 0, and time t = T , respectively. Assume the asset pays

no dividends, then RS ≡ ST

S0
is the total (or “gross”) discretely-compounded

return on the asset from time 0 to time T (e.g., a realized value of RS = 1.15

indicates 15 percent growth). RF is similarly the total risk-free rate from time
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0 to time T (so RF = 1.10 represents 10 percent growth). Let SD(·) denote

standard deviation, E(·) denote expectation under real-world probability,

and E∗(·) denote expectation under the risk-neutral measure. Let νS ≡

SD(RS). Define RC , RP , νC , νP similarly for calls and puts. Following Cox

and Rubinstein (1985), we have used “ν” to denote standard deviation of

total discretely-compounded return to distinguish it from σ which we shall

reserve for standard deviation of continuously-compounded returns.16

A.1 General Proof

Let Vt be the price of the derivative at time t. Let RV be the total discretely-

compounded return on the derivative from time 0 to time T . Then, under

the assumptions of whichever asset pricing model we are using, we get the

following.

V0E(RV ) = E(VT ) (6)

⇒ V0[RF + E(RV ) − RF ] = E(VT ) (7)

⇒ V0 =
E(VT ) − V0[E(RV ) − RF ]

RF

. (8)
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The price elasticity Ω for a call is given by Equation (9).

Ω =
S∆

C
=

S0(Vu − Vd)

V0(u − d)S0

=
(Vu − Vd)

V0(u − d)
, (9)

where ∆ = (Vu−Vd)
(u−d)S0

, and u and d are the multiplicative up and down growth

factors, respectively, for the underlying. In the case of a put, Ω = S∆
P

, but

the end result is algebraically the same as in Equation (9).

Now use the elasticity Ω from Equation (9) to substitute for the deriva-

tive’s risk premium in Equation (8).

V0 =
E(VT ) − V0Ω[E(RS) − RF ]

RF

(10)

⇒ V0 =
E(VT ) −

(
Vu−Vd

u−d

)
[E(RS) − RF ]

RF

. (11)

Equation (11) is the same as Equation (1) from which our model follows.

Thus, given an appropriate asset pricing model and a binomial representation

of asset price movement, we can always derive the GOPOP model (and,

iteratively, the GMPOP model).
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A.2 Certainty Equivalent Proof

This proof uses the properties of mean-variance analysis and certainty equiva-

lents (e.g., Luenberger (1998), Equation 7.7, p. 189). Under the assumptions

of whichever mean-variance asset pricing model we are using, Equation (12)

holds.

V0 =
1

RF

[
E(VT ) − cov(VT , RMKT )[E(RMKT ) − RF ]

ν2
MKT

]
, (12)

where RMKT is the total discretely-compounded return on the market port-

folio from time t = 0 to time t = T . We may derive the following using the

properties of the covariance operator:

cov(VT , RMKT ) = cov(VT /V0, RMKT )V0 = cov(RV , RMKT )V0

= cov(RV − RF , RMKT )V0
∗
= cov(Ω(RS − RF ), RMKT )V0

= cov((RS − RF ), RMKT )ΩV0 = cov(RS, RMKT )ΩV0

∗∗
= cov(RS, RMKT )

(
Vu − Vd

u − d

)
,

where step ∗ uses Cox and Rubinstein (1985, p. 189), and step ∗∗ uses our

Equation (9). If we now plug the latter result into Equation (12), we get
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Equation (13).

V0 =
1

RF

[
E(VT ) − cov(RS, RMKT )[E(RMKT ) − RF ]

ν2
MKT

(
Vu − Vd

u − d

)]
. (13)

From Cox and Rubinstein (1985, p. 189) or Ingersoll (1987, p. 90) we know

that

cov(RS, RMKT )[E(RMKT ) − RF ]

ν2
MKT

= E(RS) − RF , (14)

and plugging this into Equation (13) yields our Equation (1) from which all

our analysis may be derived.

A.3 Sharpe Ratio Proof

For this proof we assume the conditions from Ingersoll (1987, Chapter 4) for

the mean-variance problem with a risk-free asset. In our binomial setting

we therefore need to assume quadratic utility for the agents in the economy

because our asset returns are not from an elliptical distribution. We recog-

nize that quadratic utility has some problems (e.g., Constantinides (1978),

p. 610). We might argue, however, that although strictly speaking we do

need quadratic utility, the binomial model is an approximation to a contin-
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uous time model where continuously-compounded returns (which are very

close to discretely-compounded ones for small time intervals) are normally

distributed.17 As such, if step sizes are small, and thus the approximation is

good, our results will hold approximately for general utility functions. This

assumes, of course, that the underlying genuinely follows a diffusion or pure

jump process. Note that the CAPM used here assumes that the underlying

can be sold short. Thus, this proof may apply only to financial options and

not real options.

In a one-period binomial model, Equations (15) through (20) hold from

Cox and Rubinstein (1985, Chapter 5-5) altered to our notation.

E(RC − RF ) = ΩE(RS − RF ) (15)

νC = ΩνS (16)

βC = ΩβS (17)

E(RP − RF ) = ΩE(RS − RF ) (18)

νP = −ΩνS (19)

βP = −ΩβS (20)
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where Ω is the elasticity of the option price relative to the current underlying

security price (Equation (9)).

The Sharpe ratio relationships for a call option and put option follow

from our Equation (9) together with Equations (15) through (20).18

E(RC) − RF

νC

=
Ω(E(RS) − RF )

ΩνS

=
E(RS) − RF

νS

(21)

E(RP ) − RF

νC

= −Ω(E(RS) − RF )

ΩνS

= −E(RS) − RF

νS

(22)

The Treynor measure relationships follow similarly.

E(RC) − RF

βC

=
Ω(E(RS) − RF )

ΩβS

=
E(RS) − RF

βS

(23)

E(RP ) − RF

βC

= −Ω(E(RS) − RF )

ΩβS

= −E(RS) − RF

βS

(24)

The Sharpe ratio is usually expressed in terms of rates of return. However,

for our derivation we need the Sharpe ratio expressed in terms of asset prices

as in Equation (25).

Sharpe Ratio =
E(RS − 1) − (RF − 1)

νS

=
E(RS) − RF

SD(RS)
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=
E

(
ST

S0

)
− RF

SD
(

ST

S0

)

⇒ Sharpe Ratio =
E(ST ) − S0RF

SD(ST )
. (25)

We now set the call option’s Sharpe ratio equal to the underlying asset’s

Sharpe ratio and solve for the call option price C0 at time t = 0 as in

Equation (26).

C0 =

{
E(CT ) − SD(CT ) ×

[
E(ST )−S0RF

SD(ST )

]}
RF

, (26)

where CT is the option price at time t = T . In Equation (26), we may

substitute for the following terms:

SD(CT ) = C0ΩνS =
C0(Cu − Cd)νS

C0(u − d)
=

(Cu − Cd)νS

(u − d)
(27)

SD(ST ) = S0νS. (28)

When these are inserted into Equation (26) we get:

C0 =
1

RF

{
E(CT ) −

(
Cu − Cd

u − d

) [
E(ST ) − S0RF

S0

]}
(29)
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=
1

RF

[
E(CT ) −

(
Cu − Cd

u − d

)
(E(RS) − RF )

]
. (30)

We can convert Equation (30) to its continuous-time equivalent in Equa-

tion (31).

C0 = e−rF T

[
E(CT ) −

(
Cu − Cd

eσ
√

T − e−σ
√

T

) (
ekST − erF T

)]
. (31)

The derivation for a put option equates the negative of the put option’s

Sharpe ratio to the underlying security’s Sharpe ratio. Let P denote the

put option value, then we arrive at Equation (32) which is similar, but not

identical, to Equation (26).

P0 =

{
E(PT ) + SD(PT ) ×

[
E(ST )−S0RF

SD(ST )

]}
RF

. (32)

We may take Equation (28) together with Equation (33)

SD(PT ) = −P0ΩνS = −P0(Pu − Pd)νS

P0(u − d)
= −(Pu − Pd)νS

(u − d)
(33)

and substitute them into Equation (32) to get Equations (34) and (35) for a
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put.

P0 =
1

RF

[
E(PT ) −

(
Pu − Pd

u − d

)
(E(RS) − RF )

]
(34)

P0 = e−rF T

[
E(PT ) −

(
Pu − Pd

eσ
√

T − e−σ
√

T

) (
ekST − erF T

)]
. (35)

Equations (34) and (35) for a put are of identical functional form to

Equations (30) and (31) for a call, so we rewrite these equations using V to

denote the value of an option that can be either a call or a put.

V0 =
1

RF

[
E(VT ) −

(
Vu − Vd

u − d

)
(E(RS) − RF )

]
(36)

V0 = e−rF T

[
E(VT ) −

(
Vu − Vd

eσ
√

T − e−σ
√

T

) (
ekST − erF T

)]
. (37)

Equations (36) and (37) are the same as Equations (1) and (2).

We may equate Equation (36) to E(VT )/[1 + kdisc
V ] and equate Equa-

tion (37) to E(VT )e−kcont
V T to deduce the option’s total required risk-adjusted

discretely-compounded discount rate kdisc
V and its annualized required risk-

adjusted continuously-compounded expected discount rate kcont
V in Equa-
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tions (38) and (39), respectively.19

kdisc

V =
RF[

1 − (Vu−Vd)(E(RS)−RF )
(u−d)E(VT )

] (38)

kcont

V = rF − ln


1 − (Vu − Vd)

(
ekST − erF T

)
(
eσ

√
T − e−σ

√
T
)
E(VT )


 ×

[
1

T

]
. (39)

The GOPOP model may also be derived using the Treynor measure. The

Treynor measure for a call option is equal to the Treynor measure for the

underlying security. The Treynor measure for a put is the negative of the

Treynor measure for the underlying security. Thus, the implication above for

the Sharpe ratio in a one-period binomial model setting is also true for the

Treynor measure.

Using the Treynor measure, we can develop an equation similar to Equa-

tion (26) for a call option.

C0 =
E(CT ) − C0βC

S0
×

[
E(ST )−S0RF

βS

]
RF

. (40)

When we substitute ΩβS for βC in Equation (40), we arrive at Equation (30).
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A similar relationship holds for the put option as follows:

P0 =
E(PT ) + P0βP

S0
×

[
E(ST )−S0RF

βS

]
RF

. (41)

Again, we make a similar substitution, −ΩβS for βP , and arrive at Equa-

tion (34).

A.4 Discussion and Numerical Illustration

Our derivations are used to develop the GOPOP model and are valid only

for a single step within the binomial tree. GMPOP is the iterative multi-

period model that uses successive GOPOP calculations. To demonstrate the

one-period nature of the GOPOP model, we expanded Table III and created

Table VIII to show the one-period risk premium of the option“RP,” the one-

period standard deviation of the option return “SD,” and the one-period

Sharpe ratio “SR.”

The one-period Sharpe ratio for the underlying security is 0.036429 through-

out the entire binomial tree and is computed by taking the one-period ex-

pected return under the real-world probability less the one-period risk-free

rate divided by the standard deviation of the one-period return under the
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real-world probability. We notice that the relationship for the Sharpe ratio

in the GOPOP model is maintained every period whenever the option has

value. Using this relationship iteratively, we produce the GMPOP model.

Although the single-period Sharpe ratio is constant whenever the option has

value, the components for the Sharpe ratio of the option change every period.

In particular, the risk premium RP of the option changes every period with a

proportionate change in the one-period return volatility SD. Thus, unlike the

underlying security, the expected rate of return on the option changes every

period. The GOPOP model is a single-period model because of the changing

components in the Sharpe ratio of the option every period. Consequently,

the GOPOP model does not use a single discount rate for the option since the

discount rate changes every period. Instead, we use the one-period Sharpe

ratio since it is constant every period (assuming the option has value). In

contrast to the Sharpe ratio, the only way to have a constant discount rate

for the option every period is to use the risk-neutral measure (the Sharpe

ratio and risk premium become zero for all securities). Again, all of these

points are also true using the Treynor measure.
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Current Period Period Period Period Period Probability
1 2 3 4 5

S Su Suu Suuu Suuuu Suuuuu p5

Sd Sdu Sduu Sduuu Sduuuu 5p4(1 − p)
Sdd Sddu Sdduu Sdduuu 10p3(1 − p)2

Sddd Sdddu Sddduu 10p2(1 − p)3

Sdddd Sddddu 5p(1 − p)4

Sddddd (1 − p)5

Table I: Stock Values in Five-Stage Binomial Tree
Asset values and terminal probabilities assuming the asset price jumps by a mul-
tiplicative factor u with probability p, and by a factor d with probability (1 − p).
Thus, Sddu = S × d × d × u, for example.

Current Period Period Period Period Period Probability
1 2 3 4 5

V (0, 0) V (1, 0) V (2, 0) V (3, 0) V (4, 0) Vuuuuu p5

V (0, 1) V (1, 1) V (2, 1) V (3, 1) Vduuuu 5p4(1 − p)
V (0, 2) V (1, 2) V (2, 2) Vdduuu 10p3(1 − p)2

V (0, 3) V (1, 3) Vddduu 10p2(1 − p)3

V (0, 4) Vddddu 5p(1 − p)4

Vddddd (1 − p)5

Table II: Option Values in Five-Stage Binomial Tree
Option values and terminal probabilities assuming the asset price jumps by a
multiplicative factor u with probability p, and by a factor d with probability (1−
p).



Current Period Period Period Period Period Real-World Risk-Neutral
1 2 3 4 5 Probability Probability

$4.32 $2.11 $0.64 $0.00 $0.00 $0.00 4.01% 3.36%
$6.66 $3.67 $1.30 $0.00 $0.00 18.09% 16.32%

$9.86 $6.18 $2.66 $0.00 32.67% 31.69%
$13.81 $9.90 $5.45 29.50% 30.78%

$18.08 $14.64 13.32% 14.95%
$21.93 2.41% 2.90%

Table III: European Put Option Value in Five-Stage Binomial Tree
S = $50, kS = 0.15, σ = 0.40, X = $50, T = 1/12 (i.e., each step size is one

month), rF = 0.10. The underlying grows with either u = eσ
√

T = e0.40
√

1
12 =

1.1224, or d = e−σ
√

T = e−0.40
√

1
12 = 0.8909 over each time step of T = 1/12. The

real-world probability of an up move is p = ekST−d
u−d = 0.52551 at each step.

Current Period Period Period Period Period Real-World Risk-Neutral
1 2 3 4 5 Probability Probability

$4.49 $2.16 $0.64 $0.00 $0.00 $0.00 4.01% 3.36%
$6.96 $3.77 $1.30 $0.00 $0.00 18.09% 16.32%

$10.36 $6.38 $2.66 $0.00 32.67% 31.69%
$14.64 $10.31 $5.45 29.50% 30.78%

$18.50 $14.64 13.32% 14.95%
$21.93 2.41% 2.90%

Table IV: American Put Option Value in Five-Stage Binomial Tree
S = $50, kS = 0.15, σ = 0.40, X = $50, T = 1/12 (i.e., each step size is one
month), rF = 0.10.
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Current Period Period Period Period Period Real-World Risk-Neutral
1 2 3 4 5 Probability Probability

$200.00 $364.42 $664.02 $1209.93 $2204.64 $4017.11 3.42% 0.96%
$109.76 $200.00 $364.42 $664.02 $1209.93 16.50% 7.34%

$60.24 $109.76 $200.00 $364.42 31.81% 22.52%
$33.06 $60.24 $109.76 30.65% 34.55%

$18.14 $33.06 14.77% 26.50%
$9.96 2.85% 8.13%

Table V: Annual Market Sales Revenue ($ Millions)
Annual levels of potential future sales and terminal probabilities assuming the sales
levels jump by a multiplicative factor u with probability p, and by a factor d with
probability (1− p), where u = eσ

√
T , d = e−σ

√
T , p = ekT−d

u−d in the real world, and

p = erF T−d
u−d in the risk-neutral world, where rF = 0.05, σ = 0.60, k = 0.18, and

T = 1 per period.

Current Period Period Period Period Period Real-World Risk-Neutral
1 2 3 4 5 Probability Probability

$73.25 $170.48 $388.45 $859.73 $1824.14 $3617.11 3.42% 0.96%
(25.686%) (24.970%) (24.004%) (22.628%) (20.511%)

$16.08 $42.84 $114.12 $304.02 $809.93 16.50% 7.34%
(30.500%) (30.500%) (30.500%) (30.500%)

$0.00 $0.00 $0.00 $0.00 31.81% 22.52%
(0.000%) (0.000%) (0.000%)

$0.00 $0.00 $0.00 30.65% 34.55%
(0.000%) (0.000%)

$0.00 $0.00 14.77% 26.50%
(0.000%)

$0.00 2.85% 8.13%

Table VI: Option Value ($ Millions) with Periodic Option Rate of Return
Option values and terminal probabilities using the GMPOP model based on the
sales levels in Table V. The probability of success in the real world is 3.42 per-
cent+16.50 percent=19.92 percent.
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Panel A: Individual Present Value Calculations

Future Value Discount Factor* PV**
$3,617.11 exp(−(25.686% + 24.970% + 24.004% + 22.628% + 20.511%)) $1113.70

$809.93 exp(−(25.686% + 24.970% + 24.004% + 22.628% + 20.511%)) $249.38
$809.93 exp(−(25.686% + 30.500% + 30.500% + 30.500% + 30.500%)) $184.95
$809.93 exp(−(25.686% + 24.970% + 30.500% + 30.500% + 30.500%)) $195.46
$809.93 exp(−(25.686% + 24.970% + 24.004% + 35.500% + 35.500%)) $208.58
$809.93 exp(−(25.686% + 24.970% + 24.004% + 22.628% + 35.500%)) $225.67

* see Table VI for the single-period discount rate inputs; exp(·) is the exponential function
**PV= value from Column 1 multiplied by value from Column 2

Panel B: Probability Weighted Present Value Calculations

PV Probability Probability*PV
$1113.70 3.42427% $38.14
$249.38 3.30014% $8.23
$184.95 3.30014% $6.10
$195.46 3.30014% $6.45
$208.58 3.30014% $6.88
$225.67 3.30014% $7.45

Sum: $73.25

Table VII: Traditional DCF Analysis of Product Development ($ Millions)
This table shows the calculations necessary to replicate the real-option valuation
using traditional DCF analysis with path-dependent discount rates drawn from
Table VI.
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Current: Period Period Period Period Period
1 2 3 4 5

$4.32 $2.11 $0.64 $0.00 $0.00 $0.00
RP: −1.9158% RP: −2.6124% RP: −3.7231% RP: 0.0000% RP: 0.0000% RP: 0.0000%

SD: 0.52590 SD: 0.71712 SD: 1.02202 SD: 0.00000 SD: 0.00000 SD: 0.00000
SR: −.036429 SR: −.036429 SR: −.036429 SR: N/A SR: N/A SR: N/A

$6.66 $3.67 $1.30 $0.00 $0.00
RP: −1.6882% RP: −2.4143% RP: −3.7231% RP: 0.0000% RP: 0.0000%

SD: 0.46342 SD:0.66274 SD: 1.02202 SD: 0.00000 SD: 0.00000
SR: −.036429 SR: −.036429 SR: −.036429 SR: N/A SR: N/A

$9.86 $6.18 $2.66 $0.00
RP: −1.4096% RP: −2.1302% RP: −3.7231% RP: 0.0000%

SD: 0.38695 SD: 0.58476 SD: 1.02202 SD: 0.00000
SR: −.036429 SR: −.036429 SR: −.036429 SR: N/A

$13.81 $9.90 $5.45
RP: −1.0779% RP: −1.6887% RP: 0.0000%

SD: 0.29589 SD: 0.46355 SD: 0.00000
SR: −.036429 SR: −.036429 SR: N/A

$18.08 $14.64
RP: −0.7336% RP: 0.0000%

SD: 0.20139 SD: 0.00000
SR: −.036429 SR: N/A

$21.93
RP: 0.0000%
SD: 0.00000

SR: N/A

Table VIII: Expanded Calculation for European Put Option
This table shows more detail for the European put option valuation in Table III.
S = $50, kS = 0.15, σ = 0.40, X = $50, T = 1/12 (i.e., each step size is one

month), rF = 0.10. The underlying grows with either u = eσ
√

T = e0.40
√

1
12 =

1.1224, or d = e−σ
√

T = e−0.40
√

1
12 = 0.8909 over each time step of T = 1/12.

The real-world probability of an up move is p = ekST−d
u−d = 0.52551 at each step.

To aid reader replication and interpretation, note that at the first step, S = 50,
Su = 56.1200451, Sd = 44.5473626, Pu = 2.11412203, Pd = 6.66278573, and
Equation (4) or (3) is used to get P = 4.319018717. RP = E(RP ) − RF =
pPu+(1−p)Pd

P − erF T = 0.989210262 − 1.008368152 = −0.0191578903. SD =√
p(Pu−E(PT ))2+(1−p)(Pd−E(PT ))2

P = 0.525899514, where E(PT ) = pPu + (1− p)Pd =
4.2724176357, SR = RP

SD = −0.01915789
0.525899514 = −0.0364288040. It can be verified

that this is the negative of the Sharpe ratio for the stock: SR = E(RS)−RF

νS
=

ekST−erF T[√
p(Su−E(ST ))2+(1−p)(Sd−E(ST ))2

]
/S

= 0.004210299
0.115576107 = 0.0364288040
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