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Abstract 

We evaluate the risk aspects of a simple portfolio of real options to invest for a duopoly. After 

summarizing the basic model, covering three sequences, two thresholds, and three strategic and 

rival options, we look at five risk elements: delta, vega, rho (the conventional option Greeks) along 

with epsilon (yield) and alpha (market share).  The value functions of both the leader and follower 

is very sensitive to revenue (delta), interest rate (rho), yield (epsilon) and market share (alpha) 

variations, which we view in terms of sensitivities (to percentage changes), partial derivatives 

(analytical confirmed by numerical) and to a range of each of the input variables. Naturally, delta 

and rho hedging are plausible and appropriate risk avoidance actions. Maintaining final stage 

market share is particularly important for the follower.  

 
1 Corresponding author. 
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Highlights 

 

  

Operating cost is proportional to market share while other authors focus on net revenue. 

Leader is burdened by a rival option (negative value), reflecting the prospective loss of final 

market share. 

There are analytical solutions for the five unknowns (two thresholds and three real option value 

coefficients), given five equations, two value matching and two smooth pasting equations for the 

basic investments in a non-pre-emptive duopoly with an exogeneous market.   

Proofs are offered that the derived results solve the basic ODEs, VM and SP conditions. The delta 

and gamma derivatives are derived, and used for the proofs and for delta hedging to reduce risks. 

A sensitivity analysis of the effect of a 1% change in each of the eight parameter values on the 

value functions for each of the three regimes (before investment, after only leader invests, after 

both have invested) indicates the importance and risk of each input. 

Analytical partial derivatives are derived for each critical input. Ever finer numerical partial 

derivatives are shown to converge to the analytical partial derivatives, thereby confirming the 

analytical results. 

The function representing the impact of a parameter change on the value function is semi-

continuous for at least one of the players. 

 

Vegas with sign-reversals vary with v and , so creating vega neutrality for the leader is 

problematic. 

 

Delta hedging before considering transaction costs significantly reduces the variability of the 

values for both the leader and follower. 

 

 

 

Acknowledgements:  We thank in advance the discussant and participants in the Real Options 

Conference Bologna 2024 for helpful comments.  
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1 Introduction 

What is the appropriate measure of risk for real options in a duopoly? We address this issue through 

studying (i) the sensitivities of changes in the value functions to 1% changes in the model input 

parameter values, (ii) through calculating the analytical partial derivatives for the thresholds, 

option coefficients and value functions (reconfirmed with numerical partial derivatives), and (iii) 

through calculating the changes in value functions across the regimes along a range of changes for 

each input parameter value2.  Which is the most appropriate method for observing (and eventually 

managing) risk? 

 

There is limited literature on most of these approaches. Both pre-emptive and non-pre-emptive 

duopoly real options usually require a numerical solution for the leader’s threshold, and ignore 

risk exposure, partial derivatives and risk management.  Few of the models allow for an operating 

cost.  Few models offer the proofs that the differential equation is solved (or not), and that the 

value matching and smooth pasting conditions are satisfied.  Few authors are concerned with 

market share derivatives, or with other risk assessments.  

 

Fudenberg and Tirole (1985) created the foundations of real options in a competitive setting while 

developing a model of games of timing with a continuous time version of strategy equilibrium. 

Smets (1993) considered a strategic setting where firms can act under the fear of pre-emption, 

presented by Dixit and Pindyck (1994) Chapter 9.3. Joaquin and Butler (2000) considered the first 

mover advantage of lower operating costs. Smit and Trigeorgis (2001) modelled different 

investment strategies under quantity or reciprocating price competition.  

Tsekrekos (2003) studied the sensitivity of the leader and follower value function to market share 

(with both temporary and pre-emptive permanent market share advantages for the leader), assumed 

to be constant after the follower enters. Paxson and Pinto (2003) modeled a leader with an initial 

market share advantage, which then evolves as new customers arrive (birth) and existing customers 

depart (death).  Paxson and Pinto (2005) suggested a two-factor model with permanent quantity 

advantages accorded to the leader. Paxson and Melmane (2009) provided a two-factor model 

 
2 Not in this version. 
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where the leader starts with a larger but stochastic market share. Bobtcheff and Mariotti (2013) 

considered a pre-emptive game of two innovative competitors, whose existence may be revealed 

only by first-mover investment. Azevedo and Paxson (2014) reviewed the literature on developing 

such real option games. Huberts et al. (2019) showed that for a duopoly, entry may be deterred by 

competitive actions, possibly in a war of attrition or pre-emption, following interesting strategies. 

Adkins et al. (2022) provided quasi-analytical solutions for switching and divesting opportunities 

in a duopoly with mutually exclusive options, using the rival option concept. 

We provide six innovations for basic once-off investment opportunities in a duopoly  with variable 

operating costs: analytical solutions for all of the thresholds and option coefficients; analytical 

solutions for the partial derivatives for all of the inputs; confirming all of these solutions with 

numerical solutions; confirming that these solutions solve the conventional differential equations, 

and the value matching and smooth pasting conditions (except for the special case of crossing the 

follower’s threshold); confirming that the sensitivities, partial derivatives and simulation of value 

functions across the basic revenue ranges are consistent; and finally showing how the delta partial 

derivative can be used for delta hedging to sharply reduce risk3.  

The rest of the paper is organized as follows. Section 2 derives the investment real options model 

for a duopoly with variable operating costs. Section 3 shows sensitivities of the value functions for 

each of the parameter inputs.  Section 4 derives analytical results for each of the partial derivatives, 

and discusses some of the option coefficient characteristics. Section 5 shows delta hedging over 

one basic range. Section 6 summarizes and concludes and provides some suggestions for further 

research and applications.  

2 Real Option Model for a Duopoly with Variable Operating Costs 

 

We demonstrate the analytical procedure based on partial derivatives for determining the impact 

of input parameter variations on the value function of a leader and follower in a duopoly investment 

opportunity.  We find that for one of the rivals in a duopoly model, the derivative of their.value 

function with respect to market share, volatility, interest rate and yield are semi-continuous 

 
3 Incomplete for this version. 
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functions with a jump, which can be both positive and negative, and varies according to the value 

of the state variable. The partial derivatives have similar characteristics, regarding thresholds and 

option coefficients, as opposed to the revenue (delta) derivative (where the thresholds and option 

coefficients remain the same).  

 

In our basic model, a firm, with no current cash-flow, has a perpetual opportunity to invest in an 

operating asset that it intends to exercise and operate forever as soon as the asset’s prevailing cash-

inflow, denoted by v,  is sufficiently high. The optimal policy is to retain the investment option 

for 10 v v  , where 1v  denotes the threshold cash-inflow, and to exercise the option for 1v v  

. While the cash-inflow remains within the inaction region, ( )10v ,v ,  the firm does nothing. 

Whenever v  departs from the inaction region, where ( )10v ,v ,  the firm makes the investment. 

We assume the state variable, the gross revenue, follows a geometric Brownian motion process, 

d d dv v t v W , = + where ,   denote the instantaneous drift and volatility, respectively, and 

dW  an increment of the standardized Wiener process.   

 

Then, we assume there is a simple duopoly where a first mover leader, and a follower share the 

final market. The leader’s initial market share on entering the market is denoted by 1Lm =  from 

capturing the entire market. When the follower subsequently enters the market, its market share is 

denoted by 0 1FLm   and simultaneously the leader’s final market share reduces to 0 1LFm   

with 1LF FLm m+ =  and FL LFm m  due to the leader’s first mover advantage. Then: 

 0 1 1FL LF L LF FLm m m , m m .   = + =  

 

The nature of the duopoly game is that the leader always commits to a policy change ahead of the 

follower.  By backwardation, we first examine the follower’s value function. The value ( )FG v  of 

the follower’s perpetual opportunity is: 
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where K  denotes the investment cost, f  the operating cash-outflow, and r  the risk-free rate with 

the net adjusted return shortfall, or convenience yield =r-, with an unknown threshold, 1Fv , an 

investment option coefficient, 1FA ,  and the option power parameter, 1 , .  We assume that, where 

v=p*q, where q is a constant market volume quantity, p is stochastic, and f is equivalent to a fixed 

operating cost multiplied by the market share of the follower or leader.  In (1), the term 1

1FA v
 

represents the real option value for the follower of eventually entering  the market. 

 

The value ( )LG v  of the leader’s opportunity is: 
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In (2), the term 1

11LA v
 represents the value for the leader of the rival option (negative value for 

the leader, when the follower enters the market). The coefficient 11LA  is obtained from the value 

conserving condition ( ) ( )2 1 3 1L F L Fg v g v .= The solutions for the follower’s entry threshold, 1Fv , 

and coefficient, 1FA ,  the leader’s entry threshold, 1Lv , and coefficients, 1 11L LA , A , and 1  are 

derived as follows. 

 

From (1), the value-matching relationship and smooth-pasting condition4 for the follower’s value 

function are, respectively: 

 
4 The conventional approach to such an optimal stopping problem is that if v follows a geometric Brownian motion 
process, the solution G(v) must satisfy an ordinary differential equation, 
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Solving for 1Fv  and 1FA  yields: 
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From (2), the value-conserving condition for the leader when the follower exercises is: 

 ( ) ( ) 1 1 1
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Solving for 11LA  yields: 
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From (2), the value-matching relationship and smooth-pasting condition for the leader’s value 

function are, respectively: 
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Solving for 1Lv  and 1LA  yields: 
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The power parameter 1  is the positive root of the characteristic Q  function: 

 
2 21

0
2

v G"( v ) vG'( v ) rG( v ) + − = , pre-investment, along with the value matching and smooth pasting 

boundary (v*) conditions, 3a,b, 5, 7a,b, see Dixit and Pindyck (1994), page 141 
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 ( ) ( ) ( )21
1 1 1 1 12

1 0 0Q r r , .      = − + − − =   (9) 

In summary, all option coefficients and thresholds have an analytical solution, with the option 

coefficients simplified using the threshold expressions: 
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Table 1A 

Mathematica Thresholds & Option Coefficients for Duopoly Model 

1Lv  1Fv  1LA  1FA  11LA  1  

12.95155 28.06170 1.93700 0.71636 -1.17607 1.71508 

      

 

 

 

 

Table 1B ODE, VM & SP Conditions  
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A B C D

CROR MODEL ODE  

INPUT   

v 5.00

K 140.00

 0.16

r 0.05

 0.03

f 2.00

mLF 0.60

mFL 0.40

OUTPUT    

F1(v) 11.3220 IF(B3<B14,B16*(B3^B19),B13) 1a

F2(v) -89.3333 B10*(B3/B7-B8/B6)-B4 1b

vF1 28.0617 (B19*B7/(B19-1))*((B6*B4+B10*B8))/(B6*B10) 4a

vL1 12.9516 (B19*B7/(B19-1))*(B6*B4+B8)/B6 8a

AF1 0.7164 (B10/(B19*B7))*(B14^(1-B19)) 4b

AL1 1.9370 B18+(1/(B19*B7))*(B15^(1-B19)) 8b

AL11 -1.1761 (-B10*(B14/B7-B8/B6)*(B14^-B19)) 6

1 1.7151 0.5-(B6-B7)/(B5^2)+SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 9

L(v) 30.6141 IF(B3<B15,B21,IF(AND(B3>B15,B3<B14),B22,B23)) 2

L1(v) 30.6141 B17*(B3^B19) 2a

L2(v) -31.9211 B18*(B3^B19)+(B3/B7-B8/B6)-B4 2b

L3(v) 76.0000 B9*((B3/B7)-B8/B6) 2c

Leader Pre-Invest v=5

ODE 0.0000 0.5*(B5^2)*(B3^2)*B27+(B6-B7)*B3*B26-B6*(B17*(B3^B19))

F'(v) 10.5012 B19*B17*(B3^(B19-1))

F''(v) 1.5018 B19*(B19-1)*B17*(B3^(B19-2))

F(vL1) 156.6229 B17*(B15^B19) VM1

V*-K 156.6229 B18*(B15^B19)+(B15/B7-B8/B6)-B4 VM1

SP1 0.0000 B19*B17*(B15^(B19-1))-(B19*B18*(B15^(B19-1))+1/B7) SP1

Leader Post-Invest L, Pre-Invest F v=14  

ODE 0.0000 0.5*(B5^2)*(B68^2)*B35+(B6-B7)*B68*B34-B6*B33+(B68-B8)  

F(v) 411.3222 B18*(B68^B19)+(B68/(B6-B7)-B8/B6)-B4  

F'(v) 36.6863 B19*B18*(B68^(B19-1))+1/(B6-B7)  

F''(v) -0.6800 B19*(B19-1)*B18*(B68^(B19-2))  

V* 537.2340 B18*(B14^B19)+(B14/B7-B8/B6) VM2

V** 537.2340 B9*(B14/B7-B8/B6) VM2

SP2 -8.5566 B18*B19*(B14^(B19-1))+(1/B7)-B9*(1/B7) SP2

Follower Pre-Invest L&F v=5

ODE 0.0000 0.5*(B5^2)*(B3^2)*B48+(B6-B7)*B3*B47-B6*B47

FF(v) 11.3220 B16*(B3^B19)

FF'(v) 3.8836 B19*B16*(B3^(B19-1))

FF''(v) 0.5554 B19*(B19-1)*B16*(B3^(B19-2))

Follower Post-Invest L, Pre-Invest F v=14  

ODE 0.0000 0.5*(B5^2)*(B68^2)*B56+(B6-B7)*B68*B55-B6*B54

F(v) 66.1966 B16*(B68^B19)

FF'(v) 8.1095 B19*B16*(B68^(B19-1))

FF''(v) 0.4142 B19*(B19-1)*B16*(B68^(B19-2))

FF(vF) 218.1560 B16*(B14^B19) VM3

V*-K 218.1560 B10*((B14/B7-B8/B6))-B4 VM3

SP3 0.0000 B19*B16*(B14^(B19-1))-B10/B7 SP3
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Figure 1A 

 

 

Figure 1A shows that the value functions are an almost linear function of increasing v, with a 

slightly greater slope for the leader, despite the leader market share falling to 60% after the 

follower invests. 

      Figure 1B   

 

v 0 5 10 15 20 25 30 35 40

F(v) 0.00 11.32 37.17 74.51 122.04 178.94 244.00 310.67 377.33

L(v) 0.00 30.61 100.51 197.67 286.31 359.56 436.00 536.00 636.00
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AL1 v^b1 0.0000 9.3246 30.6141 61.3668 100.5110 147.3746 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AL11 v^b1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -122.3292 -159.3491 -200.3599 -245.2120 -293.7782 -345.9486 0.0000 0.0000

PV Ops  MSL=1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 570.0000 695.0000 820.0000 945.0000 1070.000 1195.000 0.0000 0.0000

PV Ops  MSL=.6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 736.0000 811.0000

 

0.0000

100.0000

200.0000

300.0000

400.0000

500.0000

600.0000

0.00 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50 25.00 27.50 30.00 32.50

v

Decomposition of F's Value as function of v

AF1 v^b1 PV Ops MSF=.4

-600.0000

-400.0000

-200.0000

0.0000

200.0000

400.0000

600.0000

800.0000

1000.0000

1200.0000

1400.0000

0.00 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50 25.00 27.50 30.00 32.50

v

Decomposition of L's Value as function of v

AL1 v^b1 AL11 v^b1 PV Ops  MSL=1 PV Ops  MSL=.6



11 

 

A decomposition of the value functions in Figure 1B shows that the follower’s value function 

(blue) option to invest steadily increases with v.  The leader’s value is split into the PV of 

operations after investing (grey) less the negative value of the rival option (orange); when the 

follower invests, the leader’s value is entirely the PV of operations (60% of the market). 

3 Sensitivities 

Figure 2 (v=5, regime L1 before either has invested) shows a quick and easy way to assess the 

sensitivity of the leader and follower value functions to changes in each of the eight parameter 

values separately.  Significance (more than 1%) is indicated in bold. Thresholds are not very 

sensitive generally to changes in the parameter values (except for the follower’s threshold to the 

leader’s final market share). 

                                                                    Table 1C 

                  Percentage Change in Thresholds, Option Coefficients & Value Functions  

                                          for a 1% Increase in the Parameter Value 

                          

 

 

Numerical K  r  f mLF mFL

 vF1 0.0090 0.0050 0.0047 0.0018 0.0010 0.0137 -0.0089

vL1 0.0078 0.0050 0.0035 0.0018 0.0022 0.0000 0.0000

AF1 -0.0064 0.0206 0.0242 -0.0495 -0.0007 -0.0245 0.0165

AL1 -0.0053 0.0149 0.0188 -0.0407 -0.0019 0.0145 -0.0098

AL11 0.0060 0.0172 -0.0207 0.0443 0.0011 0.0239 -0.0161

1 0.0000 -0.0036 -0.0040 0.0059 0.0000 0.0000 0.0000

VF, v=5 v K  r  f mLF mFL

% L 0.0172 -0.0053 0.0050 0.0075 -0.0250 -0.0019 0.0145 -0.0098

% F 0.0172 -0.0064 0.0106 0.0128 -0.0340 -0.0007 -0.0245 0.0165

% L 0.0146 -0.0034 -0.0003 -0.0351 0.0227 -0.0013 0.0148 -0.0099

% F 0.0172 -0.0064 0.0038 -0.0364 0.0200 -0.0007 -0.0245 0.0165

% L 0.0104 0.0000 0.0000 -0.0249 0.0158 -0.0004 0.0100 -0.0067

% F 0.0155 -0.0049 0.0000 -0.0372 0.0236 -0.0006 -0.0224 0.0149

-0.0400

-0.0300

-0.0200

-0.0100

0.0000

0.0100

0.0200

v K s r d f mLF mFL

Sensitivities of VF to Input 1% Increase, v=5
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All sensitivities are logical, with the value functions of both the leader and follower having the 

same sign, except for the increase in mLF=1-mFL, that is the leader’s final market share.  Naturally, 

each value function increases with an increase in v, and decreases with an increase in K. Consistent 

with expected sensitivity for a call option (investment opportunity), each value function increases 

with increases in volatility (before investing) and in the interest rate, but decreases with increases 

in yield, which is the most significant in percentage terms.  Changes in the operating costs do not 

make much of a difference.   

4 Partial Derivatives  

  

Market Share Partials 

In Appendix B, we present the partial derivative solutions pertaining with respect to the market 

share parameter, 1LF FLm m= − . Because of independence, this confirms that 1 0LFm  =  and 

1 0L LFv m  = , and reveals that 1 11L LF L LFA m A m  =    showing that the change in the leader’s 

market share after the follower’s entry impacts the leader’s option values identically before and 

after the leader’s exercise. It represents an anticipatory change that values the future consequences 

benefiting the leader when the follower exercises, which has an identical effect whether or not the 

leader has exercised. 

 

From (1), the impact of the market share LFm  change on the follower’s opportunity value is: 
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=  
 = − + 

  

 (11a, 11b) 

From (2), the impact of the market share LFm  change on the leader’s opportunity value is: 
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  
=  

  
  

= =  
  

 
= −  

 

 (12, 13, 14) 
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The derivation of the partial derivatives for each variable with respect to the leader’s market share 

after the follower’s entry, LFm , follows the procedure described in Appendix A & C.  

( )
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.
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Table 2 

Leader’s Market Share Derivative Values  
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A

m


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11L
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A

m




 

1

LFm




 

0.0 62.95895 4.709147 -2.940183 4.709147 0.0 

 

The plots of  
LFL,mG '  and 

LFF ,mG '  are presented in Figure 2. Since a positive change in LFm  

benefits the leader but produces a loss for the follower, the value function derivatives with respect 

to LFm  are positive and negative, respectively. The follower’s piecewise function 
LFF ,mG '  is 
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continuous as the join occurs at the follower’s exercise point, while for the leader 
LFL,mG '  is semi-

continuous with a downward jump at 
1Fv v= , but  elsewhere it is continuous. 

 

 

Figure 2 

Impact of Market Share Change on the Leader and Follower Value Functions  

 

 

 

So, at all levels of v, with these parameter values, the leader will benefit from an increase of mLF, 

except at the follower’s threshold vF1, when there is a sudden drop in the leader’s value function, 

which, however, is still positive as a function of v thereafter. 

 

Volatility Partials 

The impact of volatility changes on the follower’s opportunity value is found from: 
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 (20a, 20b) 
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The derivatives expressed in (20) and (21) are determined in Appendix C, and their solutions are 

presented below: 
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The partial derivatives of the value functions with respect to volatility are: 
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FG '  is a continuous but not a smooth function for Rv .+ The value of the function 1Fg    is 

non-negative for ( )10 Fv ,v , equals zero at its two end-points, 10 Fv ,v v ,=   and exhibits a point 

of maximum at  1 1Exp 1Fv v .= −  

 

 

Figure 3 

Impact of Volatility Changes on the Leader and Follower Value Functions  

 

 

 

 

 

Figure 3 corroborates the predicted properties for the follower’s and the leader’s value functions. 

The effect of volatility changes on the follower’s value FG '  behaves as a continuous function but 
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not continuously differentiable at 
1Fv v= , attaining a maximum at 15 66367F ,MAXv .= .  In contrast, 

the effect of volatility changes on the leader’s value 
LG '  behaves as a semi-continuous function, 

continuous for 
1Fv v  and for 

1Fv v  but discontinuously differentiable at 1Lv v=  and having a 

down-jump discontinuity at 1Fv v= . For 1Lv v , LG '  attains a maximum at 6 30031L,MAXv .=  but 

dips below zero for ( )11 28710 16 24475. , .v . For 1 1L Fv v v  , LG '  is an increasing function. (

2Lg    exhibits a minimum at 19 06760 L.v v=  .) Which of the two competitors benefits more 

from a volatility change? While (0 L,MAXv ,v  , the leader gains more from positive volatility 

changes due to first mover advantages. For v  increasingly greater than L,MAXv ,  the follower gains 

more from positive volatility changes as the leader approaches its exercise threshold where the 

impact on the leader’s value is negative. The follower maintains their advantage until where 2Lg






 

and 1Fg






 intersect at 2 1 19 97921L ,F .v = . Finally, the leader increasingly benefits more from 

positive volatility changes while ( )2 1 1L ,F Fv v ,v , because those changes defer the market entry for 

the follower since 1 0Fv







 and thereby prolong the monopoly position for the leader. 

 

Delta Partials 

The leader delta (31) does not involve any change in the thresholds or option coefficients, while 

the other partial derivatives do.  
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Differentiate the follower’s value function with respect to v yields: 



18 

 

( )

( )

( )
1

2

1

1 1

1 1 1

1
for

 for

F

FL F

F F

F F

V v
m v v

v

V v V v
A v v v ,

v v





 −


= 


 

= = 
 





                                                          (32) 

In line with conventional option pricing theory, it could be argued that for L1 and L2    
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a short position 10.5012 when v =5, and VFL=30.6141 should be used to delta hedge the L value 

function which includes the strategic investment option 1

1LA v
  in the initial L1 regime. A short 

position 16.1516 when v =20, and VFL=286.3068 should be used to delta hedge the L value 

function which includes the negative value of the rival investment option 1

11LA v
 .  These hedging 

guidelines are not well presented in the literature.     

Other Partial Derivatives 

See Appendix D, E, F & G for Rho, Epsilon (Yield), Phi (OpCost) and Kappa Derivatives 

5 Delta Hedging 

 

Risk hedging may be the most useful activity using these partial derivatives, especially over one 

regime such as L2 where there are no jumps.   Table 3 is an illustration of delta hedging based on 

equations 32 and 33 for the middle regime L2. Suppose the leader is satisfied with maintaining the 

value function of 286 after investing (cost 140), with a PV of operations 627 and a rival option 

value of -200 when v=20.  The leader seeks to maintain this value function value (in case v 

declines) by shorting v for each price interval (adjusting the delta at each interval), and marking-

to-market (or model) at each interval.  The leader’s experiences an unhedged loss for each integer 

if v declines, which increases with the v decline because the rival option becomes less negative. 
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The deltas are all positive since increasing v benefits both,  F2<L2 until just before the 

follower’s investment threshold of 28.  Table 3 shows the leader and follower gross loss 

(unhedged) for the value function VF as v falls from 22 to 13 in the L2 (after the leader invests).  

The largest component of the loss for the leader is in the PV of operations, which is constant at 50 

for each interval.  There is a small loss for the F investment option value at lower v.  The mean 

hedged loss (combining the unhedged and hedging gain/loss) is sharply reduced for both the leader 

and follower.                                                                            

       Table 3 

Delta Hedging over v=22 to 13, L2 

 

 

For the leader,  the mean loss (mostly due to the PV operations) and variability is significant 

unhedged, but sharply reduced with this academic hedging based on the delta partial derivatives, 

and choice of hedging intervals over these limited intervals. By hedging, the standard deviation of 

the leader’s unhedged losses of 1.74 is reduced to .01. However, trying to delta hedge over the 

investment thresholds is likely to be problematic. 

6 Summary and Conclusions 

We provide several possibly unique contributions for the real option solutions and derivatives for 

basic once-off investment opportunities in a non-pre-emptive duopoly with operating costs 

(adjusted for market share): analytical solutions for the thresholds and option coefficients, and for 

v 13 14 15 16 17 18 19 20 21 22     

HEDGED LOSS=+ NET LOSS NET LOSS NET LOSS NET LOSS NET LOSS NET LOSS NET LOSS NET LOSS NET LOSS NET LOSS MEAN STDEV MAX MIN

VF F  -0.21 -0.20 -0.20 -0.20 -0.19 -0.19 -0.19 -0.19 -0.18 -0.19 0.01 -0.18 -0.21

VF L  0.34 0.34 0.33 0.32 0.32 0.31 0.31 0.30 0.30 0.32 0.01 0.34 0.30

UNHEDGED L0SS=+  LOSS 14->13      LOSS 20->19 LOSS 21->20 LOSS 22>21 MEAN STDEV MAX MIN

VF F  7.90 8.32 8.72 9.12 9.51 9.90 10.28 10.65 11.02 9.49 1.07 11.02 7.90

VF L  20.36 19.68 19.02 18.36 17.72 17.08 16.46 15.85 15.24 17.75 1.75 20.36 15.24

DELTA HEDGE  GAIN 14->13      GAIN 20->19 GAIN 21->20 GAIN 22->21     

VF F GAIN=+  8.11 8.52 8.92 9.32 9.71 10.09 10.47 10.84 11.20 9.69 1.06 11.20 8.11

VF L  20.02 19.35 18.69 18.04 17.40 16.77 16.15 15.54 14.94 17.43 1.74 20.02 14.94

dVF/dv  8.11 8.52 8.92 9.32 9.71 10.09 10.47 10.84 11.20

dVL/dv  20.02 19.35 18.69 18.04 17.40 16.77 16.15 15.54 14.94
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the partial derivatives for all of the inputs; confirming all of these solutions with numerical 

solutions, and that all of the conventional conditions are satisfied; and simulations of the solutions 

and partial derivatives over a range of input parameter values. We show how the delta partial 

derivative can be used for delta hedging to sharply reduce risk of this portfolio of real options.  

We propose three measures of the risk exposure of the real option portfolio of duopoly investment 

opportunities: sensitivities, partials, and value functions across a range of input parameter values5. 

(i) Sensitivities show the change in each threshold, option coefficient, value function 

for a 1% change in the input parameter value for a single v. 

(ii) Partials show the change in continuous time, which are also compared to 

proportionate change over an almost infinitesimal interval (.0000000001). 

(iii) Value functions are shown on a single chart (using these analytical results) over a 

wide range of input parameter values, including across regimes, illustrating L jumps 

at the F threshold.  An advantage of the analytical solutions for the thresholds and 

option coefficients (rather than a numerical solution for the leader’s threshold as in 

other papers, and all thresholds as in Adkins et al., 2022) is that all of these 

calculations can be done immediately, changing other variables as well.  

What is the relationship between Delta, Vega, Rho, Epsilon, Kappa, & Alpha? How should one 

use volatility swaps to hedge Vega, interest-rate futures to hedge Rho, and arrangements with third 

parties and marketing experts (or collusion through industry associations) to hedge Alpha risk? Is 

there a simple measure like VaR which can be constructed out of these analytical formulae to assess 

risk for this basic model?  Some intriguing research issues are: 

1. Can these real options be replicated through dynamic trading in v? 

2. Can these real options be separated and recombined into new competitive industry 

configurations? 

3. What are the option and physical/future positions for obtaining strategic objections to 

protect on the downside at a cost equal to giving up some of the upside (an effective real 

option collar), or other desired exposures?  

 
5 Of course, each of these formats can be replicated for volatility changes for instance using the Appendix Table C1 

(CROR Num PD Vol), using in C2=1.0000000001 for (ii), C2=1.01 for (i), and C2=.17 for the  interval .16->.17 (iii). 
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