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1 Introduction

Real option analysis (ROA) is recognized as a superior method to quantify the value of real-world

investment opportunities where managerial flexibility can influence their worth, as compared to stan-

dard discounted cash-flow methods typically used in industry. The ability for managers to react to

uncertainties at a future time adds value to projects, and since this value is not captured by standard

DCF methods, erroneous decision making may result (Trigeorgis (1996)). A comprehensive ROA of

an oil, gas or mineral mining project can improve the allocation of capital and managerial decision

making and the methodology is currently used, to some degree, in the commodity extraction sectors.

However, realistic models that try to account for a number of risk factors can be mathematically

complex, and in situations where many future outcomes are possible, many layers of analysis may

be required. Typically, managers are usually unable to understand the models and dismiss results

that seem unintuitive to them.

An excellent empirical review of ex-post investment decisions made in copper mining showed that

fewer than half of investment timing decisions were made at the right time and 36 of the 51 projects

analyzed should have chosen an extraction capacity of 40% larger or smaller (Auger and Guzman

(2010)). The authors were unaware of any mining firm basing all or part of their decision making on

the systematic use of ROA and emphasize that the “failure to use ROA to assess investments runs

against a basic assumption of neoclassical theory: under uncertainty, firms ought to maximize their

expected profits”. They make the case that irrational decision making exists within the industry

due to a lack of real option tools available for better analysis. A number of surveys across industries

have found that the use of ROA is in the range of 10-15% of companies, and the main reason for lack

of adoption is model complexity (Hartmann and Hassan (2006), Block (2007), Truong, Partington,

and Peat (2008), Bennouna, Meredith, and Marchant (2010), Dimitrakopoulos and Abdel Sabour

(2007)).

Previously, we introduced a methodology based on exercise boundary fitting (EBF) in an effort

to develop a practical Monte Carlo simulation-based real options approach (Bashiri, Davison, and

Lawryshyn (2018)). We showed that our methodology converges in the case of simple Bermudan and

American put options. More recently, we expanded on the model to solve a staged manufacturing

problem (Fleten, Kozlova, and Lawryshyn (2021)). As we presented, utilizing boundary fitting
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allowed us to solve a computationally difficult problem. In another study we explored the use of the

EBF methodology for a number of cases, one being a build and abandon mining example (Davison

and Lawryshyn (2021)). We showed that while the methodology provided good convergence on

option value, under certain scenarios, where the optimal exercise boundaries occurred in regions

where there were few Monte Carlo paths, the optimization algorithm struggled to converge. In

Davison and Lawryshyn (2022) we explored convergence issues associated with the methodology

and for the build and abandon mining example, we showed that by utilizing heuristic non-convex

optimization, namely genetic algorithm (GA), we were able to circumvent the convergence issues,

achieving satisfactory results. In Lawryshyn (2023) we presented preliminary results of utilizing

reinforcement learning (RL) to solve the build / abandon problem. Our conclusion was that RL

shows promise in solving such problems. In this study, we consider both one-factor and two-factor

real options mining valuation problems. In the one-factor case, we further explore the use of RL to

solve the build / abaondon problem we presented in Lawryshyn (2023). In the two-factor model we

introduce a second process where the quantity (or quality) of the mined mineral is uncertain and,

as mining proceeds, more is learned about the quantity available allowing for staged investment.

We attempted to solve the two-factor ”learn-as-you-go” (LAYG) problem using the EBF method

previously (Davison and Lawryshyn (2019)) with partial success. Our objective is to explore the

opportunity to use RL for valuing realistic, computationally difficult real options problems. We note

that this study is a work in progress.

The rest of this paper is organized as follows. In the following section we provide a brief review of

the literature. We first consider real options in the mining context, as we see this specific application

an excellent test case for developing practical multi-factor real real option valuation methods, and

then we present a brief review of the application of RL in option valuation. In Section 3 we

present our methodology, first, framing the problem, then presenting our RL model. We present

our preliminary results in Section 4, and discussion and conclusions in Section 5.

2 Relevant Literature

The academic literature is very rich in the field of mining valuation. Mining projects are laced

with uncertainty and many discounted cash-flow (DCF) methods have been proposed in the lit-

erature to try to account for the uncertainty (Bastante, Taboada, Alejano, and Alonso (2008),

Dimitrakopoulos (2011), Everett (2013), Ugwuegbu (2013)). Several guidelines/codes have been

developed to standardize mining valuation (CIMVAL (2003), VALMIN (2015)). The main mining

valuation approaches are income (i.e. cash-flows), market or cost based and the focus of this paper is

on income-based real option valuation, which resemble American (or Bermudan) type financial op-

tions. Earlier real option works focused on modelling price uncertainty only (Brennan and Schwartz

(1985), Dixit and Pindyck (1994), Schwartz (1997)), however the complexity in mining is significant

and there are numerous risk factors. Simpler models based on lattice and finite difference methods

(FDM) are difficult to implement in a multi-factor setting (Longstaff and Schwartz (2001)) and, also,

it is extremely difficult to account for time dependent costs with multiple decision making points

(Dimitrakopoulos and Abdel Sabour (2007)). Nevertheless, the simpler models continue to merit

attention (Haque, Topal, and Lilford (2014), Haque, Topal, and Lilford (2016)). Dimitrakopoulos

and Abdel Sabour (2007) utilize a multi-factor least squares Monte Carlo (LSMC) approach to

account for price, foreign exchange and ore body uncertainty under multiple pre-defined operating
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scenarios (states). However, the model only allows for operation and irreversible abandonment —

aspects such as optimal build time, expansion and mothballing are not considered. Similarly, Mogi

and Chen (2007) use ROA and the method developed by Barraquand and Martineau (2007) to

account for multiple stochastic factors in a four-stage gas field project. Abdel Saboura and Poulin

(2010) develop a multi-factor LSMC model for a single mine expansion. A review of 92 academic

papers found that most real options research is focused on dealing with very specific situations

where usually no more than two real options are considered (Savolainen (2016)). While the LSMC

allows for a more realistic analysis, methods presented to date are applicable only for the case where

changes from one state to another does not change the fundamental stochastic factors with time. For

example, modular expansion would be difficult to implement in such a model if the cost to expand

was a function of time and impacts extracted ore quantity due to the changing rate of extraction

– these issues were considered in Davison, Lawryshyn, and Zhang (2015) and Kobari, Jaimungal,

and Lawryshyn (2014). Also, modelling of multiple layers is still complex and will not lead to a

methodology that managers can readily utilize.

Several recent papers apply RL to price/hedge financial options. In Pickard and Lawryshyn

(2023) we presented a review of 17 recent papers related to the use of RL for hedging financial

derivatives. An important result of the review was that RL trained agents, particularly those

monitoring transaction costs, consistently outperform the Black-Scholes Delta method in frictional

environments. The majority of the papers used actor-critic RL strategies to develop continuous

hedging control. Recently, there have been a few studies using RL for real options analysis. For

example, Lee, Chun, Roh, Heo, and Lee (2023) developed an RL framework of a real options problem

valuation of a plant expansion in the context of carbon capture and utilization (CCU) where market

demand and production uncertainty were considered. (Caputo and Cardin 2022) present an RL

based approach to analyze flexibility in project valuation and evaluate a waste-to-energy system as

a case study. These studies, as well as others, make the case for the use of RL to model complex

real options that cannot be easily tackled with standard methods. The application of RL to price

options is arguably in its infancy but shows significant promise and may prove to be an excellent

solution methodology for complex RO with multiple factors.

Buehler, Teichmann, and Wood (2019) used RL and deep neural networks (NN) to approximate

an optimal hedging strategy of a portfolio of derivatives considering market frictions. Their model

outperformed simple delta hedging on a call option of the S&P500 index. Cannelli, Nuti, Sala, and

Szehr (2022) formulated the optimal hedging problem as a risk-averse contextual k-armed bandit

problem and showed that their model outperforms deep Q-networks (DQN) in terms of sample

efficiency and hedging error when compared to delta hedging on simulated data. Cao, Chen, Hull,

and Poulos (2021) used Q-learning and deep deterministic policy gradient (DDPG) to hedge a short

position in a call option with transaction costs and showed reduced hedging costs compared to delta

hedging on simulated data. Recent other studies applied several different RL models on simulated

data and also showed superior performance to delta hedging (Kolm and Ritter (2019), Du, Jin,

Kolm, Ritter, Wang, and Zhang (2020)). The application of RL to price options is arguably in its

infancy but shows significant promise and may prove to be an excellent solution methodology for

complex RO with multiple factors.
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3 Methodology

In this section we introduce our methodology. In the following subsection we present the RL frame-

work. Next, we frame the real option formulation for the one-factor build / abandon one-factor

model and then build on this case to develop the two-factor model where we add the uncertainty

associated with the quantity of the ore and allow for staged investment. Finally, we discuss the

implementation of the Deep Q-Network (DQN) (Mnih, Kavukcuoglu, Silver, Graves, Antonoglou,

Wierstra, and Riedmiller (2013)) to solve the real options problems.

RL Framework

RL is a sub-field of machine learning (ML) where the model automatically learns optimal decisions

(actions) over time, typically in a stochastically changing environment. A comprehensive treatment

of the topic is provided in Sutton and Barto (2018). As mentioned, this paper is a work in progress

and our RL solution methodology will be based on Q-learning, specifically, the model-free frame-

work based on DQN. Since our actions will be discrete for the problems considered here, the DQN

framework is appropriate.

The RL solution framework is formulated within the Markov decision process (MDP) model

(again, for details see Sutton and Barto (2018)). The MDP consists of an agent that interacts with

its environment and is represented by states, actions and rewards. In the RL framework, the agent

acts to optimize expected reward based on the current state of the environment. The agent develops

a policy by learning to maximize the total expected reward, given current state and action pairs

(Q-learning) by playing multiple games. In the context of real options, each game is represented

by a Monte Carlo path of the underlying stochastic factor, or, in the case of a multi-factor setting,

the (correlated) paths of the underlying stochastic factors. In the model-free setting, the model

and optimal actions are learned through exploration of the environment. In the DQN framework, a

(deep) neural network model is trained to provide actions to optimize the total expected reward for

a given state.

One-Factor Build / Abandon Real Option

In the build / abandon real option valuation, we assume a stochastic process, Xt, that represents

the price of the underlying mineral / material produced or mined, which we simulate using Monte

Carlo simulation. We note that standard and non-standard processes can be used. There are four

possible states related to the plant, namely,

� plant is not constructed,

� plant is under construction,

� plant is operating,

� plant has been abandoned.
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Our RL state consists of Xt, T − t, where T is the terminal time for the valuation model, and two

one-hot encoded variables, ξ1 and ξ2, where

ξ1 =

{
0, plant is not constructed

1, otherwise,

ξ2 =

{
0, plant is operating

1, otherwise.

Note that one and only one of ξi,tj = 1 at any discretized time tj . Furthermore, we do not need a state

variable for the case where the plant is under construction nor abandoned. During the time the plant

is being constructed we assume abandonment is not possible. Thus, as soon as the agent decides

to construct, the episode time jumps ahead by the time to construct, τc, and enters the operating

phase (state). This assumption ensures that the environment obeys the Markov property, thus

ensuring the problem is a MDP, which RL solution methodologies are based on. We note that this

assumption is not restrictive since the probability of the underlying process Xt reaching an abandon

boundary in the time to construct after hitting the construction boundary is very low under normal

circumstances. Thus, our state at time tj consists of four variables, Stj = {Xtj , T − tj , ξ1,tj , ξ2,tj}.
Before construction, the agent must decide whether to do nothing, i.e. continue waiting (not

exercise, action = 0) or construct (exercise, action =1). As discussed above, as soon as the decision

to construct is made, the episode jumps to the operating state, so again, the agent must decide

whether to continue operating (not exercise, action = 0) or abandon (exercise, action =1). Thus,

the action space is Atj = {0, 1}.
The episode is terminated as follows:

� if tj >= T − τc if the plant is not constructed,

� if action = 1 (abandonment) while the plant is operating (ξ1,tj = 1),

� if t = T if the plant is operating.

At each tj except during construction the reward is calculated as follows,

Rtj =



−Cw∆te−rtj , plant is not constructed and action = 0,

−Ke−rtj , plant is not constructed and action = 1,

γ
(
X

(i)
tj

− Cop

)
∆te−rtj , plant is operating and action = 0,

−Cope
−rtj , plant is operating and action = 1,

−Cabe
−rT , plant is operating and tj = T,

(1)

where Cw is the cost rate of waiting (we use Cw = 0), K is the cost of construction, Cop is the

operating cost rate, γ is the rate of production (extraction) of the product, ∆t is the time step in

the simulation and Cab is the cost of abandonment.

Two-Factor Staged Investment Real Option

In the two-factor staged investment real option problem we utilize a stochastic price process, Xt,

as above, but introduce a second standard Brownian motion, Bq, where q denotes the amount of
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Figure 1: Example of managerial estimates and the best fit Fq∗(q) distribution (right), and sample

Brownian motion paths and the hitting line −a− bq.

material mined up to time, t. Our premise is that managers have an idea of how much ore is

accessible when mining begins. As more ore is mined, managers gain a better understanding of ore

quantity, thus ”Learn as You Go”, and can therefore expand or abandon operations optimally.

We assume that managers can provide estimates of ore quantity with certain levels of confidence,

likely based on geological surveys of the site. For a standard Brownian motion, Bq, the distribution

of the hitting time such that P(q∗ ≤ q) where q∗ = min(q ≥ 0, Bq = −a− bq) is

Fq∗(q) = e2abΦ

(
−a− bq

√
q

)
+ 1− Φ

(
a− bq
√
q

)
, (2)

where Φ(·) is the standard normal distribution. We thus adjust the parameters a and b to match the

distribution Fq∗(q) as closely as we can to match the managerial estimates. An example is provided

in Figure 3. The graph on the left plots managerial estimates of the amount of ore, represented by

“x”, and corresponding best fit Fq∗(q) distribution. The graph on the right presents a sample of

Brownian motion paths and the hitting line −a− bq.

We assume that the maximum plant capacity extraction rate is Q̇Max. The cost to build the

skeleton of the plant is

K0 = αM + βM Q̇Max (3)

where αM and βM are known fixed and variable cost components. We assume that the plant can

be expanded by N modules such that each module would have 1
N Q̇Max capacity. The cost to n

modules at any decision making time point is given as

Kn(n) = αn +
n

N
βnQ̇Max (4)

where αn and βn are other known fixed and variable cost components. Thus, to build a n ≤ N

modules the first time, the cost would be K0+Kn(n) and the subsequent addition of say n′ ≤ N−n
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modules would be Kn(n
′). Introducing the state variable ξt ∈ 0, 1, 2, ..., N as the number of modules

in operation, the extraction rate is

q̇t = ξtQ̇Max (5)

and the total extracted quantity as

qt =

∫ t

0
ξsQ̇Maxds. (6)

Thus, for a given scenario, Bqt defines our state of knowledge and if or when Bqt hits the line −a−bqt
line then the mine is depleted of ore. Furthermore, since Bqt is observable, the RL agent will learn

that when the Bqt value is low, there is a greater chance that the mine will be depleted early, likely

enhancing early exercise if the commodity price is low, and conversely when the Bqt value is high,

the agent will learn that early exercise may not be the best option.

Similar to the one-factor case, we assume that plant abandonment cannot take place while

construction is on-going, and in this case, it would include both initial construction and expansion.

We assume τc0 is the time for initial construction (time to build the plant skeleton and the first n

modules) and τcn is the time to construct extra n modules.

With a disrcitized time, tj , the state consists of the following:

� Xtj : Commodity price

� T − tj : Time remaining in the analysis

� Bqtj
: State of knowledge

� qtj : Amount of ore mined to date

� ξtj : Number of modules in operation.

Similar to the one-factor case, before construction, the agent must decide whether to do nothing,

i.e. continue waiting (not exercise, action = 0) or construct. However, at initial construction agent

has a choice as to the number of modules to construct, ξtj . After initial construction, which will

require time τc0 , the agent can operate, construct more modules as long as ξtj < N , idle or abandon

the plant. We assume that expansion construction will not disrupt operations from the time a

decision is made to add modules, during the period τcn , however no further action is possible during

this time. Thus, our discrete action space consists of a N + 3 actions, summarized as follows:

atj =



Wait to construct, plant is not constructed,

Build initial n ≤ N modules, plant is not constructed,

Operate plant, 1 ≤ ξtj ≤ N,

Expand plant by n ≤ N − ξtj modules, 1 ≤ ξtj < N and plant is not under construction,

Idle the plant, 1 ≤ ξtj ≤ N and plant is not under construction,

Abandon plant, 1 ≤ ξtj ≤ N and plant is not under construction.

We note that some actions listed above cannot be taken under certain states. For example, once we

have expanded to ξtj modules, we cannot expand by more than N − ξtj modules. In reinforcement

learning, when dealing with discrete actions where some actions cannot be taken in certain states

(referred to as invalid actions), there are a few common approaches to handle them.
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� Masking: before selecting an action, one can apply a mask to remove invalid actions from

consideration. This ensures that the agent only considers valid actions for each state.

� Penalizing: one can allow the agent to choose from all actions but penalize the reward heavily

for choosing an invalid action. This encourages the agent to learn to avoid selecting invalid

actions naturally.

� Dynamically adjusting the action space: one can dynamically adjust the action space based

on the state. For example, if an action is invalid in a particular state, one can remove the

invalid action from the action space for that state.

� Ignoring invalid actions: In some cases, it might be acceptable to simply ignore invalid actions

and only consider valid actions. This approach works well if the number of invalid actions is

small compared to the total number of actions.

In our case study, the total number of modules, N will be less than or equal to four therefore the

method of ignoring invalid actions will be considered, as this method has been shown to work well

when there are not many invalid actions. Masking has recently been studied and is an approach for

us to consider in the future. Penalizing and dynamically adjusting the action space methods have

generally shown inferior convergence.

At each tj except during construction the reward is calculated as follows,

Rtj =



−Cw∆te−rtj , plant is not constructed,

−(K0 +Kn)e
−rtj , plant is not constructed and action is to build initial n modules,

ξtj Q̇Max

(
X

(i)
tj

− Cop

)
∆te−rtj , plant is operating,

−Kn(n)e
−rtj , expand plant with n ≤ N − ξtj modules,

−Ci∆te−rtj , plant is idling,

−Cabe
−rtj , abandon plant,

(7)

where Cw is the cost rate of waiting , Cop is the operating cost rate per unit produced, ∆t is the

time step in the simulation, Ci is the idling cost rate and Cab is the cost of abandonment.

Deep Q-Network

In the DQN methodology, a neural network is used to to estimate the action value function, Q(S,A).

We used the keras-rl2 library. Our DQN agent was run with with the following parameters for the

one-factor case:

� the model paremeter, i.e. the neural network, was setup as follows

– number of inputs was set to one for the Bermudan put option, two for the American put

option and four for the build / abandon real option (see above)

– the neural network was fully connected with varying number of layers and the ReLU

(rectified linear unit) activation function was used between layers, except for the last

layer leading to the output nodes where a linear activation function was used
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– the output layer consisted of two outputs (as mentioned above, representing Q(S,A) for

the two possible actions, do not exercise or exercise)

� the memory parameter was set using the SequentialMemory option with a limit value of 50,000

and window size of 1

� the policy parameter was set to LinearAnnealedPolicy using the EpsGreedyQPolicy, with

epsilon set to a maximum value of 1 and decaying to 0.1 over 5000 episodes

� the target model update was set to the default value of 0.01, so that the target network was

updated at a rate of 1% of the total episodes taken during training.

As described above, each training episode is based on a single random path for Xt and the number

of such paths was varied.

A full description for the two-factor case will be presented soon.

4 Results

To be presented.

5 Conclusions
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