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Consider a group of product devices such as DRAM's of different specifications while 
such products can be purchased from the market at the spot price that fluctuates over time. 
Because of this, a final product-maker often makes a contract with a supplier where 
delivery dates and prices of such devices are pre-determined. In this situation, the supplier 
typically ignores the price volatilities and organizes its production activities based on the 
delivery dates. A prevalent software package using MRP for example cannot take the 
price volatilities into account explicitly. In this paper, a theoretical framework is exhibited 
where the supplier determines its production schedule based on not only the delivery date 
and the pre-determined prices but also the price volatilities of the devices.  
 
 
 
 
 
 
 
Introduction 
In this paper, the volatility of the final product’s price process is modeled with the use of 
real options. The model interprets the permutation of the production priority of the 
products currently in-process as a real option. Real options have been applied to 
manufacturing systems by Trigeorgis [10], Kamrad and Ernst[9].  The key to the real 
option implementation is to characterize the manufacturing environment as a system 
with fluctuating inputs and outputs.  Trigeorgis [10] examined the case when the 
manufacturing plant possesses multiple projects and determines the optimal 
manufacturing product mix through real option evaluation.  The analysis of the demand 
uncertainty has been investigated for decades in the past, Kamrad and Ernst [9] focused 
on the yield uncertainty in the production scheduling pointed out by Lee and Yano [8], 
Yano and Lee [17].  They obtain the results that enable the evaluation of the flexibility of 
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the manufacturing environments. Kutakila [6] has modeled the value of flexible systems 
with fixed supply contracts.  
 
In this paper, we focus on the relation between the production due dates and the 
fluctuation of the price processes. MRP ( material resource planning) has been widely 
implemented in the production planning area, such as Leachman [7].  The order of the 
production priority has been examined by Shanthikumar and Yao [14], and generalized 
to cover a wide class of scheduling problems by Bertimas [2].  The proposed model 
considers a special case of two products waiting in a queueing system (for queueing 
systems refer to Buzacott and Shanthikumar [1]).  This is like considering two assets 
like Boyle [4], but in the context of exchanging the production schedule for one product 
for the other like Margrabe [11] has modeled.  
 
In the past, most production scheduling models only considered the expected value of the 
products with holding costs and the increase in the market value of delivered products. 
Takezawa [3] has argued about a special case when the increase in market value 
modeled as a benefit associated with the service time of the product at the final 
inspection station.  In this analysis, the variability of the market price is only a function 
of the service time with no external effects.  Takezawa [3] further uses a heuristic to 
improve the total running cost of the system by mixing the service priority of products 
with different market values.  
 
Instead of using such a measure like the average costs and average prices, we attempt to 
dynamically set the relative value of the product by linking the market price to the 
products that are currently in-process. This allows us to mark-to-market the 
work-in-process and thus set the scheduling priority accordingly to its market price.  
The scheduling priority schemes introduced in Bertimas [2], Shanthikumar and Yao [14] 
may be considered as a static optimization of the future price process, where the new 
approach takes into account the dynamic value of price volatility. This value is modeled 
as the price of an “option to switch the scheduling priority”.  In other words, it interprets 
as an alternative production schedule linked to its market value and volatility.  This 
dynamic evaluation will be very effective when the product’s market price fluctuates 
significantly given that the product can be purchased and sold at the market price at any 
time epoch.    
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ModelModelModelModel    
 
DefinitionsDefinitionsDefinitionsDefinitions    

)(t∏  The set of all admissible policies at time t.  
)(t∏∈π  Let π be any admissible policy at time t. )(t∏∈π  

)(toptπ  The optimal policy at time t.  

)(tPπ  The price process of products for policy π  

)(tX π  The quantity of the products for policy π  

 
The admissible polices may change over time, and because we are considering dynamic 
price processes, the optimal policy becomes a function of time t.  Thus, we now have the 
following.  

)}()({)(
)(

tPtXMaxt
topt πππ

π
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=  

or equivalently 

)(}0),()()({)(
)(

tttPtXMaxt optopttopt πππ πππ
+−=
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The first term corresponds to the option to deviate from the current schedule. At time t, it 
is clear that this option has no value. But as time changes, this option may have a value 
such that the optimal policy may change in the future, i.e.  

)(}0),()'()'({)'( tttPtXMaxt optoptopt πππ πππ
+−=

∏∈
 

The option emerges from the asymmetry in production priority, i.e. the schedule may not 
be changed if the current priority is optimal and may be altered accordingly if the 
schedule is not optimal.  The payoff of this option is the difference of serving with priority 

)(toptπ  and )'(toptπ .  This is equivalent to an option to exchange One-Asset-for-Another 

Option introduced by Margrabe [11] (1978). 
  

If we assume that the price process πP ,
opt

Pπ follow Log Normal distributions,  

dWPdtPtdP πππππ σµ +=)(  
and 
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optoptoptoptopt πππππ σµ +=)(  
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ρ  is the correlation between the two price processes 
opt

PP ππ , . 

πσ  is the standard deviation of πP  

optπσ  is the standard deviation of 
opt

Pπ  

πµ  is the drift deviation of πP  

optπµ  is the drift deviation of 
opt

Pπ  

opt
dWdW ππ ,  are wiener processes.  

Now, we can apply the option pricing formula from Margrabe [11] (1978).  

)0,max(),,(
optoptopt

PXPXTPPc ππππππ −=  

)()( 2
)(
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optopt
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The volatility is approximated by  

optopt ππππ σρσσσσ 2ˆ 22 −+=  

πb ,
opt

bπ are the carry of the assets  πP ,
opt

Pπ . 

)(⋅N  is the cumulative normal distribution function.  
T  is the time to the two assets will be exchanged.  
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Example  
 
We will consider the simplest example the single server single class queue. Refer to 
Buzacott and Shanthikumar [2] for details on queueing systems. 
 
 
 
 
 
 
Suppose we only have two batches waiting in the system with the number of customers in 
the batch 1X  and 2X  with deliver dates 1T , 2T  and service times 1S  and 2S .  Let us 
assume that the price for 1X  and 2X  are P1(t) and P2(t) where t = 1T  or 2T . In addition, 
let us assume that there exists a feasible schedule that meets both due dates. This 
eliminates any constraints related to the service times. Under this assumption, the profit 
function will be defined according to the price uncertainties.  Recall that the set of indices 
π  is {1,2}. The example will be examined for two cases. The first Case 1 assumes that 
the price processes are deterministic, and thus corresponds to the standard static 
schedule optimization. The second Case 2 assumes that the two prices processes 
P1(t),P2(t) follow geometric Brownian motions, and the existence of an option is shown.  
 
Case 1 : Deterministic price and service time (Static Optimization) 
Because the price processes are deterministic, the optimal scheduling policy is to serve in 
order that yields the highest payoff which corresponds to choosing the maximum of the 
following equation, i.e. the best profit function for 1X , 2X  becomes,  
Max { 1X  * P1 ( 1T ) + 2X  *P2 ( 2T ) , 1X  * P1 ( 2T ) + 2X  *P2 ( 1T )} 
 
Case 2 Uncertainty in Price and deterministic service time 
The profit function is the same as in Case 1 except for the fact that now the prices are 
random variables, and we need to take the expectation of the profit function.  
E[Max { 1X  * P1 ( 1T ) + 2X  *P2 ( 2T ) , 1X  * P1 ( 2T ) + 2X  *P2 ( 1T )}] 
 
If we assume that the price processes are lognormally distributed,   
E[Max { 1X  *( P1 ( 1T )-P1 ( 2T )) - 2X  *(P2 ( 1T )-P2 ( 2T )) ,0} 

+ 1X  * P1 ( 2T ) + 2X  *P2 ( 1T )] 
= E[ 1X *Max{( P1 ( 1T )-P1 ( 2T )) – ( 2X / 1X )*(P2 ( 1T )-P2 ( 2T )) ,0}] 

Delivery 
T1, T2 

X1 X2 
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+E[ 1X  * P1 ( 2T ) + 2X  *P2 ( 1T )] 

=E[ ),,( 12 TTPPc
opt

−ππ ]+E[ 1X  * P1 ( 2T ) + 2X  *P2 ( 1T )] 

where the last equation comes from the Margrabe’s formula.  
 
If we assume that the initial schedule is optimal, this characterizes the option to switch the 
production schedule under the lognormal price process.   
 
Numerical Examples 
In the following, we will present some numerical examples that illustrate the results.  The 
data we have used was obtained from “Handoutai Sangyo Shinbun (The Semiconductor 
Industry News) 1999 April 7”[16].  
 
The numerical example for the case of the 16M(SOJ) DRAM and 16M synchronous 
DRAM is presented in Table 1.  
 
Definition of parameters  

1. The carries πb ,
opt

bπ were defined as the weekly carry price of the DRAM, i.e. the price 

of the DRAM divided by the production lead time 1 (assumed to be 1 week).  

2. The price prices πP ,
opt

Pπ are defined as the mid price of the High, Low prices on the 

weekly price data.  

3. The Volatilities πσ ,
optπσ  are defined by the High, Low of the weekly price quotes, 

using the formula in Parkinson [17].  

 
( )

2ln4

2
2 lowhigh σσ

σ
−

=  

4. The risk free rate r  was assumed to be 0.  
5. We assume that the production schedule difference 12 TT −  is 1 day. One year is 

assumed to have 360 days.  
 
The value of the option has a value of 29.80 where the difference of the two prices at 
current calendar time is 265-255=10.  This interprets as the following. There is a value 
(265-255) = 10 to produce the synchronous DRAM over the SOJ DRAM at the current 
price level and in addition there is a 29.80-10 =19.8 value that accounts for the product’s 
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price volatility.  The optimal schedule obtained from this analysis differs with the 
ordinary deterministic scheduling priority by the value that accounts for the price 
volatility. 
  
Conclusion 
In this paper, we have attempted to price inventory dynamically according to the market 
price of the work-in-process.  This idea necessitates the production schedule to be altered 
according to the market demand dynamically.  In other words, the inventory is 
marked-to-market.  This may be equivalent to the standard MRP arguments when only 
the expectation of the inventory is considered. However, when the volatility of the price 
process is taken into account the schedule changes dynamically.  We have empirically 
shown the impact for the DRAM case, one of the many potential applications. Future 
research would consider the relation of production variability that may affect the 
delivery date of the products. 
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16MDRAM (syncronous) 1P  265 

16M DRAM (SOJ)  2P  255 

Quantity 4M DRAM 1X  1 

Quantity 1M DRAM 2X  1 

Time to Maturity  T  0.002778 

Risk Free Rate r  0 

Carry 16MDRAM (syncronous) 1b  14.29% 

Carry 16M DRAM (SOJ) 2b  14.29% 

Vol. 16MDRAM (syncronous) 1σ  353% 

Vol. 16M DRAM (SOJ) 2σ  277% 

Correlation ρ  0.00% 

European Value  29.801 

    
Table 1 Option Price to Exchange (reschedule) a Table 1 Option Price to Exchange (reschedule) a Table 1 Option Price to Exchange (reschedule) a Table 1 Option Price to Exchange (reschedule) a 16161616MDMDMDMDRAMRAMRAMRAM (syncronous) (syncronous) (syncronous) (syncronous) for a  for a  for a  for a 16161616M DRAMM DRAMM DRAMM DRAM    

(SOJ)(SOJ)(SOJ)(SOJ)    
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