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Valuation and Information Acquisition Policy
for Claims Written on Noisy Real Assets

Abstract

This paper studies the effects of noise on contingent-claim values, option exercise policies
and the incentives to acquire information to improve irreversible exercise decisions. We de-
termine distributional parameters for the conditional expected asset value in which the noise
and the underlying asset value dynamics follow normal, lognormal and mean-reverting pro-
cesses. Option prices are found to depend on the revealed variance of asset price, suggesting
that only information that can be acted upon are useful in formulating option exercise policy.
To study incentives to acquire costly information, we examine the case of a borrower who
holds the default (put) option inherent in a risky discount debt contract. Consistent with
classical option pricing results, the value of (purposefully acquired) information is found to
be highest at the point in which the claimholder is indifferent between exercising or not
exercising an irreversible (default) option. Under a more general setting where there are
multiple opportunities to gather information, it is optimal to acquire information in smaller
increments to reduce the potential of ex-post overinvestment and underinvestment in infor-
mation acquisition. Finally, we examine incentives to share information and regulation that
can be used to encourage transparency and liquidity in real asset markets when tendencies
toward opacity and illiquidity are high.



I Introduction

In contrast to exchange-traded financial asset markets, real asset markets are often decen-

tralized (Williams (1995)) due to the unique physical, contractual-relational or locational

characteristics of real assets. Decentralization can be expected to introduce noise into the

asset valuation process, in the sense that asset values cannot be continuously and precisely

determined. Noise persists because real assets are infrequently traded, because market in-

completeness prevents using combinations of other assets to accurately reveal true asset

value, and because information acquisition technology is costly and imperfect. If the exact

value of the real asset is not known with certainty, both valuation and any exercise decisions

based on the asset value must reflect the imprecise value estimate. In order to reduce the

likelihood of error and hence to increase the value of a claim, the claimholder may have an

incentive to more precisely determine asset value by paying to acquire additional information

about the underlying asset value.

Uncertainty regarding the precise value of real assets and incentives to acquire informa-

tion to resolve that uncertainty are commonplace in many economic settings. An important

example is that of new products that result from purposeful research and development ac-

tivity. New product markets can be interpreted as pure growth options. Because revenue

estimates must be made for products that do not currently exist, any exercise decision on

these options will be based on noisy estimates of product value. As a result the product

developer may wish to acquire additional information through experimentation or related

R&D activity. Further, the firm has several information acquisition strategies (with different

precision and costs) to choose from. Precision may be moderately increased by a relatively

low cost technique like focus groups. Alternatively, higher precision may be obtained by test

marketing the new product, but at a potentially much higher expense.

Other important classes of noisy real assets are residential and commercial real estate.
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Many properties are unique and hence generate service or cash flows that may be difficult to

replicate using existing assets. Moreover, they trade infrequently, which makes value estima-

tion difficult. To estimate value, owners/investors typically rely on self-generated or third

party appraisals, the value signals from which are notoriously noisy estimates of true value

(see, e.g., Geltner, Graff, and Young (1994)). Goetzmann (1993) has found that even more

sophisticated repeat sales price estimates are noisy, and become increasingly so as time from

the last sales date increases. Claims that depend on real estate price include the pure growth

option inherent in raw land (e.g., Titman (1985)), the redevelopment opportunity for many

improved properties (e.g., Williams (1997)), and debt financing (e.g., Titman and Torous

(1989)). Exercise decisions for these options must reflect imprecision in the measurement of

the underlying asset value, implying that it may be prudent for the claimholder to acquire

additional information. For example, prior to making exercise decisions, the real option-

holder may pay for a market analysis (for development or redevelopment options) or one or

more independent appraisals of property value (for debt financing and repayment decisions).

A third important class of noisy real assets is human capital. At any point in time the

precise value of an individual’s economic worth is uncertain. As a consequence, the individual

may choose to acquire information as to the value of her human capital by occasionally

searching the labor market. If a new offer of employment appears, accepting that offer may

require irreversibly terminating the current employment situation. As a result, there may be

an incentive to gather additional information to resolve uncertainty as to the benefits and

costs of terminating the old position and accepting the new one (e.g., to determine more

precisely the value of fringe benefits, the cost of housing, the quality of local schools, etc.).

This paper studies the effects of noise on contingent-claim values, option exercise policies

and the incentive to acquire information to improve irreversible exercise decisions. We con-

sider noisy real asset markets in which information arrives in two possible ways: continuously

with the arrival of imperfect but costless value signals and discretely with the application
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of a costly information acquisition technology. The discrete acquisition of information often

occurs at an asset sale or financing date, or at other points in time when important financial

decisions must be made (such as at an option exercise date). However, in between these

dates it is often the case that market participants rely on low-cost public information to

generate imperfect value estimates. Thus, consistent with the descriptions of Black (1986)

and others, the economic setting we consider can be characterized as one in which noise

is pervasive and often cumulative in its impact on real asset valuation, but where costly

information acquisition occasionally happens to partially erase cumulative noise and hence

increase the precision of the asset value signal.

In our analysis we allow for two types of noise in the determination of real asset value sig-

nals: an initial level of noise present when the underlying asset value is originally observed

or estimated, and a dynamic process that accumulates noise after the initial observation.

We apply the optimal filtering techniques of Liptser and Shiryayev (1978) to determine the

distributional parameters for the conditional expected asset value (the value used as a best

estimate of the true underlying asset value). To fully develop the economic implications that

can be derived from these filtering methods, specific assumptions must be made as to the un-

derlying stochastic processes. Consequently, we determine the distributional characteristics

of the conditional expected value under three distinct ‘noise propagation’ regimes in which,

i) outside noise steadily accumulates over time, ii) there is no outside noise, but a portion of

asset value is unobservable, and iii) noise mean reverts and past errors tend to dissipate.

We find that history may or may not matter in the determination of the conditional

expected asset value. When the true and observed asset values are lognormally or normally

distributed, and when the asset value is partially revealed, only current information is re-

quired to determine expected asset value. In contrast, under similar structural assumptions

with the exception that noise increasingly hinders accurate observation of the true asset

value, the expected asset value is a weighted average of the initial value estimate and the
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most recent noisy value signal. The initial value estimate is useful, since it contains the

lowest level of accumulating noise. Finally, when noise follows a mean-reverting Ornstein-

Uhlenbeck process with normally distributed true asset value, the entire historical observed

value path is useful in estimating the expected asset value. Since the noise and the true

value have different distributions, a path of historical values that behaves more like the true

asset distribution (noise distribution) suggests that the noise component is relatively small

(large).

Because noise suppresses the information content of the observed value signal, the re-

vealed variance of asset price (the variance of the expected asset value over time) is useful

in the determination of contingent-claim valuation and optimal exercise policy. In general,

the revealed variance of real asset price will be less than the true (full information) variance,

suggesting that information that can be acted upon in the determination of option exercise

decisions arrives at a slower rate than it does in a full information economy. Noise there-

fore reduces the value of call and put options below their full information values. It also

effects option exercise policy on many types of options. For example, noise may increase

the rate at which proprietary American or compound options are exercised, since the value

of waiting to resolve additional uncertainty decreases relative to the full information case.

Alternatively, exercise of strategic American options may be delayed significantly if costly

information acquired by the first-mover is publicly observable or partially revealed to other

optionholders.

The existence of noise impairs a claimholder’s ability to make good exercise decisions

(relative to when the asset value is known with certainty). This will create incentives to

acquire additional information as to the true asset value. When a costly information acqui-

sition (IA) technology exists, the claimholder must determine how much, if any, information

to acquire. Further, the claimholder may be able to repeatedly gather and process informa-

tion, and must determine an optimal sequence of information acquisition. To focus on these
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issues, we examine information acquisition for the case of a borrower who holds the default

option inherent in a risky discount debt contract. We model the IA cost as an increasing

function of precision, and then calculate the optimal level of information acquisition, the

effects of IA on the arrival rate of information and its impact on claim valuation.

Costly information acquisition can be interpreted as an option to resolve residual asset

value uncertainty at a discrete point in time. IA will be utilized to reduce errors at the debt

payoff date if the technology is sufficiently inexpensive and if the noisy signal of asset value

is sufficiently close to the critical value (face value of the debt) at which the default option is

exercised. The option premium on IA is analogous to the time premium found in the classical

(complete information) options. The major distinction between the two is that information

arrives continuously (and relatively slowly) in the classical case whereas information arrives

in a discrete ‘package’ in the case of IA. If noise of both types (initial or accumulating)

can be reduced by acquiring a more precise value estimate, exercise decisions, and therefore

claim value, are functions of all noise, independent of the source. Comparative static results

reveal that when asset volatility is greater than the accumulating noise volatility, the optimal

level of information acquisition is most sensitive to noise volatility. Initial noise volatility

has the greatest impact for shorter-lived claims while accumulating noise volatility has the

greatest impact for longer-lived claims. Finally, we demonstrate that, under the more general

setting when there are multiple opportunities to gather information, it is optimal to acquire

information in smaller increments to reduce the potential of ex-post overinvestment and

underinvestment in information acquisition.

Our model of debt contracting and information acquisition extends the costly state veri-

fication approach of Townsend (1978) and Gale and Hellwig (1985) in several ways. Because

noise degrades precision of the real asset value estimate in our model, the borrower has an

a priori incentive to acquire information prior to making a debt repayment decision. The

inspection range extends to either side of the debt payoff amount as opposed to IA taking
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place only at sufficiently low asset values in the costly state verification model. Moreover,

tradeoffs between cost and precision of IA may result in (optimally chosen) imperfect ex post

value estimates. The lender anticipates the acquisition of information and this expectation

will be priced. To reduce the costly duplication of IA, incentives will exist for the borrower

to credibly commit to share information that is acquired with the lender.

The remainder of the paper will be organized as follows. In Section II optimal filtering

techniques are utilized to determine the distribution of the conditional expected value used

to value contingent claims. Section III contains an application of a risky debt contract (with

its embedded put option) in which the optimal levels and sequence of information acquisition

are determined. Section IV considers further implications and extensions to the model. In

particular, we address incentives for banks to share information in a world with and without

forced liquidation regulation as well as consider IA incentives on other types of claims such

as compound, American and strategic options. Section V summarizes our major findings.

II Optimal Filtering Results and Special Cases

The general setting described below considers a real asset for which the true value of the asset

cannot be perfectly observed. Instead, a noisy observation of value is available and is used

to estimate the true asset value which can be used in contingent-claim pricing. We consider

a general class of true value/noisy observation relationships for which standard filtering

theory provides a set of differential equations. Solutions to the differential equations and

economic implications are developed in several special cases. Initially we assume that it is

not possible to increase the accuracy of estimates of true value through the application of a

costly information acquisition technology. This assumption is relaxed in Section III to study

the impact of costly information acquisition on value estimates and option exercise decisions.

Earlier work has addressed valuation and optimal exercise policy for contingent claims
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when information is symmetric across investors but imperfectly observed. Flesaker (1991)

and Gauthier and Morellec (1997), develop models where the claimholder observes only a

noisy signal of the underlying asset value (the unobservable state variable). They derive the

expectation of the underlying asset value conditional on the noisy signal and show that the

presence of noise reduces the value of the claim and alters exercise policies. In this section

we generalize and extend the the earlier work on contingent claims on noisy assets. We

allow for two types of noise: an initial level of noise present when the underlying asset value

is originally observed or estimated and a dynamic process that accumulates noise after the

initial observation. Further, we apply general optimal filtering techniques to find conditional

expected values when the accumulating noise and the underlying asset value dynamics follow

normal, lognormal and mean reverting processes.

A Asset Value, Observed Value and the Conditional Expected Value

Consider an economy in which the true real asset value, X(t), is imperfectly observable

to all market participants, in the sense that it can neither be directly observed nor per-

fectly inferred by payoffs of any existing assets. Implications of this assumption include: (i)

markets are incomplete, and (ii) cash flows generated by the real asset cannot be used to

perfectly determine true asset value. We also assume there exists a continuous stream of

information, publicly available at no cost, that can be used to partially resolve uncertainty

as to contemporaneous asset value. For example, information regarding market activity of

comparable real assets or the continuous release of relevant macroeconomic data may provide

partial information as to the true asset value. Thus, for t ≥ 0, the real asset holder observes

an estimate of true value, Z(t) = f(X(t), Y (t)), which is a function of both the true value

of a noise term, Y (t).
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For t ≥ 0, let the dynamics of the true value and the observed value be

dX(t) = [a0 + a1X(t)] dt + b1dW1 + b2dW2, (1)

dZ(t) = [A0 + A1X(t)] dt + B1dW1 + B2dW2, (2)

where dW1 and dW2 are increments of standard Wiener processes, and all ai, bi, Ai, and

Bi can be functions of time and the observed value. We assume the dynamics for X(t) and

Z(t) are risk-neutral processes so that valuation is determined by discounting expected cash

flows at the risk-free rate of interest.1

Since the true asset value is not available, investors must form an expectation of true

value given the σ-field of information available at time t, I(t). Note that I(t) contains the

observed values, Z(s), for 0 ≤ s ≤ t. Further, {I(t)} is a filtration; i.e.,

I(0) ⊆ I(s) ⊆ I(t) ∀ 0 ≤ s ≤ t.

Now define the conditional expected value

m(t) = E [X(t) |I(t) ] .

The level of uncertainty about the current true value given the current observed value is

γ(t) = Var [X(t)| I(t)] .

That is, γ(t) is the residual variance that remains after optimally estimating the true value

1For example, if investors are risk-neutral, the dynamics that describe the processes X(t) and Z(t)
in Equations (1) and (2) will be non-adjusted (or real) processes. A weaker assumption could be, with
appropriate qualification, that there exists an equivalent martingale, so that after a risk-adjustment the cash
flows can be discounted back at the risk-free rate of interest. In this case, Equations (1) and (2) would
represent the risk-adjusted dynamics. See Rubinstein (1976) for a utility-based application of equivalent
martingale pricing in potentially incomplete markets.
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using the most current information. In the absence of noise, γ(t) = 0, m(t) = X(t) and the

current true value is known with certainty. When noise is present, γ(t) > 0 so that even

conditioning on current information does not completely reveal the current true value.

In this paper we are particularly interested in the effects of noise on contingent-claim

valuation and exercise policy. Option valuation with risk-neutral processes involves taking

the present value of the conditional expected cash flows. Thus, another variance that will

be important is the variance of m(t) given the information available at some earlier date,

Var [m(t) |I(s) ], s ≤ t. We refer to the variance rate of m(t) from the initial date of an option

to its terminal date as the revealed variance rate. This statistic summarizes the rate of arrival

of costless information that can be acted upon when making option exercise decisions, and

in general will differ from the true asset variance.

Given the dynamics in Equations (1) and (2), Liptser and Shiryayev (1978) provide

conditions such that the conditional expected value, m(t), and the residual variance, γ(t),

are unique solutions of

dm(t) = [a0 + a1m(t)] dt +
b1B1 + b2B2 + γ(t)A1

B2
1 + B2

2

[dZ(t) − (A0 + A1m(t)) dt] , (3)

dγ(t)

dt
= 2γ(t)a1 + b2

1 + b2
2 −

(b1B1 + b2B2 + γ(t)A1))
2

B2
1 + B2

2

, (4)

with initial conditions m(0) = E [X(0)| I(0)] and γ(0) = Var [X(0)| I(0)].2,3 In a persis-

tently noisy economy the initial observation contains uncertainty, that is γ(0) = σ2
yo > 0.

For example, one could view m(0) as an asset price derived from a market transaction or,

alternatively, some (potentially imperfect) asset pricing model or appraisal process where

residual uncertainty about the true current value may exist. Note also that γ(t) is the solu-

tion to an ordinary differential equation, while m(t) is the solution of a stochastic differential

2Equations (3) and (4) are a direct application of Theorem 12.7 in Liptser and Shiryayev (1978).
3Discrete time versions of the results in Equations (3) and (4) are presented as recursive equations in

Theorem 13.4 of Liptser and Shiryayev (1978).
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equation which depends on γ(t). Lastly, m(t) is an optimal estimate (i.e., it is efficient in a

mean square sense) of the true value.

To illustrate the usefulness of Equations (3) and (4) in an economic setting, it is necessary

to make specific assumptions about the distributions of X(t) and Z(t). Four special cases

are considered in the next sub-section, and are chosen to illustrate a range of frequently

encountered stochastic processes.4

B Special Cases

B.1 Lognormally Distributed Variables with Accumulating Noise

Consider the case where the true value, the noise and the observed value are all lognormally

distributed and Z(t) = X(t)Y (t). The dynamics (after taking logs to transform the variables

to normal variables) are presented in Equation (5) of Table 1. In this example, additional

noise accumulates at the rate of σ2
y which, along with the initial uncertainty, causes the

observed value to differ from the true value. The noise has an expected value of 1 and is

persistent in the sense that future changes in noise levels, ln(Y ), are completely independent

of past values. Black (1986) suggests that noise is typically cumulative in the absence of an

ability to acquire and trade on proprietary information regarding the true asset value. Con-

sequently, the lognormal case may best describe projects in which it is difficult to infer value

from other existing assets and in which continuous acquisition of more precise information

of true asset value is prohibitively expensive.

Let m∗(t) = E [ln(X(t)) |I(t) ] and γ∗(t) = Var [ln(X(t)) |I(t) ]. Applying Equations (3)

and (4) to Equation (5) generates the differential equations for m∗(t) and γ∗(t) in Equation

(6). The solution is provided in Equation (7) of Table 1. The conditional expected value,

4The examples that follow are linear filtering problems, special cases of the non-linear filtering results
presented earlier. Theorem 10.3 in Liptser and Shiryayev (1977) is a special case of Theorem 12.7 in Liptser
and Shiryayev (1978) that applies to linear filtering problems. The solution to the linear differential equations
is the generalized Kalman-Bucy filter.
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m(t), is the geometric weighted average of the time 0 conditional expected value (or forward

price) of Z(t) (i.e., Z(0)eµxt), and the convexity adjusted current observed value, Z(t)e
1
2
σ2

yt.5

The weight is

ρ2 =
σ2

x

σ2
x + σ2

y

,

or the true variance to total accumulating variance ratio.

For any ρ < 1 (σ2
y > 0), the initial observation is used in determining m(t); i.e, the

conditional expected value is not Markov. However, only a very limited set of historical

observations are required to determine the conditional expected value: the initial observation

and the most current observation. The original observation has no accumulating noise (and

hence the least total noise), but does not contain current information about the true value.

The most recent observed value contains the most current information about the true value,

but also has the most accumulated noise. The weighting scheme places more weight on

the current value when there is less accumulating noise. More weight is put on the time 0

conditional expected value when more accumulating noise makes the current observed value

less precise. Also note that, while ρ and m(t) depend on the variance rate at which noise

accumulates, σ2
y , they do not depend on the level of initial noise, σ2

yo. Without being able to

acquire additional information the initial noise cannot be acted on, implying that σ2
yo has a

symmetric or neutral effect on the conditional expected value.

The residual variance, γ(t) in Equation (7), is the sum of the initial variance, σ2
yo, and

further errors which accumulate at the rate of ρ2σ2
y . The revealed variance rate of m(t) is

ρ2σ2
x. Thus, to value a European (American) call or put option written on a noisy asset in this

setting, simply use the Black-Scholes formula (numerical techniques) where the underlying

asset price is m(t) and the variance rate is ρ2σ2
x. When the noise variance is positive, In

5The convexity adjustment is required due to the lognormal prices. This adjustment is required irrespec-
tive of whether payoffs to a claim, are linear or not.

11



other words, the value of options with convex payoff functions is inversely related to the level

of accumulating noise.

B.2 Lognormally Distributed Variables with Partial Observation

An alternative specification when X(t), Y (t), and Z(t) are lognormally distributed is pre-

sented in Equation (8). Again, the noise term has an expected value of 1, and the observed

value is the product of the true value and the noise. While in Section B.1 observation was

continuously hindered by outside noise, the dynamics in Equation (8) allow for perfect ob-

servation of some portion of the true variance, σ2
x1

, and complete unobservability for the

remaining portion of true variance, σ2
x2

, where σ2
x1

+ σ2
x2

= σ2
x.

Applying Equations (3) and (4) and solving the differential equations give the solutions

found in Equation (10). With partial observation, the conditional expected value is the

(convexity-adjusted) most recently observed value. Historical observations provide no in-

cremental value since the current observation accurately reveals a portion of current asset

value. All historical observations are simply stale values of the current revealed component

and provide no information on the current unrevealed component. This is in contrast to the

previous model in which noise steadily increases over time resulting in a role for the initial

noisy asset value estimate in the determination of an updated conditional asset value.6

One way to view the differences in the models is through different types of model mispeci-

fication. For example, the accumulating noise model might correspond to using a multifactor

CAPM model that assumes constant prices of risk in a world where the prices of risk are

non-constant.7 At some initial date the model is used to calibrate the prices of risk. At later

6The accumulating noise model is analogous to a person with deteriorating eyesight and the partially
observable model is analogous to a person with tunnel vision each trying to establish the characteristics of
an unpredictably changing object. To best determine the current state of the object, the individual with
deteriorating eyesight will rely not only on his current view of the object, but also on a historical view of the
object when his eyesight was better. The individual with tunnel vision can see only a portion of the object
and relies only on his current view of the object since he couldn’t see any more of the object in the past and
past observations would not contain any recent changes in the object.
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Table 1. Dynamics, Stochastic Differential Equations and Solutions for Log-
normal Variables. This table contains the dynamics, differential equations, conditional
expected value, residual variance and revealed variance when the true value, noise and ob-
served value are lognormally distributed. In Panel A, the true value is obscured by additional
noise. In Panel B, the observed value reveals only a portion of the true value variance.

Panel A: Lognormal Variables with Additional Noise

Z(t) = X(t)Y (t)

Dynamics:




d ln (X(t)) =
(
µx − 1

2
σ2

x

)
dt + σxdW1

d ln (Y (t)) =
(
−1

2
σ2

y

)
dt + σydW2

d ln (Z(t)) =
(
µx − 1

2
σ2

z

)
dt + σxdW1 + σydW2

(5)

Differential
Equations

:




dm∗(t) =
(
1 − ρ2

)
µxdt + ρ2d ln (Z(t))

dγ∗(t)
dt

= ρ2σ2
y

(6)

Solution:


 m(t) =

(
Z(0)eµxt

)1−ρ2 (
Z(t)e

1
2
σ2

yt
)ρ2

γ(t) = ρ2σ2
yt + σ2

yo

(7)

Revealed
Variance

: ρ2σ2
x

Panel B: Lognormal Variables with Partial Observation

Z(t) = X(t)Y (t)

Dynamics:




d ln (X(t)) =
(
µx − 1

2
σ2

x

)
dt + σx1dW1 + σx2dW2

d ln (Y (t)) =
(
−1

2
σ2

x2

)
dt − σx2dW2

d ln (Z(t)) =
(
µx − 1

2
σ2

x1

)
dt + σx1dW1

(8)

Differential
Equations

:




dm∗(t) = d ln (Z(t))
dγ∗(t)

dt
= σ2

x2

(9)

Solution:

{
m(t) = Z(t)e

1
2
σ2

x2
t

γ(t) = σ2
x2

t + σ2
yo

(10)

Revealed
Variance

: σ2
x1
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dates, new sensitivities to the risks are calculated, but the new βs are combined with the

fixed model prices of risk. The user of the model in this case recognizes that it is mispecified

in some way, but is unaware of the nature of the mispecification (an hence is unable to fix

it). The partially observable model might correspond to a multifactor CAPM world where

some of the factors (and the price of risk of these factors) are known, but there is one or

more factor that is consistently unknown. Again, the user recognizes that the model is not

perfectly specified but is not capable of determining the remaining factors.

Note that standard European (American) puts and calls can be valued by using the

Black-Scholes formula (numerical techniques) with underlying asset value equal to m(t) and

variance rate equal to the revealed variance rate, σ2
x1

. Again, option value decreases as noise

volatility increases. This volatility-reducing property of noise may partially explain why

attempts to establish exchange-traded options on indices of real asset values have proven

difficult (e.g., options and futures on house prices as indexed by Case-Shiller-Weiss). Because

the model and the data used to compute real asset prices are often proprietary, very little

information is typically available in-between index value announcement dates to allow traders

to update the index in a reliable way. This decreases revealed volatility to very low levels to

decrease option contract prices and volume, and hence the profitability of the contracts to

the exchanges. It may also introduce an additional source of basis risk for those interested

in using these options contracts to hedge natural long or short positions in the real assets.

B.3 Normally Distributed Variables with Cumulative Noise

Panel A of Table 2 contains the dynamics, differential equations and solution when (i) X(t),

Y (t), and Z(t) are normally distributed, (ii) the noise term has an expected value of 0, and

(iii) the observed value is the sum of the true value and the noise. The conditional expected

7The examples of model mispecification provided here are familiar, risk-based models. For these examples,
the stochastic processes of this paper must be viewed as risk-neutralized processes (see Footnote 1).
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value is the arithmetic weighted average of the time 0 conditional expected value, Z(t)+µxt,

and the current observed value, Z(t). The revealed variance rate is ρ2σ2
x, which is strictly

less than the true variance for positive levels of accumulating noise. European calls and puts

on these noisy assets can be valued by using the formulas developed in Brennan (1979) using

m(t) as the value of the underlying asset and ρ2σ2
x as the variance rate. Options with convex

payoffs are again less valuable when noise is present.

A relevant alternative expression for the conditional expected value is

m(t) = Z(0) + µxt
(
1 − 1

t

∫ t

0
ρ2ds

)
+
∫ t

0
ρ2dZ(s). (11)

The conditional expected value is the original observed value scaled up by two terms. The

first is the total drift, µxt, times one minus the average ρ2. The second term is the cumulative

weighted change in the observed value where the weight is ρ2. This expression clarifies the

role for intermediate value signals in the determination of the conditional expected value.

When ρ is constant, Z(t) and Z(0) are the only observed values relevant in determining the

conditional expected value. However, when ρ is time varying (see Section B.4), the entire

path of value signals may be relevant when attempting to disentangle noise effects from

actual value in the determination of the expected asset value.

B.4 Normally Distributed True Value with Mean-Reverting Noise

In the final case (Panel B of Table 2), the true value is normally distributed, the noise term is

mean reverting and the observed value is the sum of the true value and the noise term. When

the observed value is below (above) the true value, the noise term has a positive (negative)

drift. Thus, past errors have a tendency to dissipate, where κ is the rate of dissipation. This

case suggests that the actions of certain agents may keep observed prices from wandering too

far from their fundamental values (Black (1986)). Purposeful research or the application of
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Table 2. Dynamics, Stochastic Differential Equations and Solutions for Normal
Variables. This table contains the dynamics, differential equations, conditional expected
value, residual variance and revealed variance when the true value, noise and observed value
are normally distributed. In Panel A, the true value is obscured by additional noise, and the
noise is persistent. In Panel B, the additional noise is mean-reverting.

Panel A: Normal Variables with Additional Noise

Z(t) = X(t) + Y (t)

Dynamics:




dX(t) = µxdt + σxdW1

dY (t) = σydW2

dZ(t) = µxdt + σxdW1 + σydW2

(12)

Differential
Equations

:




dm(t) =
(
1 − ρ2

)
µxdt + ρ2dZ(t)

dγ(t)

dt
= ρ2σ2

y

(13)

Solution:

{
m(t) = (Z(0) + µxt) (1 − ρ2) + ρ2Z(t)
γ(t) = ρ2σ2

yt + σ2
yo

(14)

Revealed
Variance

: ρ2σ2
x

Panel B: Normal Variables with Mean-Reverting Noise

Z(t) = X(t) + Y (t)

Dynamics:




dX(t) = µxdt + σxdW1

dY (t) = κ(X(t) − Z(t))dt + σydW2

dZ(t) = (µx + κ(X(t) − Z(t))) dt + σxdW1 + σydW2

(15)

Differential
Equations

:




dm(t) = µxdt +
σ2

x + γ(t)κ

σ2
x + σ2

y

(dZ(t) − (µx − κZ(t) + κm(t))dt)

dγ(t)

dt
= σ2

x −
(σ2

x + γ(t)κ)
2

σ2
x + σ2

y

(16)

Solution:




m(t) = Z(0) + µxt
(
1 − 1

t

∫ t

0
ρ2(s, κ)ds

)
+
∫ t

0
ρ2(s, κ)dZ(s)

+ κ
∫ t

0
ρ2(s, κ)(Z(s) − m(s))ds

γ(t) =
1(

1
γ(0)−c

+ φ
2σx

)
e2φσxt − φ

2σx

+ c

c =
−σ2

x + σx

√
σ2

x + σ2
y

κ
φ =

κ√
σ2

x + σ2
y

ρ2(t, κ) =
σ2

x + κγ(t)

σ2
x + σ2

y

(17)
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an information acquisition technology may ultimately be responsible for this mean reverting

tendency, although the precise structure underlying this phenomenon remains unmodeled in

this specification.

The conditional expected value in Equation (17) is the initial observation, Z(0), plus

three terms. The first term is the unconditional drift of the observed value times one minus

the average ρ2(s, κ).8 The second term is a weighted sum of increments of the observed value,

where the weights now depend on time. These first two terms are similar to the terms in

Equation (11) for the normal case except that the weights, ρ2(s, κ), are now time dependent.

The third term is related to the past conditional noise terms (note that Z(s) − m(s) =

E [Y (s) |I(s) ]). As opposed to the first three cases, the mean-reverting model has a true value

and a noise value with fundamentally different distributions. As a result, more historical

observed values are used to determine the current conditional expected value. Since the

noise is mean reverting, persistently positive (negative) levels of conditional noise suggests

that past estimates of the true value were too low (too high), implying that the current

estimate of value should be increased (decreased) to correct for ex post estimation error.

Hence, the entire time path of realized observed prices is utilized here, whereas the initial

observed value was the only historical value of importance in the accumulating noise models

and no historical values played a role in determining the conditional expected value in the

partially observable model.

Also note that, in contrast with previous results, the initial level of noise, σ2
yo (as well as

all intermediate values of γ(s)), is relevant in the determination of noisy asset and contingent-

claim values (as seen in the calculation of γ(t)). For example, a high initial σ2
yo combined

with a sample path of observed values that closely track true values suggests that the arrival

of price information is highly informative relative to initial conditions. This, in turn, suggests

that the initial Z(0) should be discounted as an informed estimate of the time t asset value.

8The weight ρ2(t, κ) when κ = 0 is equal to the weight from the first three special cases, ρ2.
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C Implications for the Exercise of Real Options

The inability to observe the underlying asset value may result in a contingent-claim exercise

policy that differs dramatically from exercise policy under perfect observability. First, the

optionholder will use the conditional expected asset value when calculating the costs and

benefits of option exercise. This introduces error into the process, which, in many cases,

decreases option value. The potential for committing exercise mistakes thus creates an

incentive to acquire additional information regarding the true asset value, an issue we address

in detail in the next section.

Second, the degradation of low quality asset value information may affect decision making

when discretion exists as to the timing of option exercise. For many proprietary real options,

uncertainty as to the true asset value may result in a more aggressive exercise policy than

when asset value is perfectly observable. Since information quality has been dulled by noise,

the value of waiting is lessened. This effect may explain empirically documented cases in

which individuals apparently exercise their options earlier than theoretical model predictions

would suggest (see, e.g., Vandell (1992), Quigley and Van Order (1995)).

In other cases there may be the opposite incentive to delay exercise for much longer than

would be the case with complete information. For example, in an imperfectly competitive

new product market a potential market leader may have a strategic incentive to significantly

delay investment. This follows because contemporaneous product demand may not be known

with certainty and because initial investment generates a price information externality that

may be difficult to internalize. As a result, competitors may wait extremely long periods of

time to exercise if first-mover benefits are small relative to the costs (see, e.g., Rob (1991)

and Banerjee (1992)).
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III Debt Contracting and Incentives to Acquire Information

The existence of noise in determining the underlying asset value impairs a claimholder’s

ability to make precise exercise decisions. As a result, the claimholder has an incentive to

more accurately determine asset value in order to improve exercise decisions and increase

option value. Given the existence of a costly information acquisition (IA) technology that

leads to more precise estimates of true asset value, the claimholder can determine how much

(if any) information to acquire. Further, the claimholder may be able to repeatedly gather

and process information, and thus must determine an optimal sequence of IA.

This section explores incentives to optimally acquire and distribute costly information by

examining the case of an equityholder with a default (put) option inherent in risky discount

debt used to finance an imperfectly observable real asset. We choose this setting because

it aptly illustrates information acquisition incentives in a contingent claims context and be-

cause it directly relates to a rich literature on debt contracting and financial intermediation.

Indeed, the issues we address in this section cut across numerous topic areas, including

the valuation of corporate liabilities (e.g., Black and Scholes (1973), Merton (1974)), opti-

mal contract design and costly state verification (e.g., Townsend (1978), Gale and Hellwig

(1985)), incentives to share as opposed to hoard information (e.g., Ross (1979), Diamond

(1985)), delegated monitoring and scale in the production of information (e.g., Diamond

(1984), Ramakrishnan and Thakor (1984)), and the verification role of courts in bankruptcy

(e.g., Roe (1996)).

The layout for this section is as follows. To provide a foundation for further analysis,

Section A develops a model for debt valuation and default when the acquisition of additional

information regarding the asset’s value is infeasible. We extend the model in Section B to

consider the case where one or more opportunities exist to acquire additional information.
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A Imperfect Observability without Costly Information Acquisition

Consider a liquidity constrained investor who uses outside debt to finance ownership of a

noisy real asset. In particular, suppose that at time 0 an equityholder issues non-callable,

non-recourse discount debt with face value F , and maturity date T > 0 that is secured by

the non-dividend paying asset. Suppose also that when the debt is issued, the equityholder

and lender both believe the asset value is m(0) = Z(0), which may differ from its true

value, X(0). This observed value may be derived from a market transaction or an imperfect

screening process, where residual uncertainty can exist about the true current value. Assume

that the initial uncertainty as to the true value of the asset is known to be γ(0) = σ2
yo. After

the debt is issued, additional uncertainty may accrue as to the true asset value. Specifically,

assume that at time t > 0, the observed signal, Z(t), is the product of a lognormally

distributed true asset value, X(t), and a lognormally distributed noise process, Y (t), as in

Section II.B.1. The value of the conditional expected value, m(t), the residual variance, γ(t),

and the revealed variance rate were presented in Panel A of Table 1.

To provide a benchmark for further analysis and discussion, consider optimal exercise

policy and debt valuation when information acquisition is infeasible. In this case the equity-

holder will default on the debt at time T if and only if m(T ) < F . The time t ∈ [0, T ) debt

value when noise is present, D0(m(t), F, r, T − t, ρ2σ2
x), can be stated as

D0(m, F, r, T − t, ρ2σ2
x) =

Fe−r(T−t)Φ(d2(m, Fe−r(T−t), ρ2σ2
x(T − t))) + mΦ(−d1(m, Fe−r(T−t), ρ2σ2

x(T − t))),

where

di(x, y, z) =
ln
(

x
y

)
+ (3

2
− i)z√

z
,
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and where r is the risk-free rate of interest and Φ is the normal distribution function.

Debt value is simply the Merton (1974) debt value with (i) underlying asset price equal

to the conditional expected value, m, and (ii) variance rate equal to revealed variance rate,

ρ2σ2
x. Without the ability to acquire additional information, the exercise policy and debt

value depend on the conditional expected value and not on the initial level of noise. When

there is incomplete information (II) about the true asset value, the lender and equityholder

recognize that default or repayment decisions may differ from the case where full information

(FI) about the true asset value is known. Sub-FI optimal outcomes will be anticipated to

result in debt value (yield-to-maturity) that is higher (lower) than the debt value that obtains

from the classical noiseless case of Merton (1974).

Consider more specifically the differences between the II optimal exercise policy and the

FI optimal exercise policy. Define a Type I (Type II) error as II optimally exercising (not

exercising) when it is not FI optimal to do so. The potential for a Type I error exists when

m(T ) < F . Without additional information as to the true asset value, the expected loss is

ELI(Z(T )) =
∫ ∞

F
(X(T ) − F )g(X(T )|I(T ))dX(T ) (18)

= m(T )Φ (e1(m(T ), 1, T )) − FΦ (e2(m(T ), 1, T ))

where g is the lognormal conditional density function and

ei(m, β, T ) = di

(
m, F, β

(
ρ2σ2

yT + σ2
yo

))
. (19)

Note that the residual variance, (ρ2σ2
yT +σ2

yo), is used in the calculation of the expected loss.

Similarly, the potential for a Type II error exists when m(T ) > F , and the expected loss is

ELII(Z(T )) =
∫ F

0
(F − X(T ))g(X(T )|I(T ))dX(T ) (20)
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= FΦ (−e2(m(T ), 1, T )) − m(T )Φ (−e1(m(T ), 1, T )) .

The difference between debt value under full information and partial information is equal

to the discounted present value of Type I and Type II errors. This difference is also equal

to the discounted expected benefits of information acquisition in which asset value is fully

revealed. Thus the equityholder may be willing to acquire costly information in an effort to

reduce or eliminate FI sub-optimal exercise decisions.

B Costly Acquisition of Information

We now examine the strategic acquisition of information when real asset value is imperfectly

observable to the borrower as well as to outsiders. Results are developed under the assump-

tion that, if costly information is acquired as to true asset value, it is freely available to the

debtholder upon default of the debt.9 In the course of our analysis we justify and expand

upon the shared information assumption in the context of hold-up and IA cost minimization.

Our model extends the costly state verification (CSV) approach of Townsend (1978),

Gale and Hellwig (1985) and others, who assume that the borrower can perfectly observe

asset value but that outsiders cannot. In many scenarios it is unrealistic to assume that the

owners of real assets can costlessly infer the true asset price over time or even that their

information is necessarily better than it is for certain types of outsiders (such as investors,

lenders, appraisers and auditors who specialize in valuing particular kinds of real assets).

As a result, it is the borrower who has an incentive to acquire information as to the true

asset value before making an irreversible default or repayment decision. In further contrast

to the CSV approach, we utilize a continuous range of IA precision. Intermediate precision

9Liquidity constraints at the loan payoff date may provide incentives to share not only ‘bad’ state-related
information that is used to justify default and bankruptcy decisions, but also to share ‘good’ information
in order to enhance the availability of outside resources with which to refinance the original debt. The
anticipation of liquidity needs in the future thus serves to further harden ex ante incentives to acquire and
share information as efficiently and credibly as possible.
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levels allow for multiple IA opportunities and a study of the optimal sequence of information

collection.

B.1 Single-Opportunity Information Acquisition

Consider an equityholder who has a one-time opportunity to acquire additional information

as to the true underlying asset value. When this new information is acquired it can be

combined with any existing information to determine a new conditional expected value,

where the conditioning takes place over a new, finer σ-field of information, IIA(β, T ), where

I(T ) = IIA(0, T ) ⊆ IIA(β, T ) for β ∈ [0, 1]. The information that is acquired generates a

new conditional expected value

mIA
1 (β, T ) = E

[
X(T )

∣∣∣IIA(β, T )
]

which reduces residual uncertainty about the value of X(T ) to

γIA(β, T ) = (1 − β)γ(T ) = (1 − β)
(
ρ2σ2

yT + σ2
yo

)
. (21)

That is, acquiring information reduces the residual uncertainty by a factor of β. Thus,

consider β the level of IA precision, where β = 0 corresponds to a completely uninformative

signal (IA does not reduce noise at all) and β = 1 corresponds to a fully revealing signal (IA

completely eliminates noise).10

10One way to conceptualize the process of acquiring higher precision information is to envision variable
effort by an individual/firm capable of generating higher precision asset value information. An alternative
view is to assemble a diverse panel or focus group in which expert opinion is solicited and information is
pooled together. In this case a direct relationship between precision level and panel size can be established.
For example, suppose that an IA technology is employed to generate (n−1) i.i.d. value signals, {Wi}, where
Wi has the same distribution as Z(T ). The combined noisy estimate would be

ZIA(T ) = n

√√√√Z(T )
n−1∏
i=1

Wi.
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We now examine IA incentives at the loan payoff date. As noted above, when asset value

information is incomplete, it is the equityholder (borrower) who has the incentive to gather

additional information prior to exercising an irreversible repayment or default option. Define

B (m, β, T ) =




mΦ (e1(m, β, T )) − FΦ (e2(m, β, T )) if 0 < m < F and β > 0,

FΦ (−e2(m, β, T )) − mΦ (−e1(m, β, T )) if m ≥ F and β > 0,

0 if β ≤ 0 or m = 0.

(22)

with ei as defined in Equation (19). For a given precision, β, the expected benefit of single

opportunity IA is B (m(T ), β, T ).11 Note that the benefits to information acquisition are

greatest at the point where the equityholder is indifferent between debt payoff and default

(i.e., when m(T ) = F ), and benefits decline monotonically as |m(T ) − F | increases. In

other words, the acquisition of additional information is most valuable when one is indiffer-

ent between exercise alternatives and decreases as one choice increasingly dominates other

alternatives.

The expected benefits to discretionary IA are an option value, where the total variance

of the option equals the variance reduction due to IA. When m(T ) < F and no costly

information is acquired, the equityholder defaults on the debt. The advantage of IA in this

case is that the better informed equityholder will not default if the revised estimate of asset

value, mIA
1 (β, T ), exceeds F , realizing expected benefits (at exercise) of mIA

1 (β, T )−F . Thus,

acquiring information corresponds to a call option to ‘repurchase’ the assets (with pre-IA

The standard deviation of the new estimate is
σy√
n

. Thus, the relationship between n and β is β =
(n − 1)σ2

x

nσ2
x + σ2

y

and the post- IA conditional expected value is

mIA
I =

(
ZIA(T )e(1−β)ρ2(β)σ2

yT
) ρ2(1)

ρ2(β) (
Z(0)eµyT

)1− ρ2(1)
ρ2(β) ,

where ρ2(β) =
σ2

x

σ2
x + βσ2

y

. A similar relationship holds when the {Wi} are correlated.
11It is straightforward to check that the benefit function is continuous for m(T ) ∈ [0,∞), β ∈ [0, 1], and

T ∈ [0,∞).
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expected value of m(T )) for the face value of the loan, F . Similarly, when m(T ) > F and no

costly information is acquired, the equityholder would make the final payment on the debt.

In this case, acquiring information corresponds to a put option, where the equityholder

creates an opportunity to put the asset for F , realizing expected benefits (at exercise) of

F − mIA
1 (β, T ) if mIA

1 (β, T ) is less than F .12

The option premium for IA is analogous to the option time premium in the classical

(complete information) setting. In the classical option case the time premium is due to

the continuous (and relatively slow) arrival of new information as to the underlying asset

value. With τ time left until the option exercise date, the total uncertainty to be resolved

equals τσ2
x. In our case, information due to IA arrives discretely at the option exercise

date and corresponds to the reduction of uncertainty of the current asset value by (1 −
β)
(
ρ2σ2

yT + σ2
yo

)
.13

Next, consider the cost of acquiring information. Let the cost be

C1(β) = ηβα, (23)

where η and α are positive constants. The cost function is increasing in precision with

convexity depending on α. It is independent of expected asset value, implying that the cost

structure corresponds to a competitive market for information production.14

Some level of IA will take place when benefits exceed costs. Assuming that IA is feasible

12Information acquisition and subsequent default on the debt can thus result in a discontinuous drop in
estimated debt value. Sudden changes in debt value are consistent with evidence on significant declines in
corporate bond prices as a result of default (e.g., Altman (1989)) and with sudden drops in commercial real
estate loan values once borrower default and foreclosure has occurred (e.g., Ciochetti and Riddiough (1999)).
Also see Duffie and Lando (1998) for further discussion of this issue.

13In a related application, Ross (1989) analyzes effects on asset and option prices when changes occur
in the (continuous) arrival rate of information. His focus, however, is on the rate of uncertainty resolution
(whether intentionally effected or not) in the absence of being able to act on the new information. In contrast,
a change in the rate of information flow is intentional in our model and can be acted on immediately.

14An alternative characterization might be to assume monopolistic information production, in which price
is determined based on the marginal benefits gained from production of such information (e.g., Allen (1990)).
In this case, costs would be a function of both β and m(T ).
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for some m(T ) (i.e., there exists a β such that B(F, β, T )−C1(β) > 0), there will exist a region

containing F in which it is optimal for the equityholder to acquire additional information.

Figure 1 illustrates the net benefits to IA across various conditional expected asset values,

m(T ). The figure compares four different levels of precision and demonstrates that the

optimal level of precision varies across different conditional expected values. For example,

when m(T ) is near F = 100, an intermediate precision of β = 0.6 is best (given only these

four βs). As conditional expected values move away from face value in either direction,

less precision is optimal (i.e., β = 0.4 is optimal), and eventually it is no longer profitable

to acquire any information. Note that there are high (β = 0.8) and low (β = 0.2) levels

of precision that are never optimal given this chosen set of parameters. Thus, different

conditional expected values will yield different optimal precision levels, but not all precision

levels will be optimal.

If the equityholder can choose any β ∈ [0, 1], the expression for the optimal, β∗ is

β∗(m(T ), T ) = arg max
β∈[0,1]

[B (m(T ), β, T )− C1(β)] .

If the optimal precision is not a corner solution, then β∗ must equate marginal benefits and

marginal costs, and implicit differentiation can be used to calculate the partial derivatives

of optimal precision with respect to σ2
y, σ2

yo, and σ2
x.

15 The pairwise relationships between

these partials are

∂β∗

∂σ2
y

= ρ4T
∂β∗

∂σ2
yo

, (24)

∂β∗

∂σ2
x

=
(
1 − ρ2

)2
T

∂β∗

∂σ2
yo

, (25)

∂β∗

∂σ2
y

=
ρ4

(1 − ρ2)2

∂β∗

∂σ2
x

. (26)

15See the appendix for these derivations.
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Figure 1. Net benefits to IA as a function of expected asset value, m(T ). This
figure displays the net benefits (benefits minus costs) of IA at a given level of the conditional
expected value, m(T ). Net benefits from IA are greatest at m(T ) = F and decline as m(T )
moves away from F in either direction. Eventually, net benefits from IA are negative, and it
is not optimal to acquire any information. Parameter values used to create this figure are:
r = 0.05, Z0 = 125, F = 100, T = 5, σx = 0.30, σy = 0.10, σyo = 0.10, α = 2, and η = 5.

Consider the likely case in which true asset volatility is larger than the accumulating noise

volatility (i.e., ρ2 > 0.5). For shorter term options (T < ρ−4), the optimal precision level

is most sensitive to changes in initial noise level and least sensitive to changes in the true

asset variance rate. For longer term options
(
T > ρ−4

)
, noise accumulates over a sufficiently

long time so that optimal precision is most sensitive to changes in the accumulating noise

variance rate.

Figures 2A, 2B and 2C graphically display these comparative static results for the optimal
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IA precision, β∗.16 Figure 2A shows that as the standard deviation of the noise process

increases, so does the optimal level of IA since the benefits to IA increase with the amount

of noise.17 The increase in IA precision is quite dramatic. For example, at m(T ) = F , the

optimal precision increases from 0.445 to 0.731 as the accumulating noise volatility rate goes

from 0.05 to 0.15. As seen in Figure 2B, optimal precision is not as sensitive to changes in

the initial noise volatility for the intermediate term option. For m(T ) = F , optimal precision

increases from 0.573 to 0.643 as initial noise volatility goes from 0.05 to 0.15. When noise

volatility is less than true asset volatility, optimal precision is least sensitive to changes in

true volatility (Figure 2C). For m(T ) = F , the optimal level of IA increases only slightly

(from 0.582 to 0.614) as true asset volatility increases from 0.20 to 0.60. Note that, because

benefits to IA increase with increases in volatility, the range of conditional expected values

for which it is optimal to gather information also increases as any of the volatilities increase.

Our model differs sharply from the standard CSV model of debt contracting along several

dimensions. In the CSV model the borrower has perfect information regarding asset value.

IA (monitoring) by the lender occurs at asset values below the loan payoff amount, since the

lender desires to maintain a credible threat of liquidation, given borrower default. Further,

the IA technology is perfectly precise in the CSV model, and debt is the optimal outside

financing arrangement since it minimizes expected transaction costs. In contrast, IA in

our model is undertaken by the borrower at intermediate expected asset values (i.e., in an

interval containing F ). Moreover, the IA range depends on the tradeoff between the cost

and precision of information, and may result in (optimally chosen) imperfect value estimates.

Efficiency of the debt contract in our model will in part depend on incentives for the borrower

16The expected benefits will be unchanged if the maturity increases while the true asset variance rate and
accumulating noise variance rate decrease by the same multiplicative factor. Thus, the base parameters for
Figure 2 (σx = 0.30, σy = 0.10, and T = 5) yield the same optimal precision levels as σx = 0.15, σy = 0.05,
and T = 20.

17Although the net benefits to IA are greatest at m(T ) = F , the maximum level of IA occurs at an
m(T ) > F due to the lognormality of asset values (see the appendix for further detail).
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Figure 2. Optimal IA precision as a function of volatility. This figure displays the optimal precision of IA as a function
of the pre-IA conditional expected value, m(T ). In Figure A, σx = 0.30, σyo = 0.10 and four different σy values are graphed. In
Figure B, σy = 0.10, σx = 0.30 and four different σyo values are graphed. In Figure C, σy = 0.10, σyo = 0.10 and four different
σx are values graphed. Parameter values common to all figures are: r = 0.05, Z(0) = 125, F = 100, T = 5, α = 2, and η = 5.
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to share information in order to minimize the expected costs of IA. That is, if the borrower

has an incentive to reveal information with the lender when default occurs, it may be that

IA by the lender is not required, hence lowering debt costs.

Given the existence of a known IA technology, the potential acquisition of additional

asset value information will be anticipated at the time the debt is issued. Debt value in this

case is simply the value of the debt without IA, less the expected present value benefits to

IA. The equityholder expects to incur non-reimbursable costs associated with IA when m(T )

is in the feasible monitoring range. Because of these costs the equityholder would prefer to

avoid outside finance altogether, but is unable to do so since she is liquidity constrained. As

an alternative, the equityholder would prefer to credibly commit ex ante to never acquire

information ex post in order to save the expected costs of IA. This sentiment is unlikely to

be enforceable, however.

If costs of IA by the lender were to be priced into the debt, and there are no other oppor-

tunities to use private information strategically, a credible commitment to share information

would be preferred by the borrower.18 A credible information sharing commitment could

involve a third-party IA specialist whose cost schedule is known in advance and who agrees

to share the results of IA with the lender, should default occur. Incentives to acquire and

then share information thus resembles the Diamond (1984) concept of delegated monitoring,

with the critical difference that the IA specialist works directly for the borrower instead of

the lender. Numerous other papers have addressed incentives to share financial information.

Perhaps closest to our approach is Diamond (1985), who argues that voluntary informa-

tion disclosure helps avoid costly duplication of effort by outside investors. Diamond and

Verrecchia (1991) extend this idea to show that disclosure reduces information asymmetries

18The costs to hoarding as opposed to sharing information are at a minimum equal to the costs of duplicated
monitoring. If information asymmetries are unresolvable through additional information acquisition, further
costs will accrue ex ante due to adverse selection problems (Akerlof (1970), Grossman (1978), Stiglitz and
Weiss (1981)).
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to increase demand from large investors. Ross (1979) and others have employed ‘unrav-

eling’ arguments that suggest outsiders infer bad news from the lack of disclosure, which

forces the informed investor to reveal her information in equilibrium. A crucial difference

between our model and these other approaches is that the ‘market’ specific and bilateral in

our case whereas it is non-specific and multi-lateral in the other models. A specific bilateral

relationship requires the explicit introduction of ex ante contracting and a third party IA

specialist to minimize opportunistic behavior ex post, whereas a non-specific relationship

with a large number of (anonymous) outsiders is sufficient to provide truth-telling incentives

for the informed investor/seller.

B.2 Multiple-Opportunity Information Acquisition

One-time IA may be a reasonable approach when there is only a short time in which to

acquire information to improve an irreversible exercise decision. There are numerous other

circumstances, however, in which multiple, as opposed to all-at-once IA, is both a possible

and an optimal policy. Indeed, the option to acquire additional information may be quite

valuable, even when IA has been undertaken numerous times in the past.

The intuition behind multiple-time IA is that there will be an incentive to acquire infor-

mation in smaller increments in an attempt to reduce ex post over- or under-investment in

information. To see this, suppose that a one-time IA opportunity is available to the equity-

holder. If m(T ) is near the exercise boundary, significant IA may be desirable to reduce the

probability of error. With multiple-time IA, the equityholder initially chooses lower precision

(and hence lower cost) IA. If the revised mIA
1 (β, T ) turns out to be significantly different

than F , the equityholder will be sufficiently confident in making an exercise decision with

little or no additional costly IA. If, however, mIA
1 (β, T ) is still near F , the equityholder may

aggressively acquire additional information, in this way targeting high, costly levels of IA
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only when it is most needed.

To develop this intuition more formally, consider the case in which a total of two IA

opportunities are available to the equityholder. Denote the precision realized from the first

IA opportunity as β1, the precision realized from the second IA opportunity as β2, and

the revised expected asset value from the first IA opportunity as mIA
1 (β1, T ). The second

precision, β2, is the cumulative or total precision, suggesting that β1 ≤ β2 ≤ 1 and that higher

precision leads to finer information sets,
(
IIA(β1, t) ⊂ IIA(β2, t)

)
.19 The information sets are

invariant to the order in which information arrives. For example, acquiring information once

at a precision of β = 0.7 generates the same information set as a sequence where initial

precision is β1 = 0.4 and the cumulative precision is β2 = 0.7.

Multiple-opportunity IA can be interpreted as a compound option that resolves the asset’s

residual variance. To develop the optimal multiple-opportunity IA policy, consider the second

(final) round of IA. The variance that is reduced from acquiring information a second time

is the difference in the residual variance in the first and second rounds of IA,

γIA(β1, T ) − γIA(β2, T ) = (β2 − β1)
(
ρ2σ2

yT + σyo

)
.

Conditional on first-time IA occurring, calculating the optimal IA region for the second time

is similar to the one-time case except that mIA
1 (β1, T ) is the revised conditional expected

asset value and precision level increases from β1 to β2. The benefits for the second round of

IA are simply the benefits for the incremental level of precision, B(mIA
1 (β1, T ), β2 − β1, T ).

We assume that the cost function for increasing precision from β1 to β2 is

C(β1, β2) =




ηβα
2 − θηβα

1 if β2 > β1,

0 Otherwise.

(27)

19It is straightforward to show that a multiple-time approach to IA is at least as desirable as the one-time
approach. To see this, consider the IA policy where β1 equals the optimal precision resulting from the
one-time IA opportunity and β2 is always zero. This policy is feasible but generally not optimal IA for the
multiple-time case.
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The parameter θ ∈ [0, 1], indicates the degree of second-time cost savings derived from first-

time IA. When θ = 1, second-time IA costs are based solely on the incremental amount of

precision obtained. Conversely, when θ = 0, first-time IA costs must be duplicated for any

second-time IA. Intermediate values of θ indicate that partial duplication of cost occurs in

the second round. The optimal precision level for the second round of IA (given a precision

from the first round) maximizes the net benefits, B(mIA
1 (β1, T ), β2−β1, T )−C(β1, β2). Thus,

the optimal precision level, β∗
2(m

IA
1 (β1, T ), β1), depends on the precision and the conditional

expected value that results from the first round of IA. If a second round of IA is not optimal,

then β∗
2(m

IA
1 (β1, T ), β1) = β1.

Determining the optimal precision for the first IA opportunity is more complicated be-

cause the precision from the first round affects optimal precision for the second round and

because the benefits from first round IA include the option value associated with a second-

time IA opportunity. The value of the option to acquire information the second time is the

expected net incremental benefits obtained from the second round of IA for a given round

one precision, β1,

E
[
NB2(β1)

∣∣∣IIA(0, T )
]

=
∫

R2(β1)

[B (m, β∗
2 − β1, T ) − C(β1, β

∗
2)] g

(
m
∣∣∣IIA(β1, T )

)
dm,

where

R2(β1) = {m |B(m, β∗
2 − β1, T ) − C(β1, β

∗
2) ≥ 0} ,

is the interval containing F for which a second round of IA is desirable. Therefore, the total

net benefits from a first round of IA are the direct net benefits from the first round plus the
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expected incremental net benefits from the second round

B(m(T ), β1, T ) − C(0, β1) + E
[
NB2(β1)

∣∣∣IIA(0, T )
]
. (28)

The optimal first round precision, β∗
1 , maximizes the total net benefits in Equation (28).20

Figure 3A displays endogenously determined optimal precision levels under a two-time

IA approach with θ = 0 (i.e., first-time costs must be duplicated upon second-time IA).

Precision levels in this figure are determined prior to the initial acquisition of information,

in which optimal precisions given two-time IA are compared to those obtained in the one-

time IA case. Also shown is the expected increment to first-round IA, E[β∗
2 − β∗

1 | IIA(0, T )],

which equals the difference between the expected cumulative precision from second-round

IA and the optimal precision level from first-round IA.

Total expected precision with multiple-time IA in this figure is less than the optimal pre-

cision realized from one-time IA. Multiple-opportunity IA allows information to be gathered

in smaller increments to reduce the potential for ex post over-investment in information. As

β∗
1 moves away from it maximum value, the expected second-round incremental IA increases

and total expected IA decreases. Indeed, incremental second-round IA is expected to be

more intense than first-round IA for some m(T ) in the IA range that are sufficiently far

from F . Thus, an advantage of multiple-time IA is that the equityholder can perform a low

precision ‘test’ for the first-time IAwhen m(T ), is not near F . If the outcome of the test,

mIA
1 (β, T ), is still sufficiently far from F , no further IA is warranted. If mIA

1 (β, T ) is closer

to F the equityholder invests in IA at a much higher level the second time, but since the

first round was a low precision level there is little replication of costs.

Figure 3B shows optimal precision levels for θ = 1, (i.e., when first-time costs are not

20If precision levels were set exogenously in advance, one could develop closed-form expressions for the
compound IA options that would resemble those first derived by Geske (1979). Because we determine
precision levels endogenously, numerical techniques must be applied to solve for the optimal precision levels
and associated option values.
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Figure 3. IA precision as a function of conditional expected value. This figure displays the optimal (both actual and
expected) precision levels of IA as a function of the conditional expected value. In panels A and B the optimal precision level
for the one-time case is shown. Additionally, the optimal first-time precision, expected incremental second-time precision, and
the expected cumulative precision for the two-time case are shown. In Panel C, the optimal cumulative second-time precision
is shown for various levels of first-time precision. In Panel A, θ = 0, while in Panels B and C, θ = 1. Parameter values common
to all figures are r = 0.05, Z(0) = 125, F = 100, σx = 0.30, σyo = 0.10 T = 5, α = 2, and η = 5.
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duplicated upon second-time IA). In this case, the first round of IA is more intense than

when θ = 0, but still less intense than the one-time case. Moreover, because it is not as

costly to break up IA into two parts, the equityholder is expected to do more IA in total

(including more first-time IA) as compared to the θ = 0 case. In fact, when the benefits to

IA are highest (i.e, for m0(T ) near F ), the cumulative IA levels for the two-time case are

greater than the optimal level for the one-time case. These results occur because expected

net benefits from second round IA are higher in the θ = 1 case due to lower second round

costs. Thus, total net and marginal benefits from a first round of IA are also higher, creating

an incentive to initially acquire more information than when θ = 0. Also note that the range

over which first-round IA is expected to exceed incremental second-round IA is wider in the

θ = 1 case, due to the low cost of second-round IA feeding back to result in more intense

first-round IA.

Figure 3C shows the amount of cumulative precision conditional on various levels of first-

time precision when θ = 1.21 Note that second-time IA occurs at high levels over a narrow

range of conditional expected values centered near m0(T ) = F again illustrating the advan-

tage of multiple-opportunity monitoring (i.e., to have lower initial precision while retaining

the option to pursue aggressive IA the second-time only when it is necessary). Also note that

second-round IA occurs over increasingly narrower ranges and that the incremental level of

IA (i.e., β∗
2 − β∗

1) decreases as first-round IA is more intense. This follows because second-

round IA is relatively more expensive at higher initial IA levels, to result in diminishing

marginal returns to increasing levels of IA are realized.

Finally, it is again worth noting that the debtholder and lender will anticipate the ben-

efits of IA and build that into the debt price at issuance. For the general problem where

21In determining second-time optimal precision, β1 has already been chosen. Thus, the only difference in
the choice of β∗

2 for θ = 0 versus θ = 1 is in the cost function. Since β1 is fixed at the time β2 is chosen, the
optimal second-time precision levels are the same for θ = 1 and θ = 0, but the range over which a second
round of IA is optimal is smaller when θ = 0.
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information can be acquired n times, the expected incremental benefits for the ith instance

of IA is

ζi(Z(0)) =∫
R1

∫
R2

· · ·
∫
Ri

B(mIA
i−1(β

∗
i−1, T ), β∗

i − β∗
i−1, T )

i∏
j=0

g
(
mIA

j (β∗
j , T )

∣∣∣IIA
j (β∗

j , T )
)
dmIA

i−1 · · · dmIA
0 ,

where

Ri =
{
mi−1

∣∣∣B(mIA
i−1(β

∗
i−1, T ), β∗

i − β∗
i−1) − C(β∗

i−1, β
∗
i ) > 0

}
,

is the optimal IA region for the ith time information is acquired, g is the lognormal density

function and β∗
0 = 0. The value of the debt with n IA opportunities is

Dn = D0 − e−rT
n∑

i=1

ζi(Z(0)).

which is the debt value without IA less the present value of the benefits gained from multiple

IA opportunities.

IV Further Implications and Extensions to the Model

A Information Sharing Incentives and Forced Liquidation Regulation

We have previously argued that borrowers will have incentives to agree to share asset value

information that is acquired in the determination of a default option exercise decision. When

information is acquired and default on the debt is realized, the lender will be better informed

than outsiders as to the true asset value. This information asymmetry leads us to ask, will the

lender have an incentive to freely share its information with outsiders? Or, stated differently,

will private incentives exist for financial intermediaries to increase the transparency of their
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distressed asset portfolios?

The answer to the information sharing question partially depends on whether the in-

termediary is better off retaining ownership of the asset or liquidating it. If the asset is

non-specific and if liquidity needs are not overriding, the lender can simply choose to hold

the asset. In this case information sharing considerations are less immediate. However liq-

uidity needs may overwhelm asset retention intentions so that immediate liquidation is often

preferred (for social as well as private reasons) on assets obtained as a result of borrower

default.

When bargaining and asset sales occur under ‘steady state’ market conditions, trans-

action cost minimization or unraveling arguments can be applied, suggesting that private

incentives will exist to truthfully share information in order to accomplish liquidation objec-

tives. Moreover, when asset and loan sales are anticipated to occur frequently in the course

of normal business operations, reputational considerations provide additional incentives to

truthfully disseminate information to outsiders (Mester (1992)). It can therefore be argued

that transparency is incentive compatible and hence sustainable in equilibrium.

Steady state arguments ignore the disruptive effects of systemic risk, however. Although

infrequent and often unpredictable, systematic waves of loan default and bankruptcy do

occur, and in the extreme can tip the financial intermediary (and the entire financial system)

towards financial distress. Systemic financial distress, in turn, can compromise steady state

equilibria and result in incentives for financial intermediaries to undertake inefficient actions

in the near term. In particular, in order to increase its chances for economic survival,

there may be incentives for the distressed financial intermediary to attempt to lever its

informational advantage and discretion to retain or sell assets against outside investors.

These incentives increase opacity and illiquidity at a time when transparency and liquidity

are most needed.

As a consequence, there may exist a role for market intervention to counteract the ten-
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dency towards institutional opacity in cyclical downturns. This may explain regulation

in the US that limits bank holding periods on real assets acquired from loan default and

bankruptcy.22 By limiting discretion in the asset retention/liquidation decision, the short-

term value of transparency increases to restore incentives to truthfully share information on

acquired assets. It is important to note that this outcome is accomplished without the re-

quirement of financial disclosure regulation per se, since voluntary disclosure by the financial

intermediary is the spontaneous result of liquidation requirements.

This argument, with its emphasis on systemic risk and transparency in financial institu-

tions, rationalizes Glass-Steagall style legislation and other scope-reducing regulation that

emerged from the depression era in the US. It is also relevant to difficulties encountered in

Japan and certain other East Asian countries with prominent banking systems, but without

explicit liquidation regulation. Facilitating a transition from exchange relationships that are

primarily bilateral/specific and for which opacity has value (e.g., Rajan (1992)) to ones that

are multilateral/non-specific and for which transparency is advantageous has been a crucial

policy issue in these countries (see, e.g., Rajan and Zingales (1999) for further discussion). In

contrast, a pre-announced and credibly executed policy of forced loan and asset liquidation

by the Resolution Trust Corporation (RTC) significantly shortened the US banking/S&L

crisis of the late 1980’s and early 1990’s, keeping clean-up costs from spiraling out of con-

trol.23 A policy of speedy liquidation also contributed to the development of an asset-backed

securities market for commercial real estate loans.

22Federal bank regulation limits the holding period for real assets acquired as a result of foreclosure or
bankruptcy to approximately one year. However, reserve requirements steadily increase from the time a
loan is initially classified as non-performing to provide a strong incentive to liquidate earlier than the stated
deadline. Individual states often provide an additional layer of regulation that further limits the period over
which a bank can assume an equity position in an acquired asset.

23In addition to creating incentives to share information, asset specifities were also a factor in this policy
choice of forced liquidation. Although many of the most productive owners/operators were sidelined due to
the cyclical downturn in commercial real estate, it is probably safe to conclude that the RTC was not the
second or even third-most productive owner/operator of problem assets. Forced liquidation regulation in
this case was attractive because it increased the rate at which assets passed into the control of those who
could more productively operate them.
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B IA Policy for Other Option Types

In our analysis of the risky discount debt contract, the default option is effectively European

since no dividends are paid on the asset and because no action (payment or default) is

required until the debt payoff date. As a consequence, it is optimal to wait until the scheduled

debt payoff date to acquire additional information as to the true underlying asset price. Many

options, such as coupon debt, are compound as opposed to European in the sense that a cash

payment must be made to keep the option alive for another period. Compound options on

noisy real assets require a dynamic IA policy. This policy will have characteristics similar to

the multiple-opportunity IA analysis undertaken previously, with the additional concerns of

accounting for interim cash flows and the time value of money when calculating the value of

delay. We would expect intermediate IA ranges to be relatively narrow (when interim cash

flows are small as compared to the final payoff) and depend on the time to maturity.

Perpetual options arise in project development and investment. Prior to investment there

is often a considerable amount of uncertainty as to the precise location of the product demand

curve. However, once investment occurs and the revenue stream begins to be realized,

residual uncertainty as to product demand is more or less resolved. The investment option

in this case is a perpetual American call on a dividend-paying asset whose exercise price

is the initial cost of investment. In contrast to the compound option case discussed above

in which an explicit payment is required to keep the option alive, in this case the periodic

dividend flow resulting from investment (whose value is uncertain prior to investment) is an

opportunity cost of delaying investment for another time period.

Because the costs to fully develop new products are often quite substantial as well as

irreversible, there are obvious incentives to conduct lower-cost experiments or undertake re-

lated IA activities in an effort resolve residual uncertainty as to the actual product value.

In general, there will often exist opportunities to conduct a series of experiments prior to
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determining whether full product investment is warranted or not. It is interesting to note

that, even in the case of a one-time only IA opportunity, the investor will often acquire infor-

mation at expected asset values below (but typically in the neighborhood of) the investment

hurdle value. When the timing of option exercise is discretionary, acquiring information

at expected asset values somewhat below the hurdle value helps reduce the probability of

waiting too long to invest (i.e., noise hinders recognition that the investment option may

be well into the money) as well as increases the accuracy of the asset value estimate when

investment is delayed further. IA policy of this type is also consistent with findings derived

from a search model approach to R&D like Roberts and Weitzman (1981).

Product market structure can effect private incentives to acquire and disseminate infor-

mation as well as the social value of that information. For example, Admati and Pfleiderer

(1998) find that, from a social standpoint, individual firms may have an incentive to under-

disclose private information when disclosure also results in more precise competitor valua-

tions. How product price information is correlated and communicated can have significant

real effects in the context of innovation and competitive new product market development.

Consider, for example, an emerging market in a homogeneous good in which lead investment

fully reveals the product demand curve. As described earlier, the inability to hinder com-

munication or otherwise internalize the information externality from lead investment results

in inefficient delay. Underinvestment incentives, in turn, suggest a (perhaps public) role

in the creation of pre-investment IA mechanisms that can used to mitigate the first-mover

disadvantage and to result in more accurately timed investment decisions.

V Summary

Many real assets are infrequently traded so that asset values cannot be continuously and

precisely observed. If the value of the asset that underlies the contingent claim is not
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known with certainty, both the valuation and any exercise decision must be made with an

imperfect (noisy) estimate of real asset value. We model the value of underlying assets as

partially obscured by noise. Optimal filtering techniques are used to determine distributional

parameters for the conditional expected asset value when the noise and the underlying asset

value dynamics follow normal, lognormal and mean-reverting processes. We also examine the

effects of two types of noise: an initial level of noise present when the underlying asset value

is originally observed or estimated, and a dynamic process that accumulates noise after the

initial observation. Because noise hinders the claimholder’s ability to make quality exercise

decisions, there is an incentive to more precisely determine asset value by acquiring costly

information. We determine optimal information acquisition policy for the case of a borrower

who holds the default (put) option inherent in risky discount debt.

We find that when a costly information acquisition technology does not exist, the initial

level of noise volatility does not affect option value or exercise policy, while noise that ac-

cumulates results in lower option values. In contrast, when costly information acquisition

technology is available, any noise that can be resolved is important in determining claim

value and exercise policy. In our debt example, information will be acquired to reduce po-

tential errors in exercise policy at the debt payoff date when the technology is sufficiently

inexpensive and the conditional expected asset value is sufficiently close to the face value

of the debt. When asset volatility is greater than the accumulating noise volatility, the

optimal level of information acquisition is most sensitive to noise volatility. Initial noise

volatility has the greatest impact for short-lived claims, while accumulating noise volatility

has the greatest impact for longer-lived claims. When there are multiple opportunities to

gather information, it is optimal to acquire information in smaller increments to reduce the

potential of ex-post overinvestment and underinvestment in information acquisition. Nev-

ertheless, the cumulative level of information acquisition is often higher relative to the case

when information can only be gathered once. Finally, we find that there are incentives to
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share information in order to increase market liquidity and to reduce the costs of information

acquisition.
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Appendix

This appendix contains the derivations. It will be convenient to suppress some of the nota-

tion. So, for example, di = di

(
m

F
,
√

βs
)

where s =
√

ρ2σ2
yT + σ2

yo. MB and MC are the

marginal benefits and marginal cost functions with arguments suppressed. In addition, a

starred superscript signifies that these functions are evaluated using the optimal precision,

β∗ (e.g., d∗
i , MB∗ and MC∗).

The partials for optimal precision are

∂β∗

∂σ2
y

=
ρ4β∗T (1 + d∗

1d
∗
2)

s2 (2α − (1 + d∗
1d

∗
2))

, (29)

∂β∗

∂σ2
yo

=
β∗ (1 + d∗

1d
∗
2)

s2 (2α − (1 + d∗
1d

∗
2))

, (30)

∂β∗

∂σ2
x

=
(1 − ρ2)2β∗T (1 + d∗

1d
∗
2)

s2 (2α − (1 + d∗
1d

∗
2))

, (31)

∂β∗

∂T
=

β∗ρ2σ2
y (1 + d∗

1d
∗
2)

s2 (2α − (1 + d∗
1d

∗
2))

, (32)

∂β∗

∂m
=

−2
√

β∗d∗
2

ms (2α − (1 + d∗
1d

∗
2))

, (33)

∂β∗

∂F
=

2
√

β∗d∗
1

Fs (2α − (1 + d∗
1d

∗
2))

. (34)

Proof: The derivation for Equations (29)-(31) is below. Derivations for Equations (32)-(34)

are similar and are left to the reader.

The partials of total standard deviation are

∂s

∂σ2
yo

=
1

2s
, (35)

∂s

∂σ2
y

=
ρ4T

2s
, (36)

∂s

∂σ2
x

=
(1 − ρ2)

2
T

2s
. (37)
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The partial of d∗
2 with respect to variance is (where σ2 is σ2

yo, σ2
y or σ2

x)

∂d∗
2

∂σ2
= − ∂s

∂σ2

(
ln ξ

F

β∗ 1
2 s2

+
1

2
β∗ 1

2

)
− 1

2

∂β∗

∂σ2

(
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F

β∗ 3
2 s

+
1

2

s

β∗ 1
2

)

= −d∗
1

s

∂s

∂σ2
− d∗

1

2β∗
∂β∗

∂σ2
. (38)

The optimal precision is defined implicitly by where marginal benefits equal marginal

costs (for β∗ ∈ (0, 1))

sFn(d∗
2)

2β∗ 1
2

= αγβ∗(α−1). (39)

Implicit differentiation can be used to find the partials of optimal precision. First, take the

partial of Equation (39) with respect to variance.

Fn(d∗
2)

2β∗ 1
2

∂s

∂σ2
− sFn(d∗

2)

4β∗ 3
2

∂β∗

∂σ2
− sd∗

2Fn(d∗
2)

2β∗ 1
2

∂d∗
2

∂σ2
= αγ(α − 1)β∗(α−2) ∂β∗

∂σ2
.

Next, substitute in MB∗, MC∗, and Equation (38).

MB∗

s

∂s

∂σ2
− MB∗

2β∗
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+ d∗

2MB∗
(
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1

s
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β∗ MC∗∂β∗

∂σ2
.

Finally, recognize that MB∗ = MC∗, multiply through by
2β∗

MB∗ and collect terms

((1 − d∗
1d

∗
2) + 2(α − 1))

∂β∗

∂σ2
=

2β∗ (1 + d∗
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∗
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s

∂s
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.

This is easily solved for
∂β∗

∂σ2

∂β∗

∂σ2
=

∂s

∂σ2

2β∗ (1 + d∗
1d

∗
2)

s (2α − (1 + d∗
1d

∗
2))

. (40)
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Combining Equation (40) with Equations (35) - (37) provides the partial of optimal

precision level with respect to the three variance rates, σ2
yo, σ2

y and σ2
x

Derivation of Equations (24)-(26):

Equations (24)-(26) are a direct result of Equation (40) and Equations (35) - (37).

Proposition: Let mmax be the conditional expected value which produces the highest level

of information acquisition (i.e., β∗(mmax) ≥ β∗(m), ∀m ∈ (0,∞)). If 0 < β∗(mmax) < 1,

then mmax > F .

Proof: If 0 < β∗(mmax) < 1, then
∂β∗

∂m

∣∣∣∣∣
m=mmax

= 0. This partial is zero only if

d2

(
mmax

F
,
√

β∗(mmax)s
2T
)

= 0.

Rearranging yields

mmax = Fe
1
2
β∗(mmax)s2T .

If β∗(mmax) > 0 then s2T > 0 and mmax > F .
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