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Abstract


We model a one-sector economy where a large number of firms undertake two-step irreversible investment ( patenting and production ( conditional on firm-specific demand processes and constant investment costs.  The results include a criterion for whether it will be optimal to split the two investments in time.  Typically, postponing the second investment is optimal if the demand is highly volatile or highly expected to increase, if the discount rate is small, and if the patent cost is small relative to the production cost.
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1. Introduction


Products like cars, pharmaceutical drugs, aircraft, and computers require two quite different types of investment:  R&D, marketing and other ancillary investments on the one hand, and wide-scale production on the other.  In one sense or another, the first type of investment will represent a patent, while the second one implies to activate the patent.  Technically, the patent may be thought of as an option, and the decision to produce as exercising the option.


Since cost or demand variables may change, it is not always optimal to undertake wide-scale irreversible investment in production right after the patent has been acquired.  For example, if learning could arise by stretching R&D over time or by external knowledge spillovers, costs may be saved by postponing production.  Alternatively, and as we will focus on, the demand for a specific product may fluctuate conditional on its exact character: some products may gain popularity when the consumers get to know them well, whereas other products lose.  The development of demand may also be affected by information that is spread prior to production ( either by spillovers related to the R&D stage or by deliberate marketing efforts. The demand may also change if something occurs to the good itself, as will indeed be true in the industry that is used to exemplify our model.


Dynamic effects of any such kind imply, more generally, the possibility of an increasing wedge between the (net present) value of sales and the cost of production, thereby also gains from holding on to the patent instead of exploiting it massively right away.  There will, however, also be a cost of such waiting, since the obtained revenue must be discounted more heavily the longer production is postponed.  Our objective is simply to discuss whether the gains from waiting may exceed the costs from waiting in a stylistic one-sector model where  patenting and production activities are summed up in two completely irreversible investments.  Labor in fixed supply will be the only production factor, and both investment costs will be fixed, implying that gains from waiting will stem from dynamics on the revenue side.


The model seems the most appropriate for hi-tech industries, but it will be illustrated with a more classical decision problem as discussed, for example, by Varian (1996, pp. 206-211):  When is it optimal to cut a tree whose net value grows according to the deterministic function Ft, if future benefits are discounted at the constant rate (?  The net present value of a decision to cut at time T is equal to e-(TFT, which by optimization yields the first-order condition � INNEBYGG Equation.2  ���.  This means that it is optimal to cut when the rate of growth equals the discount rate; i.e., when the marginal value of waiting further equals the marginal cost of waiting further.  Below, Varian’s model is expanded in the following ways:


There will be a large number of firms, each one manufacturing a specific tree containing homogeneous lumber.


A fixed cost, A, of planting a unit-sized tree is included.  Technically, this will be like acquiring a patent, so A can be thought of as a patent cost.


The net value, Ft, will consist of two components, Ft=Pt(B, where Pt will be the value from cutting the tree, and B is the related cost.  Technically, B will be the cost of activating the patent, so more broadly it can be interpreted as a production cost. We will require B to be fixed, whereas Pt will fluctuate due to growth or quality changes.  Although fluctuations in Pt in this case have a physical explanation, we will often refer to the underlying process as a demand process, since that seems more appropriate in many other applications.


Firm-specific uncertainty will be allowed in the underlying process as some trees may happen to grow quickly, whereas other trees might even rot.


There will be free entry, and the number of firms will be large enough to ensure zero expected profit from planting a tree.  The large-group assumption combined with firm-specific uncertainty will enable the households to diversify investments and eliminate risk.


Throughout the presentation we make reference to the new markup approach to irreversible investment proposed by Dixit et al. (1999).  The model can be regarded as one type of equilibrium extension of the firm-level model of that paper.


2. The model


Consumers


The instantaneous utility function of the representative, infinite-lived consumer is:


(1)	� INNEBYGG Equation.2  ���;


where ct is consumption at time t.  The intertemporal maximization problem can be written as:


(2)	� INNEBYGG Equation.2  ���		such that	� INNEBYGG Equation.2  ���;


where ( is the time preference rate, ( is the interest rate (which will also be the discount rate), pt is the unit price of lumber, and w0 is initial wealth.  The first-order condition for optimum yields � INNEBYGG Equation.2  ��� (for all t), where ( is the marginal utility of wealth.  In a steady-state equilibrium with continuous saving and consumption, we must have � INNEBYGG Equation.2  ���, and a fixed unit price � INNEBYGG Equation.2  ���.  Initial wealth equals the net present value of income, so we also have:


(3)	� INNEBYGG Equation.2  ���;


where wt is the rate of income from labor, and (t is the net rate of income from the asset value of firms. In equilibrium, the net present value of income from firms is zero, so the rightmost term of eqn. (3) vanishes, and the consumer is left with income from labor.  The labor market is perfectly competitive, and we choose labor as numeraire by setting � INNEBYGG Equation.2  ��� for all t.


Firms


The life cycle of the firm is based on two irreversible investments that are stretched over fixed time intervals.  This is illustrated in Figure 1.
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Figure 1. The life cycle of the firm.


First, a fixed amount of labor, LA, is needed to plant a unit-sized tree.  The investment takes place over the time interval TA, during which LA/TA workers are continuously employed.  We refer to the start of the investment as entry, and to the complete effort as patenting.  The investment implies the following net present cost:


(4)	� INNEBYGG Equation.2  ���.


From then on the (quality-corrected) size of the tree will follow an independent, autonomous Markov process {Xt} ( more generally referred to as a demand process ( where X0 = 1.  For simplicity, the process is assumed to take off when patenting is initiated instead of when it is completed.  (As long as TA is fixed, the difference is a matter of scaling.)


Similarly, a fixed amount of labor, LB, is needed to cut a tree regardless of size.  This investment is stretched over the time interval TB, during which LB/TB workers are continuously employed.  We refer to the starting point as activation, and to the total effort as production.  The net present cost, evaluated at the time of activation, becomes: 


(5)	� INNEBYGG Equation.2  ���.


Production brings about a stream of the consumer good as the tree is turned into something like firewood or paper.  More generally, we may think of a firm with an activated patent as an operating factory with a certain capacity.


Consumption takes place at a constant rate, and over the time interval TC (( TB).  (The most reasonable assumption is probably to set TC = TB.)  A tree of age T is XT units tall, implying the following net present revenue from sales:


(6)	� INNEBYGG Equation.2  ���.


The initial value; i.e., the revenue from cutting immediately, becomes � INNEBYGG Equation.2  ���.  (Eqn. (6) assumes that the tree stops growing when cutting is initiated, but that could easily be modified.  The revenue would still be proportional to XT, but with a different factor.  With uncertainty, it would also have to be calculated as an expectation.)


As in the somewhat similar model by Dixit and Pindyck (1994, pp. 267-277), the law of large number applies, so the equilibrium number of firms with various levels of Xt will be constant, although the identity of the firms occupying each level will change.  The goods are perfect substitutes, however, so only the sum will matter.  The rates of entry and of activation will also be constant, labor demand will be constant, and labor will be fully employed.  The net present profit accruing to a firm that makes entry at time zero and activates at time T, becomes:


(7)	� INNEBYGG Equation.2  ���.


The rightmost term of (7) follows as the cost of planting, A, is incurred at time zero.  By cutting at time T there will be the net revenue PT (B, which is discounted by the factor e-(T since it arises in the future.  The patent cost is sunk at the time of activation, so (7) implies, more generally, the following timing problem:  When is it optimal to incur the constant cost B to obtain the fluctuating revenue Pt?  The answer is: when a fixed P* > B is reached for the first time.  (The only effect of waiting for a second time would be to obtain the same net revenue later.  See McDonald and Siegel, 1986, and also the seminal work by Merton, 1973.)


Following Dixit et al. (1999), the markup from B to P* can be described in elasticity terms:  The expected and discounted value of investing as soon as an arbitrary � INNEBYGG Equation.2  ��� is reached, is E[e-(T](P(B), where E is the expectations operator, and T is now the first hitting time from P0 to P; i.e., the net revenue at the time of activation is reduced by the expected discount factor.  The larger is P, the longer it takes to reach it, so the discount factor can be expressed equivalently as a strictly decreasing function in P.  By such a transformation, which effectively embodies dynamics and uncertainty into the discount factor, the expected net present value to be maximized (with respect to P) can be written as:


(8)	� INNEBYGG Equation.2  ���;


where Q(P) ( E[e-(T] is the expected discount factor when going from the constant P0 to � INNEBYGG Equation.2  ��� for the first time.  The initial value is � INNEBYGG Equation.2  ���, since there will be no discounting if activation takes place immediately.


As the profit function, (8), shows, the investment decision of the firm will be analogous to the pricing decision of a static monopolist, with P acting like a price variable, Q(P) like a downward-sloping demand curve, B like a constant marginal cost, and A like a fixed cost.  Therefore, as in the static model, the optimal P* is determined by a markup involving the elasticity of Q with respect to P.  The discount factor function, Q(P), and the markup, P*(B, are illustrated in Figure 2.  The innermost curve is analogous to a marginal revenue function, and the optimal P* is found by setting marginal revenue equal to marginal cost.  See Dixit et al. (1999) for details.
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Figure 2.  Optimal investment.


The following result is obtained by maximizing (8) with respect to P:


Proposition 1.  The optimal time of activation is when Pt has reached a fixed markup over B according to the formula:


(9)	� INNEBYGG Equation.2  ���;


where ( = ((dQ/dP)/(Q/P) is the magnitude of the elasticity of the discount factor with respect to P, and this is evaluated at the optimal P*.


�The elasticity is a measure of dynamics, or, more precisely, of fluctuations relative to discounting.  If ( is large, there will be much more discounting by waiting for a higher P        ( either because the discount rate is high or because Pt moves slowly. (It can be shown that ( is independent of P0, which must be the case for the investment rule to make sense.)


Proposition 1, which is the main result of Dixit et al. (1999), doesn’t address the question of whether waiting will be optimal, as P0 is not determined.  In our context, the answer to this question will follow from the free entry condition that we will turn to next.


Equilibrium


The rate of entry will increase until all expected profits are eliminated, implying that (8) must be zero in equilibrium.  Using eqn. (9), this implies:


(10)	� INNEBYGG Equation.2  ���;


where Q* is the optimal discount factor, and K = B/A is the production cost relative to the patent cost.  For waiting to be optimal we must have Q* < 1, and thus the following result:


Proposition 2.  Entry and activation will be split in time if:


(11)	� INNEBYGG Equation.2  ���.


�Proposition 2 can be explained as follows: If Q(P) is too elastic, the dynamic effects will not be strong enough.  Then the model collapses, so to speak, to a trivial static one.  The optimal unit cost becomes A+B, which in equilibrium will be equal to the value of sales.  In such cases the difference from a static model with homogeneous goods, perfect competition and constant returns to scale is mainly that our model applies perpetually, but time is really irrelevant.


The elasticity requirement for waiting to be optimal is stronger the smaller is K, which means that we should expect waiting to be more likely the larger is the production cost relative to the patent cost.  This will indeed be true in the examples below, but note that there may exist some cases where a higher K makes waiting less likely.  The reason for this is that (, in general, depends on Q (or P), which again will depend on K in steady-state.


Note also that the exact equilibrium rates of entry and of activation cannot be determined without turning to specific demand processes.  This is because some patents may never be used if the process is highly stochastic.  In case all patents are known to be used, the accumulated labor demand of each firm will be LA+LB, and the common rate of entry and of activation simply becomes L/(LA+LB), where L is the (fixed) rate of labor supply.


3. Examples


The geometric Brownian motion


Suppose that the (independent) demand processes are geometric Brownian:


(12)	� INNEBYGG Equation.2  ���		(( < ().


It follows from eqn. (6) that this leads to similar independent Pt-processes.  As shown by Dixit et al. (1999), the expected discount factor with this process is:


(13)	� INNEBYGG Equation.2  ���;


where ( is the positive root (exceeding unity) of the following quadratic equation in x:


(14)	� INNEBYGG Equation.2  ���.


Thus, the discount factor will be analogous to a static demand function with constant elasticity, ( = (.  The shape of Q(P) in Figure 2 fits in well with this example, and (11) takes the following simple form:


(15)	� INNEBYGG Equation.2  ���.


From (15) we can conclude that waiting will be more likely the smaller is the patent cost relative to the production cost; i.e., the larger is K.  To simplify the sensitivity analysis with respect to (, let us assume TA = TB, since then we have K = LB/LA, which is independent of (.


It can be shown that ( is increasing in (, but decreasing in ( and (.  Hence, the discount factor is more elastic, and waiting is less likely the larger the discount rate, but the discount factor is less elastic, and waiting is more likely the higher the drift or the volatility of demand.


Figure 3 plots two sets of values for ( as a function of (, both sets assuming ( = 0.04.  The limit results are of particular interest.  First, ( ( 1 if ( ( (, so waiting will be optimal for all values of K if the volatility is high enough.  Second, ( ( ( when ( ( 0 if ( ( 0, as that removes all possibilities for gains from waiting.  However, ( = (/(  (> 1) if ( = 0 and ( > 0, so uncertainty is no requirement for waiting to be optimal as long as K is large enough.
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Figure 3.  The elasticity of the discount factor for geometric Brownian motions (( = 0.04).


All patents will be used if � INNEBYGG Equation.2  ���, as shown by the following argument:  If Pt is geometric Brownian with drift ( and volatility (, then, by Ito’s lemma, lnPt is arithmetic Brownian with drift � INNEBYGG Equation.2  ��� and volatility (.  According to Dixit (1993, p. 56), an arithmetic Brownian motion will hit any higher value than the current one (with probability one) if the drift is positive.  Since the ln-function is strictly increasing with no upper limit, Pt will also reach any higher value if � INNEBYGG Equation.2  ���; in particular, P* will be reached when starting from P0.  (In the opposite case, the difference between the rate of entry and the rate of activation will obviously be larger the smaller is the probability of ever hitting P*.)


The model contains no externalities, so waiting will also be socially optimal if (15) holds.  Let us conclude by illustrating this point when ( = 0 and ( > 0.  In that case all trees will be cut when having reached a certain age. We consider a possible optimum where waiting is not optimal, and where, for simplicity, the rate of entry is scaled to one.  Then ask whether costs could be saved at a particular instant by pushing entry slightly into the past, but without changing the rate of consumption.  For the latter to hold, there must be a marginal reduction of ( trees, corresponding to marginal growth before cutting.  This yields the marginal gain ((A+B).  Due to discounting, there will also be a marginal cost of the change, (A, since planting is now taking place earlier.  Waiting is optimal if the gain exceeds the cost; i.e., if ((A+B) > (A.  This inequality is just a re-arrangement of (15) for the chosen parameters.


The inverted geometric Brownian motion


A geometric Brownian motion may increase beyond all limits ( which may not be very realistic.  (In particular, there is a Scandinavian saying that trees never grow into heaven.) Suppose instead that the demand processes are given by:


(16)	� INNEBYGG Equation.2  ���;


where Xmax > X0, while ( and ( are constants as above (but ( may now exceed ().  Notice the character of this process: it has an upper barrier at Xmax, and the drift and the volatility are proportional to the distance from it.  The geometric Brownian motion has similar properties with respect to a lower barrier at zero, so (16) is an inverted geometric Brownian motion.     (There is no lower barrier, but we may think of Pt as being zero whenever Xt is negative.)  By the same procedure as in Dixit et al. (1999), the following discount factor can be derived:


(17)	� INNEBYGG Equation.2  ���;


where � INNEBYGG Equation.2  ���, and ( is the positive root of the following equation in x:


(18)	� INNEBYGG Equation.2  ���.


For various (, the discount factor (17) makes up a set of curves with fixed endpoints; see Figure 4.  In cases where ( = 1, we get, somewhat curiously, a discount factor that is analogous to a linear demand curve.  This holds, in particular, if ( = 0 and ( = (; i.e., if the growth rate of the tree equals the discount rate.
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Figure 4.  Expected discount factors for inverted geometric Brownian motions.


The elasticity of the discount factor in this case is � INNEBYGG Equation.2  ���, and the following version of (11) can be derived:


(19)	� INNEBYGG Equation.2  ���;


where R = B/Pmax (< 1).  From (19) we observe that waiting will never be optimal unless the production cost is larger than the patent cost; i.e., unless K > 1.  By some algebra it can also be shown that (Q*/(K < 0, and (Q*/(Xmax < 0.  This means that waiting will be more likely (or dominant) the larger is the production cost relative to the patent cost, and the higher is the barrier of the demand process.


The influence of ( on optimal waiting is more complex than that of ( for the geometric Brownian motion.  It can be shown that ( depends on (, ( and ( in the same ways as does (, so the curves of Figure 3 apply for this example as well (except that the lower barrier of ( when (  goes to infinity is zero as opposed to unity for ().  However, � INNEBYGG Equation.2  ��� depending on whether � INNEBYGG Equation.2  ���.  Since e-( < 1, this shows that that waiting is more likely to become optimal if ( is decreased.  If waiting is already optimal, however, less waiting may occur by decreasing ( for certain combinations of parameters.


From all this we can conclude that waiting will be more likely the higher are the drift and the volatility parameters (( and ().  If we exclude extreme cases where the right-hand side of (19) is strongly affected by TA, TB and TC (e.g. by setting TA = TB = TC), then waiting will also be more likely the smaller is the discount rate (().


The result that a smaller ( in some cases leads to less waiting is a bit surprising, but it can be explained by two opposing effects.  Suppose, for example, that ( is reduced by increasing (.  That implies a higher markup, but it also increases the speed towards it. Because of the upper barrier, the marginal cost of waiting for a higher markup is increasing in the markup, and if P0 and P* are far apart ( i.e., if Q* is small ( then increased speed will dominate over increased distance, and less waiting can be expected by decreasing (.  (Similar arguments would apply if ( were decreased by increasing ( or by decreasing (.)


4. Extensions


Investment characteristics


Some of the investment characteristics of the baseline model can be relaxed. Since both investments are irreversible, the essential parameters are the net present values, A, B, and Pt, whereas the exact underlying cost and consumption flows are less important.


For example, the labor requirement during the investment periods doesn’t have to be fixed, but could follow any deterministic pattern.  As different firms will be located at different stages of the investment process, aggregate labor demand will still be constant in steady-state.


The investment periods and the consumption period could also be made arbitrary short (or long).  If TA, TB, and TC all go to zero, the model will approach a (Dirac) distribution version with discrete events in continuous time (and for which we have A = LA, B = LB, and P0 = p).


Depreciation


The discount rate may stem from depreciation instead of (or in addition to) time preferences.  To see this, suppose that ( = 0, but that an independent Poisson “sudden death” process with fixed intensity, (, applies to the tree as it could be destroyed by an event like a fire or a storm.


Now the interest rate will be zero, but there is still a cost of waiting due to the risk of death.  The probability that a tree of age T will be alive equals e-(T, so the expected net present value of making entry at time zero, activating at time T, is � INNEBYGG Equation.2  ���. By arguments as in Section 2, T will be a first-hitting time, and equilibrium will coincide with the baseline model except that ( replaces (.  It follows that depreciation will tend to make waiting less likely.


Endogenous patent costs


Following Dixit et al. (1999), future revenues might be raised by increasing the patent cost, which they call an ancillary investment.  In such cases the discount factor will be a function of two variables, � INNEBYGG Equation.2  ���, and the firm will maximize � INNEBYGG Equation.2  ��� with respect to P and A.  The two first-order conditions for optimum yield the following investment rule:


(20)	� INNEBYGG Equation.2  ���.


Here � INNEBYGG Equation.2  ���, � INNEBYGG Equation.2  ���, and all variables carry optimal values.  Eqn. (20) says that the optimal ratio of the ancillary investment to the expected net present value of sales will be determined by the ratio of the elasticities.


There are several ways by which the discount factor could be increased via ancillary investments.  Dixit et al. (1999) exemplifies with advertising: by increased advertising, it is argued, the speed of the demand process towards the threshold P* may increase.  (Similarly, a tree might grow faster the more resources one spends on fertilizing.)  Thus they set ( = ((A) and d(/dA > 0 in the geometric Brownian case.  Not surprisingly, less waiting will occur the more effective is the ancillary investment as measured by the elasticity (d(/dA)/((/A).


Similar examples apply to the previous extension:  The rate of depreciation might be reduced, and the discount factor be increased, by putting more efforts into protection against fire or storm.  More generally, this can be associated with using a more costly technology that can easily be upgraded, implying that the product doesn’t depreciate as quickly.


In technical terms, the effect of any such extension will be much the same as in Dixit et al. (1999), and need not be spelled out in detail.  Just note that the zero profit condition of our equilibrium approach implies the additional condition ( = 1.  This reflects the optimal allocation of resources between the two types of investment: the marginal cost of spending more on ancillary activities will equal the marginal gain from less waiting upon consumption.


Growth and consumption smoothing


Suppose that the linear instantaneous utility function, (1), is replaced by an increasing, concave function ut = u(ct), and that the productivity of the workers grows at the exogenous rate g.  The first-order condition of the intertemporal maximization problem becomes:


(21)	� INNEBYGG Equation.2  ���;


where the prime denotes the derivative with respect to ct.  By the time derivative of eqn. (21), and using that equilibrium consumption must grow along with productivity, the interest rate can be derived.  If the elasticity of the marginal utility, � INNEBYGG Equation.2  ���, is denoted by ((, we find:


(22)	� INNEBYGG Equation.2  ���.


As an example, set � INNEBYGG Equation.2  ���, where ( is a constant between zero and one. Then we have � INNEBYGG Equation.2  ���, so ( will exceed ( by an amount that is increasing in g, and decreasing in (.  Except for the new interpretation of the discount rate, all formulas of the model still apply.  By similar arguments as above, we can therefore conclude that waiting will tend to be less likely the larger is the growth rate, and the more concave is ut.


5. Conclusions


The markup approach to irreversible investment has been useful in modeling a one-sector economy with two-step irreversible investment ( patenting and production ( conditional on firm-specific demand processes and constant investment costs. Typically, postponing the second investment is optimal if the demand is highly volatile or highly expected to increase, if the discount rate is small, and if the patent cost is small relative to the production cost.


The model lacks important features like risk, which was eliminated by the large-group assumption combined with independent demand processes.  It would be interesting to relax this assumption, to include more sectors, and combine industry-wide and firm-specific uncertainty of demand.  More realism could also be obtained by including cost uncertainty and operating costs.  (A correct treatment of operating costs must take into account mothballing or exit if demand turns sufficiently low; see Dixit, 1989.)


Despite its current limitations we will argue that the model gives insight into investment timing, since the two-step sequence of investment, more broadly, does seem applicable to several industries.  Moreover, the following back-of-the-envelope calculation indicates that the initial gain from waiting may often exceed the cost: According to Dixit and Pindyck (1994, p.7), empirical studies find that firms often require expected returns that could be three or four times the cost of capital.  Our propositions then suggest (-values that could be well below three, implying that waiting will be optimal if K is larger than two.  In other words, the production cost must be at least twice as large as costs related to ancillary activities like R&D and advertising.  It seems likely that this is quite often true.
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