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1. Introduction

There has been a significant increase in the capabilities and applications
of generative artificial intelligence (Gen-AI) in various fields in recent years,
particularly since the launch of Chatgpt (Heidt, 2023; Sandrini and Som-
ogyi, 2023). Gen-AI is a revolutionary tool that changes the way human
labour works and cooperates with AI, especially in labour-intensive work-
places (Eloundou et al., 2023; Walkowiak, 2023). Currently, Gen-AI has
been widely used in the areas of Customer operations, marketing and sales,
software engineering, and R&D.

Generative AI, particularly large language models, has recently attracted
considerable attention from managers, urging executives and boards to inte-
grate these technologies into their digital strategies (Li et al., 2021; Paschen
et al., 2020). According to a recent McKinsey report, the most significant
business development in 2023—and arguably the past decade—has been the
emergence of generative AI, which has swiftly become a top priority for CEOs
at numerous companies (Hatami and Segel, 2023). Furthermore, the incor-
poration of AI opens up both new opportunities and challenges for research
in organizational strategic management (Haefner et al., 2021; Von Krogh,
2018).

However, existing research has yet to clearly define the optimal modes
of AI adoption. Previous studies often overlook the uncertain nature of
Gen-AI and the dynamic of market competition. Gen-AI, with its ability to
produce novel and imaginative outputs, o↵ers a revolutionary approach to
outsourcing creative tasks; nevertheless, its reliability and performance are
still uncertain. Market demand uncertainty for specific tasks also influences
the adoption of Gen-AI. Moreover, Unlike traditional technologies that serve
as mere tools, AI involves a high level of social interaction. Managers must
navigate the dual challenges of e↵ectively managing ”AI employees” and pro-
moting collaboration between human workers and AI. Therefore, this paper
aims to investigate how market and technological uncertainties impact or-
ganizational decision-making in terms of Gen-AI adoptions and human-AI
collaboration.

Recent scholars have paid attention to investigating the adoption of Arti-
ficial intelligence in management (e.g., Krakowski et al., 2023; Gaessler and
Piezunka, 2023; Tong et al., 2021), especially the interaction between human
and artificial intelligence due to the explosive rise of AI technology. Van den
Broek et al. (2021) and Sakka et al. (2022) examines the employee selection
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between experts and AI. Choudhury et al. (2020) and Balasubramanian et al.
(2022) study the substitution between human and AI. Gnewuch et al. (2023)
and Raisch and Fomina (2023) explore the collaboration (combination) be-
tween humans and AI. These studies lay the foundation for investigating the
AI-human collaboration paradigm, yet a comprehensive analysis of when and
how to implement it is lacking.

In addition, many technology adoption models fail to account for uncer-
tainty, particularly regarding technology uncertainty (Ameye et al., 2023).
Such models often assume that firms have a clear understanding of a tech-
nology’s performance (e.g., Mishra et al., 2022), which may not hold, es-
pecially in the case of Generative Artificial Intelligence (Gen-AI). Gen-AI,
characterized by its complexity and rapid development, introduces significant
uncertainty regarding its technical performance and potential applications.
For instance, the evolution of large language models like OpenAI’s Chat-
GPT4 demonstrates the rapid advancements in AI technology and its poten-
tial to challenge established digital technologies. Aside from technological
uncertainty, market demand uncertainty also plays a crucial role in firms’ AI
adoption decisions, shaping their expectations of future profit flows (Nelson,
1961; Gans, 2023; O’Connor and Wilson, 2021). As firms make decisions
regarding AI adoption, these choices, in turn, influence their profit flow and
overall performance.

In technology adoption decisions, firms encounter a myriad of strate-
gic choices, each entailing distinct real options (Dixit and Pindyck, 1994).
Firstly, firms possess the ”option to adopt” a given technology, intricately
linked to the anticipated returns associated with its adoption. Concurrently,
firms face the dynamic possibility of switching between strategies or aban-
doning their current strategy, adding layers of complexity to their decision-
making. Secondly, there exists the ”option to wait” instead of immediately
adopting the technology, stemming from various sources such as evolving
technology costs, improving performance over time, or learning opportunities
(Trigeorgis and Reuer, 2017). Consequently, the determinants of technology
adoption, especially uncertainties, influence the option value of adopting,
switching, and abandoning (Wong, 2007; Luo and Yang, 2017; Arve and
Zwart, 2023).

In this paper, I model the Gen-AI adoption in a real option setting and
show the optimal collaboration strategies between Gen-AI and human labour
under uncertainty by considering the option to adopt, switch and abandon.
Specifically, I focus on four strategies based on the involvement of Gen-AI:
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sole human participation, exclusive AI involvement, the distribution of tasks
between humans and AI, and the “Human in the Loop” approach aimed at
enhancing AI performance by humans by considering di↵erent levels of Gen-
AI performance. I focus on exploring the impact of two key factors, namely
the probability of achieving high-performance outcomes with Generative Ar-
tificial Intelligence (Gen-AI), which indicates the technology performance
uncertainty, and market volatility, which implies the market uncertainty,
on firms’ strategic decision-making processes. Specifically, I investigate how
these factors influence firms’ thresholds for strategy adoption and exit, as well
as the e↵ectiveness of human intervention and task allocation to Gen-AI.

The model generates the following results. Firstly, as the probability of
Gen-AI success increases, firms exhibit a tendency to adopt Gen-AI-inclusive
strategies earlier. This suggests a growing confidence in the capabilities
of Gen-AI and its potential to enhance performance outcomes. Secondly,
higher market volatility introduces complexities into firms’ strategic deci-
sions. While it delays the timing of strategy transitions, it also amplifies
the value of human intervention in mitigating uncertainty. This highlights
the importance of adaptive strategies that leverage both Gen-AI and human
expertise synergistically. Lastly, as Gen-AI performance becomes better,
firms allocate a greater proportion of tasks to Gen-AI, but market volatility
prompts a shift towards increased reliance on human intervention. This un-
derscores the need for strategic planning that integrates both AI and human
capabilities e↵ectively.

In this paper, I make several significant contributions to the literature on
Gen-AI adoption and strategic decision-making under market uncertainty.
Firstly, I develop a dynamic model to analyze the adoption of Generative
Artificial Intelligence (Gen-AI) within the context of market volatility. This
model allows us to examine the optimal collaboration strategies between
Gen-AI and human labor over time, providing insights into how firms can
adapt their strategies in response to changing market conditions.

Secondly, I identify and analyze four distinct collaboration strategies
based on the involvement of Gen-AI: exclusive AI participation, sole hu-
man involvement, task distribution between humans and AI, and the ”Hu-
man in the Loop” approach aimed at enhancing AI performance with human
intervention. By considering diverse costs incurred by humans and AI, vary-
ing levels of Gen-AI performance, and the augmented performance achieved
through the ”Human in the Loop” strategy, I o↵er a comprehensive analysis
of the strategic options available to firms.
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Lastly, I highlight the importance of human intervention in augmenting
AI capabilities and improving decision-making processes. Our findings show
the significance of collaborative approaches that leverage the complementary
strengths of both AI and human labor, emphasizing the need for strategic
planning that integrates these resources e↵ectively to drive innovation and
navigate uncertainties in dynamic business environments.

2. Model

To model the market uncertainty, I assume the market demand xt follows
a geometric Brownian motion:

dxt = µxtdt+ �xtdWt.

In the real options framework, human experts generate instantaneous
profit, which is denoted by ⇡hxt, while Gen-AI generates profit ⇡gxt.

Concerning the involvement of Gen-AI and interaction between humans
and Gen-AI, I consider managers to have four di↵erent strategies and the
value of di↵erent strategies is denoted by Vi, where {i = 1, 2, 3, 4}.

1. Human involvement only: In traditional strategy, humans take all work
without the involvement of Gen-AI. The performance of humans is certain
and predictable. Therefore, the incremental profit for this strategy is ⇡h.

2. AI involvement only: Due to the rapid development of AI technology,
AI employers can complete tasks automatically. However, the quality of the
resulting performance is uncertain. To model this technology uncertainty of
Gen-AI, I assume the quality of content generated by Gen-AI is uncertain
(response uncertainty). To simplify the model, I assume there are two states.
With probability p, the profit generated by Gen-AI is accurate and satisfying,
which is the high state ⇡H

g
. With probability 1 � p, the profit generated

by Gen-AI is not satisfying because of the fake or inaccurate information
generated by Gen-AI, which is the low state ⇡L

g
. Therefore, the incremental

profit for this strategy is p⇡H

g
+ (1� p)⇡L

g
.

3. Task distributed between AI and humans: Due to the shortage of
human labour or to improve e�ciency and cost, it is common to distribute
tasks between AI and humans. I assume the proportion of tasks allocated to
Gen-AI is ↵. The incremental profit for this strategy is ↵[p⇡H

g
+(1� p)⇡L

g
]+

(1� ↵)⇡h.
4. Human in the loop: In addition to task allocation between humans

and Gen-AI, there is the concept of “human in the loop,” where humans
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engage with Gen-AI to enhance their proficiency in processing raw materials
and reduce the uncertainty of Gen-AI performance. In this case, Gen-AI
remains responsible for completing all tasks and the costs will be higher than
strategy 3, but its performance can be augmented through human interaction.
Humans are required to adjust the performance based on a minimal sample,
leading to substantial labour savings. I assume the degree to increase the
overall performance from strategy 2 is ✓ > 0. Thus, the incremental profit
for this strategy is (1 + ✓)(p⇡H

g
+ (1� p)⇡L

g
).

I assume the cost of human labour only (strategy 1) is c + c̃, where c is
the fixed cost. The degree of Gen-AI adoption would decrease this cost, so
the cost of strategy 3 is I(↵) = c + c̃(1 � ↵)�, where � > 1. When ↵ = 1,
which is strategy 2, I(0) = c. When ↵ = 0, which is strategy 1, I(0) = c+ c̃.
For Strategy 4, there is an additional cost related to the improved e�ciency
✓ � 0. Based on Alvarez and Stenbacka (2007), this cost is strictly increasing
and convex of the parameter, which can be expressed as Ĩ(✓) = ✓

k

k
, where

scale parameter k > 1.
Therefore, the cost for strategy 1 is I(0), cost for strategy 2 is I(1), cost

for strategy 3 is I(↵) and cost for strategy 4 is I(1) + Ĩ(✓).

Proposition 1. By taking the option to wait and the option to exercise into

account, the payo↵s of taking di↵erent strategies can be expressed as

V1(x) =Ex

Z 1

0

(e�rs⇡hxs)ds� I(0) =
⇡hx

r � µ
� I(0), (1)

V2(x) =Ex

Z 1

0

[e�rs(p⇡H

g
+ (1� p)⇡L

g
)xs]ds� I(1) =

(p⇡H

g
+ (1� p)⇡L

g
)x

r � µ
� I(1),

(2)

V3(x) =Ex

Z 1

0

⇥
e�rs[↵[p⇡H

g
+ (1� p)⇡L

g
] + (1� ↵)⇡h]xs

⇤
ds� I(↵) (3)

=
[↵(p⇡H

g
+ (1� p)⇡L

g
) + (1� ↵)⇡h]x

r � µ
� I(↵),

V4(x) =Ex

Z 1

0

⇥
(1 + ✓)(p⇡H

g
+ (1� p)⇡L

g
)
⇤
ds� I(1)� Ĩ(✓) (4)

=(1 + ✓)
[p⇡H

g
+ (1� p)⇡L

g
]x

r � µ
� I(1)� Ĩ(✓).

According to Dixit (1993), the optimal strategy is the one with the highest
value at the action threshold.
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I can solve the ↵⇤ from the first-order condition of the profit of adopting
strategy 3 as follows:

V3(↵) = V3(x,↵)� I(↵) = ↵
(p⇡H

g
+ (1� p)⇡L

g
� ⇡h)x

r � µ
+

⇡hx

r � µ
� c� c̃(1� ↵)�,

@V3

@↵
=

(p⇡H

g
+ (1� p)⇡L

g
� ⇡h)x

r � µ
+ c̃�(1� ↵)��1,

@V 2
3

@2↵
= �c̃�(�� 1)(1� ↵)��2 < 0,

) ↵⇤(x) = 1� (
(⇡h � p⇡H

g
� (1� p)⇡L

g
)x

(r � µ)c̃�
)

1
��1 .

Lemma 1. When tasks are distributed between humans and Gen-AI, the

optimal proportion allocated to Gen-AI can be expressed as

↵⇤(x) = 1� (
(⇡h � p⇡H

g
� (1� p)⇡L

g
)x

(r � µ)c̃�
)

1
��1 2 [0, 1]. (5)

• If ↵⇤(x) calculated from Equation (5) is negative, then ↵⇤ = 0.

• If ↵⇤(x) calculated from Equation (5) is greater than 1, then ↵⇤ = 1.

I can also solve the ✓⇤ from the first-order condition of the profit of adopt-
ing strategy 4 as follows:

V4(✓) = V4(x, ✓)� I(1)� Ĩ(✓) = (1 + ✓)
(p⇡H

g
+ (1� p)⇡L

g
)x

r � µ
� c� ✓k

k
,

@V4

@↵
=

(p⇡H

g
+ (1� p)⇡L

g
)x

r � µ
� ✓k�1 = 0,

@V 2
4

@2↵
= �(k � 1)✓k�2 < 0,

) ✓⇤(x) = (
(p⇡H

g
+ (1� p)⇡L

g
)x

r � µ
)

1
k�1 .

Lemma 2. The optimal improved e�ciency can be expressed as

✓⇤(x) = (
(p⇡H

g
+ (1� p)⇡L

g
)x

r � µ
)

1
k�1 > 0. (6)

• If ✓⇤(x) calculated from Equation (6) is negative, then ✓⇤ = 0.
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2.1. Baseline model

Before the firm takes any strategy, the value is Aix�1 , where i = {1, 2, 3, 4}
and �1 =

1
2 �

µ

�2 +
q

(12 �
µ

�2 )2 +
2r
�2 > 1.

Corollary 1. By applying the value-matching and smooth-pasting conditions,

the action thresholds for options 1, 2, 3 and 4 from no action can be expressed

as

x1 =
�1(c+ c̃)(r � µ)

(�1 � 1)⇡h

, (7)

x2 =
�1c(r � µ)

(�1 � 1)(p⇡H
g
+ (1� p)⇡L

g
)
, (8)

x3 =
�1

�1 � 1

(c+ c̃(1� ↵)�)(r � µ)

↵(p⇡H
g
+ (1� p)⇡L

g
� ⇡h) + ⇡h

, (9)

x4 =
�1

�1 � 1

(c+ ✓
k

k
)(r � µ)

(1 + ✓)(p⇡H
g
+ (1� p)⇡L

g
)
. (10)

The corresponding arbitrary constant Ai for the firm’s value before taking

any action can be expressed as

A1 =
⇥ ⇡hx1

r �mu
� c� c̃

⇤
x��1
1 , (11)

A2 =
⇥(p⇡H

g
+ (1� p)⇡L

g
)x2

r �mu
� c

⇤
x��1
2 , (12)

A3 =
⇥↵(p⇡H

g
+ (1� p)⇡L

g
� ⇡h)x3

r �mu
+

⇡hx3

r �mu
� c� c̃(1� ↵)�

⇤
x��1
3 , (13)

A4 =
⇥(1 + ✓)(p⇡H

g
+ (1� p)⇡L

g
)x4

r �mu
� c� ✓k

k

⇤
x��1
4 . (14)

Specifically, ↵⇤(x3) and ✓⇤(x4) can be solved from

c(�1 � 1)[↵(p⇡H

g
+ (1� p)⇡L

g
� ⇡h) + ⇡h]((1� ↵)��1 (15)

+�1(p⇡
H

g
+ (1� p)⇡L

g
� ⇡h)(c+ c̃(1� ↵)�) = 0.

(✓⇤)k[
�1

k
� �1 + 1]� (✓⇤)k�1(�1 � 1) + �1c = 0. (16)
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It is easy to verify that

@↵⇤

@p
> 0,

@✓⇤

@p
= 0,

@↵⇤

@�
< 0,

@✓⇤

@�
> 0. (17)

@x2

@p
< 0,

@x3

@p
< 0,

@x4

@p
< 0,

@xi

@�
> 0, (18)

2.2. Model with switching option

2.2.1. Case 1: switch from strategy 1

In addition, firms frequently have the option to switch from 1 to 3 or 4.
In this case, the firm value of strategy 1 is

V̄1(x) =
⇡hx

r � µ
+ Āix

�1 + B̄ix
�2 � c� c̃, (19)

where i = {2, 3, 4}, �1 = 1
2 � µ

�2 +
q

(12 �
µ

�2 )2 +
2r
�2 > 1 and �2 = 1

2 �
µ

�2 �
q

(12 �
µ

�2 )2 +
2r
�2 < 0. I define the exit threshold x̄e

i
and the switching

threshold x̄i where i = {2, 3, 4}. With the proof in Appendix Appendix A.1,
the solutions of the corresponding thresholds and arbitrary constants are
obtained.

2.2.2. Case 2: switch from strategy 2

It is also possible that firms have the option to switch from 2 to 3 or 4 to
enhance the monitoring of AI. In this case, the firm value of strategy 2 is

V̂2(x) =
(p⇡H

g
+ (1� p)⇡L

g
)x

r � µ
+ Âix

�1 + B̄ix
�2 � c (20)

where i = {3, 4}, �1 = 1
2 � µ

�2 +
q
(12 �

µ

�2 )2 +
2r
�2 > 1 and �2 = 1

2 � µ

�2 �
q

(12 �
µ

�2 )2 +
2r
�2 < 0. I define the exit threshold x̂e

i
and the switching thresh-

old x̂iwhere i = {3, 4}. With the proof in Appendix Appendix A.2, the solu-
tions of the corresponding thresholds and arbitrary constants are obtained.

2.2.3. Case 3: switch from strategy 3

Firms could also switch their strategy from strategy 3 to strategy 4. In
this case, the firm value of strategy 3 is

Ṽ3(x) = ↵
(p⇡H

g
+ (1� p)⇡L

g
� ⇡h)x

r � µ
+

⇡h

r � µ
x+ Ã4x

�1 + B̃4x
�1 � c� c̃(1� ↵)�

(21)
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where �1 =
1
2�

µ

�2+
q

(12 �
µ

�2 )2 +
2r
�2 > 1 and �2 =

1
2�

µ

�2�
q
(12 �

µ

�2 )2 +
2r
�2 <

0. I define the exit threshold x̂4 and the switching threshold x̂4. With
the proof in Appendix Appendix A.3, the solutions of the corresponding
thresholds and arbitrary constants are obtained.

3. Results

I analyse the optimal strategy in the four work modes under the assump-
tion that r = 0.04, µ = 0.01, � = 0.2, ⇡h = 10, ⇡H

g
= 10, ⇡L

g
= 5, c = 3, c̃ =

8,� = 2, k = 3. If I fix p = 0.5 and � = 0.1, the payo↵s of di↵erent strategies
are shown in Figure 1. The graph presented elucidates the relationship be-
tween market demand (denoted as x on the x-axis) and firms’ value (depicted
on the y-axis) across four distinct strategies. These strategies are: adopting
human labour only (strategy 1), employing Gen-AI exclusively (strategy 2),
distributing tasks between humans and Gen-AI (strategy 3), and utilizing
a human-in-the-loop approach (strategy 4). The action thresholds for each
strategy are marked as x1, x2, x3, x4, respectively. Di↵erent lines on the graph
illustrate the firm’s value against varying levels of market demand.

Figure 1 shows that the optimal strategy for firms is to implement the
human-in-the-loop approach (strategy 4), as it has the lowest action thresh-
old (x4), suggesting it becomes viable at the lowest level of market demand.
This strategy consistently provides superior value compared to the others,
especially in scenarios of both low and high market demand. For low mar-
ket demand, firms maximize their returns by employing Gen-AI exclusively
(strategy 2), due to its relatively lower action threshold (x2) and higher value
compared to human labour alone (strategy 1). As market demand increases,
strategy 3 (distributing tasks between humans and Gen-AI) becomes more
advantageous than strategy 2, with the value line for strategy 3 surpassing
that of strategy 2 at higher demand levels (x). This indicates that collabo-
ration between humans and Gen-AI yields better outcomes as demand rises.
Interestingly, the strategy of relying solely on human labour (strategy 1) is
the least e�cient in low demand scenarios, given its highest threshold (x1)
and lowest initial payo↵. However, this strategy emerges as the most prof-
itable when market demand becomes su�ciently high, outperforming both
strategies 2 and 3. In contrast, strategy 3, while initially competitive, be-
comes the least optimal as market demand reaches higher levels. Overall, the
findings suggest that rather than solely depending on Gen-AI, firms benefit
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Figure 1: Payo↵s of di↵erent strategies with x in baseline

more from integrating human input, particularly through a human-in-the-
loop strategy. This collaborative approach consistently o↵ers higher value
across varying levels of market demand. Additionally, when demand is high,
relying on human labour alone can yield the highest returns, whereas simply
assigning tasks to Gen-AI becomes less e↵ective. Thus, the strategic allo-
cation of human and AI resources based on market demand is crucial for
maximizing firm value.

3.1. The impact of Gen-AI performance uncertainty

In this section, I analyse how the uncertainty of Gen-AI performance
a↵ect firms’ resources allocation and strategy decisions, particularly within
contexts that harness both human expertise and AI capabilities.

The strategy thresholds are shown in Figure 2. The dotted line represents
the threshold of the strategy that adopts humans only (x1), The dashed line
denotes the threshold of the strategy that adopts Gen-AI only (x2), the thin
solid line shows the threshold of the strategy that allocates tasks between
Gen-AI and machine (x2) and the thick solid line represents the threshold
of the human in the loop strategy. Except for x1, which remains constant
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Figure 2: Strategy thresholds with p in baseline

with changes in p, the other thresholds exhibit a decreasing trend with in-
creasing p. This suggests that the likelihood of achieving high-performance
outcomes with Gen-AI leads to a faster adoption of strategies involving Gen-
AI. Specifically, the figure shows that the threshold for strategy 4 is the
lowest, indicating a predisposition towards adopting the human-in-the-loop
strategy at the earliest opportunity, while the threshold for strategy 1 is the
highest, suggesting a comparatively delayed adoption of this strategy rela-
tive to others. This observation aligns consistently with the observations
from Figure 1.

Table 1 illustrates the optimal allocation proportion between Gen-AI and
humans and improved e�ciency with varying p in the baseline model. The
result shows that the optimal proportion allocated to Gen-AI increases with
the probability of high state performance of Gen-AI (p), and the threshold of
improved e�ciency is constant, which is consistent with Lemma 1. This indi-
cates that with advancements in AI technologies and their increasing reliabil-
ity (manifested in higher p values), organizations may gradually recalibrate
their resource allocations towards Gen-AI. However, p do not substantially
alter the overall e�ciency improvement facilitated by human involvement in
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Table 1: Illustration of the optimal proportion (↵⇤(x3)) and improved e�ciency (✓⇤(x4))
as functions of the probability of high state performance of Gen-AI (p) in baseline

p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
↵⇤ 0.48 0.59 0.68 0.74 0.80 0.84 0.88 0.92 0.95 0.98 1
✓⇤ 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28

the human in the loop strategy.
Moreover, I then investigate if one of the strategies has been already

adopted and firms would like to switch to another strategy. Figure 3 presents
the switching threshold (xi), which are depicted by black lines, and exit
threshold (xe

i
), which are illustrated in blue. I first analyse the case 1 where

a firm transitioning from strategy 1 to strategies 2, 3, and 4. Notably, all
strategies exhibit a decreasing trend with respect to the probability (p), in-
dicating that advancements in Gen-AI performance prompt an earlier tran-
sition to strategies involving Gen-AI. Furthermore, as p increases, the dis-
parity between the exit threshold and the switching strategy diminishes for
each strategy. This phenomenon suggests that as the likelihood of Gen-AI
achieving high-performance outcomes rises, the gap between the point at
which firms switch to a new strategy and the point at which they abandon
the previous strategy becomes progressively narrower. This patterns exist
for both case 2 and case 3 as shown in Figure 3b and 3c.

I further compare the optimal task allocation proportion (↵⇤(x3)) to Gen-
AI and the corresponding enhancement factor (✓⇤(x4)) attributed to human
intervention, contingent upon the probability (p) of Gen-AI achieving high-
performance outcomes in di↵erent scenarios as shown in Figure 4. Panel
4a demonstrates a positive correlation between the probability of Gen-AI
achieving high-performance outcomes (p) and the optimal proportion of tasks
assigned to Gen-AI (↵⇤). As p increases, firms tend to allocate a greater pro-
portion of tasks to Gen-AI. Concurrently, Panel 4b illustrates that the en-
hancement factor (✓⇤) resulting from human intervention experiences a slight
decrease with increasing p except for the base case. This indicates that as
the probability of high-performance outcomes by Gen-AI rises, the additional
improvement attributed to human intervention diminishes marginally. When
comparing di↵erent scenarios, the base case—where firms adopt one of the
strategies 1, 2, 3, or 4 from no action—has the lowest ↵ but the highest ✓.
The values of ↵ and ✓ are very similar in case 1 (firms switch from strategy
1 to 2, 3, or 4) and case 2 (firms switch from strategy 2 to 3 or 4).
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(a) Case 1

(b) Case 2

(c) Case 3

Figure 3: Strategy thresholds with p
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(a)

(b)

Figure 4: The optimal proportion (↵⇤(x3)) and improved e�ciency (✓⇤(x4)) with the
probability of high state performance of Gen-AI (p)
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Overall, the impact of the probability (p) of achieving high-performance
outcomes with Gen-AI reveals that as p increases, firms are more likely to
adopt Gen-AI strategies earlier. This is reflected in the decreasing thresholds
for strategy adoption and switching. Particularly, firms tend to adopt Gen-
AI greater when allocating task between Gen-AI and humans as shown in
(↵(x3)) with higher p, while the performance enhancement (✓(x4)) provided
by human intervention slightly decreases with higher p when firms switch
their strategies.

3.2. The impact of market uncertainty

Figure 5 presents the relevant strategy thresholds with varying market
volatility. The figure demonstrates that for all four strategies, the thresholds
increase with market volatility (�), suggesting that higher market uncertainty
may hinder the adoption of these strategies. Significantly, the threshold for
solely relying on human labor is the highest, whereas the threshold for the
human-in-the-loop strategy is the lowest, consistent with previous observa-
tions. Additionally, the di↵erence between the thresholds for task distribu-
tion between Gen-AI and humans (strategy 3) and the human-in-the-loop
strategy (strategy 4) diminishes as � increases.

If a firm has already adopted one strategy and wishes to switch to another,
the switching threshold (xi) and exit threshold (xe

i
) are depicted in Figure

6. The figure illustrates that the switching thresholds (xi), represented by
black lines, increase with market volatility (�), while the exit thresholds (xe

i
),

shown by blue lines, decrease with �. This suggests that, similar to the base
case, higher market volatility delays firms’ decisions to adopt new strategies.
However, it also reduces the likelihood of firms abandoning their current
strategy. The threshold values remain relatively unchanged when comparing
case 1 and case 2, but in case 3, the switching thresholds are notably higher,
particularly under high market volatility. This indicates that switching from
a strategy of task allocation between humans and Gen-AI to a human-in-
the-loop strategy is less likely in volatile markets.

I also investigate the optimal task allocation proportion (↵⇤(x3)) to Gen-
AI and the corresponding enhancement factor (✓⇤(x4)) attributed to human
intervention for di↵erent market volatility (�) in di↵erent scenarios. The re-
sult is shown shown in Figure 7. Across all cases, the optimal task allocation
proportion (↵⇤) decreases with increasing �, indicating that firms allocate
fewer tasks to Gen-AI as market volatility rises. Conversely, the enhance-
ment factor (✓⇤) attributed to human intervention increases with higher �,
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Figure 5: Strategy thresholds with � in baseline

suggesting that human intervention becomes more important and requiring
more human input in mitigating the e↵ects of market volatility. Notably, the
values of ↵⇤ and ✓⇤ are closely aligned in case 1 and case 2, indicating similar
strategic considerations in these scenarios. Overall, the findings underscore
the dynamic interplay between market volatility and firms’ strategic choices,
highlighting the need for adaptive strategies in volatile environments.

In general, higher probabilities of Gen-AI success prompt earlier adop-
tion of Gen-AI-inclusive strategies, with increased reliance on Gen-AI and
a slight reduction in the e↵ectiveness of human intervention. Conversely,
greater market volatility delays strategy transitions but enhances the value
of human intervention while diminishing task allocation to Gen-AI. Notably,
the findings highlight the importance of considering both Gen-AI perfor-
mance and market uncertainties in strategic planning, as they significantly
influence the optimal allocation of tasks and the e↵ectiveness of human inter-
vention across di↵erent strategic scenarios. Adaptive strategies that balance
the strengths of Gen-AI and human capabilities are crucial for navigating
uncertain and dynamic business environments e↵ectively.
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(a) Case 1

(b) Case 2

(c) Case 3

Figure 6: Strategy thresholds with �
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(a)

(b)

Figure 7: The optimal proportion (↵⇤(x3)) and improved e�ciency (✓⇤(x4)) with the
market volatility (�)
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4. Conclusion

In this study, I developed a dynamic model to analyze the adoption of
Generative Artificial Intelligence (Gen-AI) within the context of Gen-AI per-
formance uncertainty and market uncertainty. I investigated the optimal
collaboration strategies between Gen-AI and human labor, considering four
distinct approaches based on Gen-AI involvement: exclusive AI participation,
sole human involvement, task distribution between humans and AI, and the
”Human in the Loop” approach aimed at enhancing AI performance with
human intervention. The findings from our analysis shed light on the intri-
cate dynamics of firms’ strategic decision-making processes in the context of
Gen-AI adoption and market volatility. The real options model employed in
our study provides a robust framework for understanding how firms navigate
uncertainties and make strategic choices over time. By accounting for various
costs associated with humans and AI, diverse levels of Gen-AI performance,
and the enhanced performance achievable through the ”Human in the Loop”
strategy, I argue against sole reliance on AI in all scenarios. Instead, I high-
light the ”Human in the Loop” strategy as consistently superior compared
to alternative collaborative approaches.

Firstly, our analysis demonstrates the impact of the probability (p) of
Gen-AI success on firms’ thresholds for strategy adoption and exit. Higher
probabilities of Gen-AI achieving high-performance outcomes lead to earlier
adoption of Gen-AI-inclusive strategies, reflecting firms’ growing confidence
in Gen-AI capabilities. However, market volatility (�) introduces complexi-
ties into this decision-making process. While higher volatility delays strategy
transitions, it also enhances the value of human intervention, particularly in
mitigating the e↵ects of uncertainty.

Moreover, our study highlights the importance of balancing the allocation
of tasks between Gen-AI and human intervention. As p increases, firms allo-
cate a greater proportion of tasks to Gen-AI, but market volatility prompts
a shift towards increased reliance on human intervention. This underscores
the need for adaptive strategies that leverage the strengths of both Gen-AI
and human capabilities to e↵ectively navigate uncertain environments.

From a managerial perspective, our findings o↵er valuable insights for
firms seeking to integrate Gen-AI into their operations. Managers must
carefully consider both the performance potential of Gen-AI and the level of
market volatility when making strategic decisions. Investing in Gen-AI tech-
nology is beneficial, but firms must also prioritize training and development
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initiatives to ensure that employees are equipped with the necessary skills
to collaborate e↵ectively with AI systems. Additionally, our study empha-
sizes the importance of continuous monitoring and adjustment of strategies
in response to changing market conditions.

In conclusion, our study contributes to the literature by providing a com-
prehensive analysis of the impact of both Gen-AI success probabilities and
market volatility on firms’ strategic decision-making processes. The real op-
tions model employed o↵ers a valuable tool for understanding and managing
uncertainties in the adoption of emerging technologies like Gen-AI. By inte-
grating these insights into their strategic planning processes, firms can e↵ec-
tively leverage Gen-AI to enhance decision-making and achieve sustainable
competitive advantage in dynamic business environments.

In addition to the insights gained from this model, this study also points
towards several promising avenues for future research in the field of Gen-AI
adoption and strategic decision-making. One potential direction for future
research is to delve deeper into the mechanisms underlying human-AI col-
laboration. Exploring how di↵erent forms of human intervention, such as
feedback mechanisms or training programs, influence the performance and
e↵ectiveness of Gen-AI could provide valuable insights for optimizing collab-
orative approaches. Additionally, it is essential to explore the dynamics of
competition between multiple firms operating in the same market under un-
certainty. Investigating how competitive interactions influence the adoption
and optimization of AI-human collaboration strategies would o↵er a compre-
hensive understanding of the strategic decision-making process in real-world
scenarios.
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Appendix A. Omitted proofs

Appendix A.1. Proof of case 1

Proof. With the boundary conditions:
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Therefore, the unknown variables can be solved from the following equations:
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+ �1Ā2x̄

�1�1
2 + �2B̄2x̄

�2�1
2 =

p⇡H

g
+ (1� p)⇡L

g

r � µ
. (A.8)

(2)Switching to strategy 3
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where ↵ is defined in Equation (5).
(3)Switching to strategy 4
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where ✓ is defined in Equation (6).
It is impossible to get an analytical solution for Āi, B̄i, x0 and x2. There-

fore, I show the numerical solutions instead.
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Appendix A.2. Proof of case 2

Proof. With the boundary conditions:
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Therefore, the unknown variables can be solved from the following equations:
(1) Switching to strategy 3:
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where ↵ is defined in Equation (5).
(2) Switching to strategy 4:
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�1Â4(x̂4)
�1�1 + �2B̂4(x̂4)

�2�1 = ✓
p⇡H

g
+ (1� p)⇡L

g

r � µ
+

@✓

@x̂

p⇡H

g
+ (1� p)⇡L

g

r � µ
x̂4 � ✓k�1 @✓

@x̂
.

(A.29)

Appendix A.3. Proof of case 3

Proof. With the boundary conditions:
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Therefore, the unknown variables can be solved from the above equations.
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