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1. Introduction

2. The investment problem and building blocks

Our model builds upon the work of Barbosa et al. (2020), in which optimal investment

thresholds of two feed-in tariffs under market and regulatory uncertainty are analyzed. These

tariffs include a minimum price guarantee and a sliding premium with a cap and a floor for

renewable energy projects. We extend this prior research by incorporating uncertainty re-

lated to the number of users of a pedestrian path, as this is the primary source of uncertainty

in the projects we are studying. Barbosa et al. (2020) assume the production is fixed. Addi-

tionally, our model incorporates a marginal cost associated with maintenance and security

expenses. This is a departure from Barbosa et al. (2020), where the marginal cost can be

considered to be zero. Nevertheless, the projects under analysis involve significant marginal

costs that need to be taken into account when modeling the investment problem.

2.1. The investment problem

In this paper, we assume that the number of users per pedestrian path {Qt, t ≥ 0} is

governed by the risk-neutral dynamics

dQt = (r − q)Qtdt+ σQtdW
Q
t , (1)

where r, q and σ are the (positive and constant) risk free interest rate, dividend yield (or

rate of return shortfall) and volatility, respectively, while {WQ
t ∈ R : t ≥ 0} is a standard

Brownian motion under the risk-neutral measure Q, initialized at zero and generating the

augmented, right continuous and complete filtration F = {Ft : t ≥ 0}.
The goal is to analyze the optimal decision of a firm (or private investor) to invest in

a project that may include a given clause aiming to offer incentives for early adoption of

investment projects. In particular, two finite-lived subsidy policies will be considered: a

minimum revenue guarantee (or quantity floor) and a collar contract. For comparative

purposes, the case with no subsidy will be also considered.
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Let P be the (fixed) price (or tariff) that is paid by each user of the pedestrian path and

K2 be the marginal costs associated with maintenance and security expenses. Moreover, let

the level L be understood as a quantity floor and H (> L) be interpreted as a quantity cap

that is imposed due to environmental restrictions. Then, the firm’s profit functions for each

case are the following:1

• Case without any quantity clause: Πw(Qt) = PQt − K2. In this case there is no

controlling clause and, hence, the stochastic quantity Q moves freely.

• Quantity floor scheme: Πf(Qt) = P ×max(Qt, L)−K2. This corresponds to a scenario

where the government subsidizes the firm ensuring a minimum guarantee quantity of

tourists L and there is no environmental cap to limit the number of tourists.

• Quantity cap scheme: Πcp(Qt) = P × min(Qt, H) − K2. In this case there is no

subsidy, though an environmental cap H is imposed to limit the number of tourists.

As expected, this scenario should not be attractive to the investor.

• Quantity collar scheme: Πco(Qt) = P × min (max(Q,L), H) − K2. In this case the

project is subsidized ensuring the firm a minimum guarantee quantity of tourists L,

but there is an environmental cap H limiting the number of tourists.

Similarly to Barbosa et al. (2020), we start assuming that when the (fixed) duration

T of the contract with a subsidy floor and/or an environmental cap ends, the firm’s profit

function becomes equal to a scenario without any clause. Hence, for s ∈ {w, f, cp, co}, the
optimization problem that is proposed to be solved in this paper is represented by

Fs (Q) = sup
τ∈T

EQ

[
∫ τ+T

τ

Πs(Qt)e
−rtdt+

∫ ∞

τ+T

Πw(Qt)e
−rtdt−K1e

−rτ

∣

∣

∣

∣

F0

]

, (2)

where K1 is the investment cost to be made at the optimal investment (or stopping) time

τ , whereas T is the set of all stopping times taking values in [0,∞[ for the filtration F.

1Hereafter, we use the subscript w, f , cp and co for the cases without subsidy, with a quantity floor
regime, with a quantity cap regime and with a quantity collar regime, respectively.
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We notice that at the optimal investment time τ the firm receives a project whose full

value is represented by

V F
s (Q) = EQ

[
∫ τ+T

τ

Πs(Qt)e
−rtdt+

∫ ∞

τ+T

Πw(Qt)e
−rtdt

∣

∣

∣

∣

F0

]

. (3)

The floor, cap and collar schemes stated above consider that after the end of the contract

the quantity of tourists is not controlled, i.e., the number of tourists in the path can be

very low (i.e., much lower than L)—which influences negatively the firm without harming

significantly the environment—or very high (i.e., much higher than H)—which is good news

for the firm but might introduce several environmental damages that have the potential to

jeopardize the future attractiveness of the path.

To overcome this problem, we will consider another scheme that consists of a collar until

the end of the contract—that ensures both a subsidy via the floor and the environmental

cap—and a perpetual (environmental) cap afterwards to warrant the fulfilment required by

the policy maker to prevent serious environmental damages in the future. This originates a

profit function of the form

Πco+cp≡cc(Qt) = Πco(Qt)11{t≤T} +Πcp(Qt)11{t>T}, (4)

implying that equations (2) and (3) need to be replaced by

Fcc (Q) = sup
τ∈T

EQ

[
∫ τ+T

τ

Πco(Qt)e
−rtdt+

∫ ∞

τ+T

Πcp(Qt)e
−rtdt−K1e

−rτ

∣

∣

∣

∣

F0

]

(5)

and

V F
cc (Q) = EQ

[
∫ τ+T

τ

Πco(Qt)e
−rtdt+

∫ ∞

τ+T

Πcp(Qt)e
−rtdt

∣

∣

∣

∣

F0

]

, (6)

respectively.

The aim now is to solve the aforementioned optimization problems using the real options

theory. To accomplish this purpose, the building blocks described next will be pivotal since

they will allow us to simplify significantly the usual approach that is used in Barbosa et al.
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(2020).

2.2. Building blocks

Let us now recall two relevant ingredients for our investment decision problem. Assum-

ing instantaneous flow payoffs of the form (Qt − X)11{Qt≥X}, Shackleton and Wojakowski

(2007, equations 21 and 28) show that a finite-lived profit cap, V (Q0, X, T ), and its delta,

∆(Q0, X, T ) := ∂V (Q0, X, T )/∂Q0, can be defined in compact form as

V (Q0, X, T )

=
Q0

q

[

11{Q0≥X} − e−qTN(d1(Q0, X))
]

− X

r

[

11{Q0≥X} − e−rTN(d0(Q0, X))
]

+B(X)Qβ2

0

[

11{Q0≥X} −N(dβ2
(Q0, X))

]

− A(X)Qβ1

0

[

11{Q0≥X} −N(dβ1
(Q0, X))

]

(7)

and

∆(Q0, X, T )

=
1

q

[

11{Q0≥X} − e−qTN(d1(Q0, X))
]

+B(X)β2Q
β2−1
0

[

11{Q0≥X} −N(dβ2
(Q0, X))

]

−A(X)β1Q
β1−1
0

[

11{Q0≥X} −N(dβ1
(Q0, X))

]

, (8)

respectively, with

A(X) =
X1−β1

β1 − β2

(

β2

r
− β2 − 1

q

)

, (9)

B(X) =
X1−β2

β1 − β2

(

β1

r
− β1 − 1

q

)

, (10)

β1,2 =
1

2
− r − q

σ2
±

√

(

r − q

σ2
− 1

2

)2

+
2r

σ2
, (11)

dβ(x, y) =
ln(x/y) + (r − q + (β − 0.5)σ2)T

σ
√
T

, (12)

and where N(dβ(.)) represents the cumulative density function of the univariate standard

normal distribution for β ∈ {0, 1, β1, β2}.
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3. Investment decisions for the case without any quantity clause

For the sake of completeness and to offer a benchmark for the remaining cases, let us

first consider the case without any quantity clause. In this situation, the total (or full) value

of the project is given by

V F
w (Q0,∞) = P

Q0

q
− K2

r
. (13)

The value of the option to invest in this project and the corresponding optimal trigger to

invest can be easily computed as shown in the next proposition, which solves the optimization

problem defined in equation (2) for the case without any quantity clause (i.e., with s = w).

Proposition 1. The value of the (perpetual) option to invest in a project without any quan-

tity clause is calculated as

Fw(Q0, Q,∞, K1) =







(

V F
w (Q,∞)−K1

)

(

Q0

Q

)β1

⇐ Q0 < Q

V F
w (Q0,∞)−K1 ⇐ Q0 ≥ Q

, (14)

where the optimal threshold of investment Q is obtained in closed-form as

Q =
q

P

β1

β1 − 1

(

K1 +
K2

r

)

. (15)

Proof. Using the usual value-matching and smooth-pasting conditions it is possible to

show that

β1V
F
w (Q,∞)− β1K1 = Q∆F

w(Q,∞),

with ∆F
w(Q,∞) := ∂V F

w (Q,∞)/∂Q, which finally yields equation (15) and the option solu-

tion (14) after applying some straightforward calculus.�

4. Investment decisions with a quantity floor regime

The instantaneous flow payoff for this investment problem is represented by the form

P ×max(Qt, L)−K2 = P × (Qt−L)11{Qt≥L}+PL−K2. Therefore, using the arbitrage-free

relation enunciated in Dias et al. (2024, equation 21), it follows that the value of a finite
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maturity project containing a minimum quantity guarantee L and requiring a marginal cost

K2 can be expressed as

Vf(Q0, L, T ) = P × V (Q0, L, T ) +
PL−K2

r

(

1− e−rT
)

. (16)

Following, for example, Barbosa et al. (2018), Barbosa et al. (2020) and Dias et al. (2024),

we consider that after the expiry date of the finite maturity guarantee the entrepreneur can

still explore the pedestrian path with a present value equal to P Q0

q
e−qT − K2

r
e−rT , that is

understood as the value of exploring the path after the maturity date of the FIT contract.

Therefore, the total (or full) value of the project that includes the period of the FIT contract

and the (perpetual) period thereafter is given by

V F
f (Q0, L, T ) = Vf(Q0, L, T ) + P

Q0

q
e−qT − K2

r
e−rT

= P × V (Q0, L, T ) + P
L

r

(

1− e−rT
)

+ P
Q0

q
e−qT − K2

r
. (17)

Next proposition shows how to determine the value of the option to invest in a project

in the presence of a quantity floor regime and the corresponding optimal trigger to invest.

Proposition 2. The value of the (perpetual) option to invest in a project containing a

quantity floor regime with a finite maturity is calculated as

Ff (Q0, Q, L, T,K1) =







(

V F
f (Q,L, T )−K1

)

(

Q0

Q

)β1

⇐ Q0 < Q

V F
f (Q0, L, T )−K1 ⇐ Q0 ≥ Q

, (18)

where the optimal threshold of investment Q is obtained as the numerical solution of the
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nonlinear equation

(β1 − 1)P
Q

q

[

11{Q≥L} + e−qTN
(

−d1(Q,L)
)

]

+PL

(

Q

L

)β2
(

β1

r
− β1 − 1

q

)

[

11{Q≥L} −N
(

dβ2
(Q,L)

)

]

+β1P
L

r

[

11{Q<L} − e−rTN
(

−d0(Q,L)
)

]

− β1

(

K1 +
K2

r

)

= 0. (19)

Proof. Using the usual value-matching and smooth-pasting conditions it is possible to

show that

β1V
F
f (Q,L, T )− β1K1 = Q∆F

f (Q,L, T ),

with ∆F
f (Q,L, T ) := ∂V F

f (Q,L, T )/∂Q, which finally yields the nonlinear equation (19) and

the option solution (18) after combining equations (7), (8) and (17), and applying some

straightforward calculus. Additional details are available upon request.�

The results offered in Proposition 2 solve the optimization problem defined in equation

(2) for the case of a subsidy in the form of a quantity floor regime (i.e., with s = f) and

allow us to derive analytically several interesting points from the point of view of both the

government and the promoter of the project, as shown in the remainder of this section.

4.1. Optimal trigger level making the project to start immediately

For instance, taking the tariff price P , the investment cost K1 and the marginal cost K2

as given, it is possible to determine analytically the L∗ level that would be required to be

offered by the government so that the entrepreneur starts the project immediately. This is

accomplished by replacing Q by L in equation (19) and solving it with respect to L ≡ L∗,

yielding

L∗ = β1

K1 +
K2

r

PYf

, (20)

with

Yf =
β1 − 1

q

[

N (dβ2
) + e−qTN (−d1)

]

+
β1

r

[

N (−dβ2
)− e−rTN (−d0)

]

(21)
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and

dβ := dβ(x, x) =
(r − q + (β − 0.5)σ2)T

σ
√
T

. (22)

4.2. Tariff price making the current floor level the optimal trigger

We notice that we can immediately determine the tariff price P ∗
L that makes the current

floor level L the trigger by rearranging equation (20) to

P ∗
L = β1

K1 +
K2

r

LYf

. (23)

The following economic rational can be taken: (i) if P ∗
L > P , the current floor level L is

not enough for the firm to undertake the project; and (ii) if P ∗
L ≤ P , the current floor level

L is sufficient and the firm should optimally undertake the project immediately.

4.3. Simple comparative statics between tariff prices and quantity floor levels

An interesting comparative static between the tariff price and the floor level can now be

easily analyzed. In particular, defining dL∗ as the derivative of the expression for L∗ shown

in equation (20) with respect to the tariff price P yields

dL∗ :=
∂

∂P
L∗(.) = −β1

K1 +
K2

r

P 2Yf

= −L∗

P
< 0. (24)

Similarly, defining dP ∗
L as the derivative of the expression for P ∗

L shown in equation (23)

with respect to the quantity floor level L yields

dP ∗
L :=

∂

∂L
P ∗
L(.) = −β1

K1 +
K2

r

L2Yf

= −P ∗
L

L
< 0. (25)

In summary, a combined policy between the fixed tariff price P that is settled by the firm

and the quantity floor level L that is defined by the government may be used to accelerate

the investment commitment. For example, if a government is reluctant (or is unable) in

rising the floor level from L to L∗, the firm needs to increase the tariff price from P to P ∗
L if

the goal is to undertake the project immediately. By contrast, in the case of a rigid policy in
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terms of tariff prices, it is the government that needs to make an extra effort by supporting

a higher quantity floor level L∗ so that the investment is undertaken immediately. Hence,

the flexibility for changing quantity floor levels (in the perspective of the government) or

price tariffs (in the perspective of the firm) will dictate the optimal policy of investment.

4.4. Investment and marginal costs making the current floor level the optimal trigger

It is also possible to find the investment cost K∗
1,L and the marginal cost K∗

2,L that makes

the current floor level L the trigger by rearranging equation (20) to

K∗
1,L =

PLYf

β1

− K2

r
(26)

and

K∗
2,L =

(

PLYf

β1

−K1

)

r, (27)

respectively.

The following economic insights can be made: (i) if K∗
1,L ≤ K1 (or, similarly, if K∗

2,L ≤
K2), then the optimal trigger is in the region Q ≥ L. In particular, Q ∈

[

L∗, Qmax

]

. Notice

that the level Qmax corresponds to the special case where there is no guarantee—i.e., when

L = 0 or, equivalently, if T → 0—, in which the present value of the project is simply equal

to PVQmax
:= P Q0

q
− K2

r
; and (ii) if K∗

1,L > K1 (or, similarly, if K∗
2,L > K2), then the optimal

trigger is in the region Q < L. In particular, Q ∈ ]0, L∗[.

4.5. Investment and marginal costs making the current Q0 level the optimal trigger

Assuming a given floor level L that is defined by the government and a fixed tariff price

P settled by the firm, it is also possible to find the investment cost K∗
1,Q0

and the marginal

cost K∗
2,Q0

that make the current quantity Q0 the trigger by rearranging equation (19) to

K∗
1,Q0

=
Z (Q0, L)

β1

− K2

r
(28)

and

K∗
2,Q0

=

(

Z (Q0, L)

β1

−K1

)

r, (29)
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respectively, with

Z (Q0, L) = (β1 − 1)P
Q0

q

[

11{Q0≥L} + e−qTN (−d1(Q0, L))
]

+PL

(

Q0

L

)β2
(

β1

r
− β1 − 1

q

)

[

11{Q0≥L} −N (dβ2
(Q0, L))

]

+β1P
L

r

[

11{Q0<L} − e−rTN (−d0(Q0, L))
]

. (30)

As expected, if K1 ≤ K∗
1,Q0

it would be better for the firm to invest immediately because

Q0 = Q at the K∗
1,Q0

level. Hence, when K1 > K∗
1,Q0

, if the firm is able to reduce the

investment cost from K1 to K∗
1,Q0

, the current quantity Q0 would be enough for the investor

to exercise the option to invest immediately. Alternatively, for K1 > K∗
1,Q0

, the amount

K1 − K∗
1,Q0

can be understood as a subsidy value on investment that might be supported

by the government if the goal is to deploy the investment immediately without the need

of changing the policy with respect to the minimum quantity guarantee L. That is, the

government supports the firm with a one-time subsidy amount that is paid upfront, while

maintaining the fixed quantity floor L until the end of the finite-lived FIT scheme. A similar

reasoning van be employed when comparing the marginal costs K2 and K∗
2,Q0

.

4.6. Quantity floor level making the net present value equal to zero

A further interesting point from the policymaker perspective is the quantity floor level

L0 that turns the net present value (henceforth, NPV) of the project equal to zero, because

any value of L above this point generates a positive NPV independently of the quantity Q.

Notice that if L ≥ L0 the investment will be deployed immediately generating a risk-free

profit and, hence, there is no waiting option. This point can be determined analytically by

solving equation NPV := limQ0→0+ V F
f (Q0, L0, T ) − K1 = 0 with respect to L0 and with

V F
f (Q0, L0, T ) being defined as the project value given in equation (17), which yields

L0 =
rK1 +K2

P (1− e−rT )
, (31)

after applying straightforward calculus.
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4.7. Investment and marginal costs making the net present value equal to zero

Finally, assuming a given floor level L that is defined by the government, it is also possible

to find the investment cost K∗
1,L0

and the marginal cost K∗
2,L0

that make the current L to

coincide with the L0 level, that is

K∗
1,L0

=
PL

(

1− e−rT
)

−K2

r
(32)

and

K∗
2,L0

= PL
(

1− e−rT
)

− rK1, (33)

respectively.

In summary, if K1 ≤ K∗
1,L0

or K2 ≤ K∗
2,L0

, the investment will be deployed immediately

generating a risk-free profit and, therefore, there is no waiting option.

5. Investment decisions with a quantity cap regime

The instantaneous flow payoff for this investment problem is represented by the form

P ×min(Qt, H)−K2 = PQt − P × (Qt −H)11{Qt≥H} −K2. Therefore, using the arbitrage-

free relation enunciated in Dias et al. (2024, equation 18), it follows that the value of a finite

maturity project containing a maximum quantity H and requiring a marginal cost K2 can

be expressed as

Vcp(Q0, H, T ) = P
Q0

q

(

1− e−qT
)

− P × V (Q0, H, T )− K2

r

(

1− e−rT
)

. (34)

Similarly to the quantity floor regime case, we consider that after the expiry date of

the finite maturity guarantee the entrepreneur can still explore the pedestrian path with a

present value equal to P Q0

q
e−qT − K2

r
e−rT . Therefore, the total (or full) value of the project

that includes the period of the quantity cap contract and the (perpetual) period thereafter

12



is given by

V F
cp (Q0, H, T ) = Vcp(Q0, H, T ) + P

Q0

q
e−qT − K2

r
e−rT

= P
Q0

q
− P × V (Q0, H, T )− K2

r
. (35)

Next proposition shows how to determine the value of the option to invest in a project

in the presence of a quantity cap regime and the corresponding optimal trigger to invest.

Proposition 3. The value of the (perpetual) option to invest in a project containing a

quantity cap regime with a finite maturity is calculated as

Fcp(Q0, Q,H, T,K1) =







(

V F
cp (Q,H, T )−K1

)

(

Q0

Q

)β1

⇐ Q0 < Q

V F
cp (Q0, H, T )−K1 ⇐ Q0 ≥ Q

, (36)

where the optimal threshold of investment Q is obtained as the numerical solution of the

nonlinear equation

(β1 − 1)P
Q

q

[

11{Q<H} + e−qTN
(

d1(Q,H)
)

]

−PH

(

Q

H

)β2 (

β1

r
− β1 − 1

q

)

[

11{Q≥H} −N
(

dβ2
(Q,H)

)

]

+β1P
H

r

[

11{Q≥H} − e−rTN
(

d0(Q,H)
)

]

− β1

(

K1 +
K2

r

)

= 0. (37)

Proof. Using the usual value-matching and smooth-pasting conditions it is possible to

show that

β1V
F
cp (Q,H, T )− β1K1 = Q∆F

cp(Q,H, T ),

with ∆F
cp(Q,H, T ) := ∂V F

cp (Q,H, T )/∂Q, which finally yields the nonlinear equation (37)

and the option solution (36) after combining equations (7), (8) and (35), and applying some

straightforward calculus. Additional details are available upon request.�

The results offered in Proposition 3 solve the optimization problem defined in equation

(2) for the case of an environmental cap in the form of a quantity cap regime (i.e., with
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s = cp) and allow us to derive analytically several interesting points from the point of view

of both the government and the promoter of the project, as highlighted below in this section.

5.1. Optimal trigger level making the project to start immediately

Taking the tariff price P , the investment cost K1 and the marginal cost K2 as given, it is

possible to determine analytically the H∗ level that would be required to be imposed by the

regulator so that the entrepreneur admits the possibility of starting the project immediately.

This is accomplished by replacing Q by H in equation (37) and solving it with respect to

H ≡ H∗, yielding

H∗ = β1

K1 +
K2

r

PYcp

, (38)

with

Ycp =
β1 − 1

q

[

N (−dβ2
) + e−qTN (d1)

]

+
β1

r

[

N (dβ2
)− e−rTN (d0)

]

. (39)

Interestingly, it is possible to relate the optimal trigger levels L∗ and H∗ by combining

equations (20) and (38), that is

H∗ =
Yf

Ycp

L∗, (40)

where the ratio
Yf

Ycp
indicates how much higher is the H∗ threshold with respect to the L∗

trigger (for H ≥ L and assuming that the remaining parameters are the same for both con-

tracts). Even though the quantity floor and the quantity cap under analysis are independent

(i.e., L and H are inputs of two different contracts), this novel result might be important for

managers and regulators when designing optimal floor and cap levels in the case of a collar

contract (and, hence, with L and H being inputs of the same contract).

5.2. Tariff price making the current cap level the optimal trigger

We notice that we can immediately determine the tariff price P ∗
H that makes the current

cap level H the trigger by rearranging equation (38) to

P ∗
H = β1

K1 +
K2

r

HYcp

. (41)
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In this case, it is possible to relate the prices P ∗
L and P ∗

H by combining equations (23)

and (41), that is

P ∗
H =

L

H

Yf

Ycp

P ∗
L. (42)

Moreover, combining equations (40) and (42) yields the following simply relation

H∗

L∗
=

P ∗
H

P ∗
L

H

L
. (43)

6. Investment decisions with a quantity collar regime

The instantaneous flow payoff for this investment problem is represented by the form

P ×min (max (L,Qt) , H)−K2 = PL+P × (Qt −L)11{Qt≥L} −P × (Qt −H)11{Qt≥H} −K2.

Therefore, using the arbitrage-free relation enunciated in Dias et al. (2024, equation 30), it

follows that the value of a finite maturity project containing a minimum quantity guarantee

L, a maximum cap level H (> L) and requiring a marginal cost K2 can be expressed as

Vco(Q0, L,H, T ) = P × V (Q0, L, T )− P × V (Q0, H, T ) +
PL−K2

r

(

1− e−rT
)

. (44)

Following, for instance, Adkins et al. (2019), Barbosa et al. (2020) and Dias et al. (2024),

we consider that after the expiry date of the finite maturity guarantee the entrepreneur

can still explore the pedestrian path with a present value equal to P Q0

q
e−qT − K2

r
e−rT ,

that is understood as the value of exploring the path after the maturity date of the collar

arrangement. Therefore, the total (or full) value of the project that includes the period of

the collar contract and the (perpetual) period thereafter is given by

V F
co (Q0, L,H, T )

= Vco(Q0, L,H, T ) + P
Q0

q
e−qT − K2

r
e−rT

= P × V (Q0, L, T )− P × V (Q0, H, T ) + P
L

r

(

1− e−rT
)

+ P
Q0

q
e−qT − K2

r
. (45)

Next proposition shows how to determine the value of the option to invest in a project

15



in the presence of a quantity collar regime and the corresponding optimal trigger to invest.

Proposition 4. The value of the (perpetual) option to invest in a project containing a

quantity collar regime with a finite maturity is calculated as

Fco(Q0, Q, L,H, T,K1) =







(

V F
co (Q,L,H, T )−K1

)

(

Q0

Q

)β1

⇐ Q0 < Q

V F
co (Q0, L,H, T )−K1 ⇐ Q0 ≥ Q

, (46)

where the optimal threshold of investment Q is obtained as the numerical solution of the

nonlinear equation

(β1 − 1)P
Q

q

[

11{L≤Q<H} + e−qT
(

N
(

−d1(Q,L)
)

+N
(

d1(Q,H)
))

]

+ P

(

β1

r
− β1 − 1

q

)

×
[

L

(

Q

L

)β2
(

11{Q≥L} −N
(

dβ2
(Q,L)

)

)

−H

(

Q

H

)β2
(

11{Q≥H} −N
(

dβ2
(Q,H)

)

)

]

+β1P

[

L

r

(

11{Q<L} − e−rTN
(

−d0(Q,L)
)

)

+
H

r

(

11{Q≥H} − e−rTN
(

d0(Q,H)
)

)

]

−β1

(

K1 +
K2

r

)

= 0. (47)

Proof. Using the usual value-matching and smooth-pasting conditions it is possible to

show that

β1V
F
co (Q,L,H, T )− β1K1 = Q∆F

co(Q,L,H, T ),

with ∆F
co(Q,L,H, T ) := ∂V F

co (Q,L,H, T )/∂Q, which finally yields the nonlinear equation

(47) and the option solution (46) after combining equations (7), (8) and (45), and applying

some straightforward calculus. Additional details are available upon request.�

The results offered in Proposition 4 solve the optimization problem defined in equation

(2) for the case of a subsidy in the form of a quantity collar regime (i.e., with s = co) and

allow us to derive analytically several interesting points from the point of view of both the

government and the promoter of the project, as highlighted below in this section.
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6.1. Optimal trigger levels making the project to start immediately

Taking the tariff price P , the cap level H , the investment cost K1 and the marginal cost

K2 as given, it is possible to determine numerically the L∗ (< H) level that would be required

to be offered by the government so that the entrepreneur starts the project immediately.

This is accomplished by replacing Q by L in equation (47) and solving it (numerically) with

respect to L ≡ L∗, yielding

(β1 − 1)P
L∗

q

[

1 + e−qT (N (−d1) +N (d1(L
∗, H)))

]

+P

(

β1

r
− β1 − 1

q

)

[

L∗N (−dβ2
) +H

(

L∗

H

)β2

N (dβ2
(L∗, H))

]

−β1P

[

L∗

r
e−rTN (−d0) +

H

r
e−rTN (d0(L

∗, H))

]

− β1

(

K1 +
K2

r

)

= 0. (48)

Similarly, taking now the tariff price P , the floor level L, the investment cost K1 and

the marginal cost K2 as given, it is possible to determine numerically the H∗ (> L) level

that would be required to be offered by the government so that the entrepreneur starts the

project immediately. This is accomplished by replacing Q by H in equation (47) and solving

it (numerically) with respect to H ≡ H∗, yielding

(β1 − 1)P
H∗

q
e−qT (N (−d1(H

∗, L)) +N (d1))

+P

(

β1

r
− β1 − 1

q

)

[

L

(

H∗

L

)β2

N (−dβ2
(H∗, L))−H∗N (−dβ2

)

]

−β1P

[

L

r
e−rTN (−d0(H

∗, L))− H∗

r

(

1− e−rTN (d0)
)

]

− β1

(

K1 +
K2

r

)

= 0. (49)

6.2. Tariff price making the current floor level the optimal trigger

Taking the cap level H , the investment cost K1 and the marginal cost K2 as given, we

can immediately determine the tariff price P ∗
L that makes the current floor level L the trigger

by rearranging equation (48) to

P ∗
L = β1

K1 +
K2

r

YL

, (50)
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with

YL = (β1 − 1)
L

q

[

1 + e−qT (N (−d1) +N (d1(L,H)))
]

+

(

β1

r
− β1 − 1

q

)

[

LN (−dβ2
) +H

(

L

H

)β2

N (dβ2
(L,H))

]

−β1

[

L

r
e−rTN (−d0) +

H

r
e−rTN (d0(L,H))

]

. (51)

The following economic rational can be taken: (i) if P ∗
L > P , the current floor level L is

not enough for the firm to undertake the project; and (ii) if P ∗
L ≤ P , the current floor level

L is sufficient and the firm should optimally undertake the project immediately.

6.3. Tariff price making the current cap level the optimal trigger

Taking the floor level L, the investment cost K1 and the marginal cost K2 as given, we

can immediately determine the tariff price P ∗
H that makes the current cap level H the trigger

by rearranging equation (49) to

P ∗
H = β1

K1 +
K2

r

YH

, (52)

with

YH = (β1 − 1)
H

q
e−qT (N (−d1(H,L)) +N (d1))

+

(

β1

r
− β1 − 1

q

)

[

L

(

H

L

)β2

N (−dβ2
(H,L))−HN (−dβ2

)

]

−β1

[

L

r
e−rTN (−d0(H,L))− H

r

(

1− e−rTN (d0)
)

]

. (53)

The following economic rational can be taken: (i) if P ∗
H > P , the current cap level H is

not enough for the firm to undertake the project; and (ii) if P ∗
H ≤ P , the current cap level

H is sufficient and the firm should optimally undertake the project immediately.

Finally, we notice that a simple relation between the tariff prices making the current

floor level or the current cap level the optimal triggers arises by combining equations (50)
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and (52), that is

P ∗
H =

YL

YH

P ∗
L. (54)

6.4. Investment and marginal costs making the current floor or cap level the optimal trigger

Taking the tariff price P , the floor level L, the cap level H and the marginal cost K2 as

given, it is possible to find the investment cost level K∗
1,L that makes the current floor level

L the trigger by rearranging equation (50) to

K∗
1,L =

PYL

β1

− K2

r
. (55)

Taking now the tariff price P , the floor level L, the cap level H and the investment cost

K1 as given, we can determine the marginal cost level K∗
2,L that makes the current floor

level L the trigger by rearranging equation (50) to

K∗
2,L =

(

PYL

β1

−K1

)

r. (56)

Similarly, assuming the tariff price P , the floor level L, the cap level H and the marginal

cost K2 as given, it is possible to find the investment cost level K∗
1,H that makes the current

cap level H the trigger by rearranging equation (52) to

K∗
1,H =

PYH

β1

− K2

r
. (57)

Taking now the tariff price P , the floor level L, the cap level H and the investment cost

K1 as given, we can determine the marginal cost level K∗
2,H that makes the current cap level

H the trigger by rearranging equation (52) to

K∗
2,H =

(

PYH

β1

−K1

)

r. (58)

6.5. Investment and marginal costs making the current Q0 level the optimal trigger

Assuming a given floor level L and a given cap level H that are both defined by the

government and a fixed tariff price P settled by the firm, it is also possible to find the
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investment cost K∗
1,Q0

and the marginal cost K∗
2,Q0

that make the current quantity Q0 the

trigger by rearranging equation (47) to

K∗
1,Q0

=
Z (Q0, L,H)

β1

− K2

r
(59)

and

K∗
2,Q0

=

(

Z (Q0, L,H)

β1

−K1

)

r, (60)

respectively, with

Z (Q0, L,H) (61)

= (β1 − 1)P
Q0

q

[

11{L≤Q0<H} + e−qT (N (−d1(Q0, L)) +N (d1(Q0, H)))
]

+P

(

β1

r
− β1 − 1

q

)

[

L

(

Q0

L

)β2
(

11{Q0≥L} −N (dβ2
(Q0, L))

)

−H

(

Q0

H

)β2
(

11{Q0≥H} −N (dβ2
(Q0, H))

)

]

+β1P

[

L

r

(

11{Q0<L} − e−rTN (−d0(Q0, L))
)

+
H

r

(

11{Q0≥H} − e−rTN (d0(Q0, H))
)

]

.

As expected, similar conclusions can be taken such as those already highlighted for the

quantity floor regime case.

6.6. Investment and marginal costs making the net present value equal to zero

We notice that the point L0 can be determined analytically by solving equation NPV :=

limQ0→0+ V F
c (Q0, L0, H, T ) − K1 = 0 with respect to L0 and with V F

c (Q0, L0, H, T ) being

defined as the project value given in equation (45), which also yields the analytic repre-

sentation (31). Moreover, in the quantity collar regime that is now under consideration,

the investment and marginal costs making the NPV equal to zero are still given by equa-

tions (32) and (33), respectively. Hence, the following economic insights can be made for

the investment cost case: (i) if K1 ∈]K∗
1,L0

, K∗
1,L[, the investment trigger Q ∈]0, L[; (ii) if

K1 ∈ [K∗
1,L, K

∗
1,H [, the investment trigger Q ∈ [L,H [; and (iii) if K1 ∈ [K∗

1,H ,∞[, the invest-
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ment trigger Q ∈ [H,∞[. A similar rational can be used for the case of the marginal cost,

that is: (i) if K2 ∈]K∗
2,L0

, K∗
2,L[, the investment trigger Q ∈]0, L[; (ii) if K2 ∈ [K∗

2,L, K
∗
2,H [, the

investment triggerQ ∈ [L,H [; and (iii) ifK2 ∈ [K∗
2,H ,∞[, the investment triggerQ ∈ [H,∞[.

7. Investment decisions with a combined quantity collar-cap regime

The profit function (4) implies that the total (or full) value of the project is this combined

quantity collar-cap regime is given by

V F
cc (Q0, L,H, T ) = Vco(Q0, L,H, T ) + e−rTEQ [Vcp(QT , H,∞)|Fo] , (62)

with the forward start perpetual value Vcp(QT , H,∞) being expressed as

Vcp(QT , H,∞) = P
QT

q
− P × V (QT , H,∞)− K2

r
, (63)

after computing the limit of equation (34).

Therefore, substituting equations (44) and (63) in expression (62) and rearranging yields

V F
cc (Q0, L,H, T )

= P × V (Q0, L, T )− P × V (Q0, H, T ) + P
L

r

(

1− e−rT
)

− K2

r

(

1− e−rT
)

+P
Q0

q
e−qT − Pe−rTEQ [V (QT , H,∞)|Fo]−

K2

r
e−rT

= P × V (Q0, L, T )− P × V (Q0, H,∞) + Pe−rTEQ [V (QT , H,∞)|Fo] + P
L

r

(

1− e−rT
)

+P
Q0

q
e−qT − Pe−rTEQ [V (QT , H,∞)|Fo]−

K2

r

= P × V (Q0, L, T )− P × V (Q0, H,∞) + P
L

r

(

1− e−rT
)

+ P
Q0

q
e−qT − K2

r

= V F
f (Q0, L, T )− P × V (Q0, H,∞), (64)

after applying the time decomposition technique of Shackleton and Wojakowski (2007) to

the finite-lived cap V (Q0, H, T ) appearing in the first equality of equation (64) and with the
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perpetual cap V (Q0, H,∞) being given by

V (Q0, H,∞) = A(H)Qβ1

0 11{Q0<H} +

(

B(H)Qβ2

0 +
Q0

q
− H

r

)

11{Q0≥H}. (65)

In summary, and as expected, equation (64) reveals that the combined quantity collar-

cap regime under analysis can be also understood as a long position in a finite maturity

quantity floor and a short position in a perpetual (environmental) quantity cap.

Next proposition shows how to determine the value of the option to invest in a project in

the presence of a combined quantity collar-cap regime and the corresponding optimal trigger

to invest.

Proposition 5. The value of the (perpetual) option to invest in a project containing a

combined quantity collar-cap regime is calculated as

Fcc(Q0, Q, L, T,K1) =







(

V F
cc (Q,L,H, T )−K1

)

(

Q0

Q

)β1

⇐ Q0 < Q

V F
cc (Q0, L,H, T )−K1 ⇐ Q0 ≥ Q

, (66)

where the optimal threshold of investment Q is obtained as the numerical solution of the

nonlinear equation

(β1 − 1)P
Q

q

[

11{L≤Q<H} + e−qTN
(

−d1(Q,L)
)

]

+P

(

β1

r
− β1 − 1

q

)

[

L

(

Q

L

)β2
(

11{Q≥L} −N
(

dβ2
(Q,L)

)

)

−H

(

Q

H

)β2

11{Q≥H}

]

+β1P

[

L

r

(

11{Q<L} − e−rTN
(

−d0(Q,L)
)

)

+
H

r
11{Q≥H}

]

− β1

(

K1 +
K2

r

)

= 0. (67)

Proof. Using the usual value-matching and smooth-pasting conditions it is possible to

show that

β1V
F
cc (Q,L,H, T )− β1K1 = Q∆F

cc(Q,L,H, T ),

with ∆F
cc(Q,L,H, T ) := ∂V F

cc (Q,L,H, T )/∂Q, which finally yields the nonlinear equation

(67) and the option solution (66) after combining equations (7), (8), (64) and (65), and

22



applying some straightforward calculus. Additional details are available upon request.�

The results offered in Proposition 5 solve the optimization problem defined in equation

(5) and allow us to derive analytically several interesting points from the point of view of

both the government and the promoter of the project, as shown in the remainder of this

section.

8. Comparative statics

9. Conclusions
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