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Abstract 

This article analyzes the case where a government finances the supply of a public good via a 

tax on a private good which is produced and traded in a market where demand is stochastic, 

production requires an initial irreversible investment, and firms can choose optimally when to 

invest. The government problem is to find the tax rate that maximizes overall welfare, which 

is a composite of the welfare generated by the production of each of the two goods. The analysis 

reveals this optimal tax rate and enables characterizing it, as well as characterizing the 

equilibrium dynamics under the optimal tax rate. Of particular interest is the result that the 

higher the uncertainty regarding the demand for the private good the higher the optimal tax 

rate. 
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1. Introduction 

The study of commodity taxation and its usage for the finance of the supply of public goods 

has long roots in economic research, going back almost a century ago to the works of Ramsey 

(1928) and Pigou (1947). The wide research since then covers a variety of different aspects of 

this issue, and yet, so far it has not been analyzed within the economic environment typically 

portrayed by the modern literature on investment under uncertainty. It is important to fill this 

void because this latter literature analyzes the investment choices of firms under several 

plausible assumptions which strongly affect the resulting market dynamics.1  

 Thus, to fill this void, I present here a model of a private good which is taxed by the 

government in order to finance the supply of a public good. The private good is assumed to be 

produced and traded within the economic environment portrayed by the typical models of the 

literature of investment under uncertainty. In particular, it is assumed that production of this 

good requires some initial irreversible investment, the profit process firms face is stochastic, 

and firms can optimally choose the timing of investment. The government is selecting the tax 

rate so as to maximize a composite of the net welfare from each good. To do so, it has to 

optimally balance between the welfare loss that the tax inflicts on the market for the private 

good and the welfare gains from supplying the public good. The objectives of the analysis are 

to find the optimal tax rate and its main properties, to characterize the resulting equilibrium 

dynamics, and in particular to find how the profitability uncertainty affects the optimal tax. 

This latter question about the effect of the level of uncertainty on the optimal tax 

collected for the finance of a public good is a novel one. Previous studies about optimal 

commodity taxation under uncertainty have dealt with a variety of issues such as the provision 

                                                 
1 See Dixit and Pindyck (1994), Trigeorgis (1995) and Schwartsz and Trigeorgis (2004) for books presenting the 

fundamental insights, results and methodologies od this literature.  
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of social security [as in Varian (1980) or Cremer and Gahvari (1995)], making investment 

occur earlier [as in Barbosa, Carvalho and Pereira (2016) or Di Corato (2016)], or tackling 

harmful externalities [as in Di Corato and Maoz (1999, 2023)]. Yet, none of them have dealt 

with the provision of public goods. A single exception is Aronsson and Blomquist (2003), but 

the uncertainty there is not about profitability, but pertains to the welfare loss caused by the 

externality created by the production of a certain private good.  

 As already mentioned, the private good in the model presented here is produced and 

traded in a market where profitability is a stochastic process, and firms can enter the market 

and start producing only if they incur an irreversible investment.  Due to that – firms enter the 

market only at times when the profit flow is sufficiently high. Specifically, it is assumed that 

the source of the profitability uncertainty is stochastic demand dynamics. Due to that, firms 

enter the market at times when the market price is sufficiently high, exceeding the long-run 

average cost by a mark-up based on the demand uncertainty.  

  Under this dynamic and stochastic modelling, the market quantity is not a single level 

but a stochastic flow, and the tax proceeds (which are based on taxing the market quantity) is 

also a stochastic flow. Despite this deviation from the simpler concepts of quantity and tax 

proceeds, a “Laffer curve” pattern emerges here too, as a higher level of the tax rate (i.e., the 

tax per unit of the private good) has the following two contradicting effects: On the one hand, 

a higher amount of tax is collected from any sale of a single unit of the good; On the other 

hand, the flow of the number of units of the good is expected to be lower. The reason for the 

second effect is that the tax per unit is added to the production cost and thus raises the threshold 

price at which firms invest and enter the market, and therefore lowers the expected flow of 

market quantity over time.  
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 These two elements of the “Laffer curve” make the expected value of the discounted 

flow of tax proceeds an inverse u-shape function of the level of the tax that the government 

sets. Moreover, as the tax proceeds are used to finance the supply of a welfare-yielding public 

good, the u-shape form is also translated into the welfare function which is a composite of the 

welfare of both the private and the public goods. Thus, a unique welfare-maximizing level of 

the tax rate exists, and the analysis characterizes it. In particular, it is found that the higher the 

volatility of the demand swings the greater the optimal tax rate levied on the private good. The 

reason for that is based on the nature of the optimization which is based on the balance between 

the following three effects of a marginal increase of the tax rate: 

 More proceeds are collected from each unit traded 

 Less proceeds are collected because less units are produced  

 Less welfare is gathered from the market of the private good because less units are 

produced        

 

The first two elements are those that create the “Laffer curve” pattern of the tax 

proceeds. In equilibrium, the optimal tax rate must be in the range where the curve is increasing 

because the government does not care merely about maximizing tax proceeds but also cares 

about the welfare in the taxed market. Thus, in equilibrium, the sum of these two responses to 

a marginal increase in the tax rate is an increase in tax proceeds which leads to greater 

production of the public good and more welfare from its consumption. The optimum is 

characterized with a perfect equality between the welfare added by these two elements and the 

welfare loss captured by the third element. In the analysis of the model it is proven that an 

increase in the volatility of the demand for the private good raises the first element, which 

raises welfare, by more then it raises the second and third elements, which are lowering welfare, 

and therefore raises the optimal tax rate. 
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The article is organized as follows. Section 2 presents the basic setting of the model 

and the optimization of the single firm in the market for the private good, as well as the resulting 

dynamics in the market of this good. In this section the tax rate is exogenous, as this is how the 

firms view it. Section 3 presents the considerations of the government in imposing the welfare 

maximizing tax, and the market equilibrium dynamics under the optimal tax. Section 4 shows 

how the demand uncertainty regarding the private good affects the optimal tax. Section 5 offers 

some concluding remark. Some of the more technical parts of the analysis were relegated to 

two appendices. 

  

2. Basic settings and the optimization of firms 

There are two goods in the economy. The first one is a private good produced and traded in a 

perfectly competitive market, with the exception that the government taxes this markets. The 

reason for the taxation is the need to finance the activities of the government with regard to the 

other good, which is a public good and the government produces and offers it to the public. 

The market for the private good is modeled as a specific case of the standard model of 

investment under uncertainty introduced by Dixit (1989) for the case of a single firm, and its 

extension to the case of perfect competition as presented in Dixit and Pindyck (1994, pages 

252-260). The model in the current study follows the perfect competition version as presented 

by Dixit and Pindyck (1994). The rest of this section describes their results about the optimal 

choices of firms and the resulting market dynamics. 

The market comprises a large number of identical and infinitesimally small, price-

taking firms. At each time point 0t , the demand for this good is given by: 
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(1)  


t

t
t

Q

X
P  , 

 

where Qt is the quantity offered and consumed in the market at time t, and Pt is the price of the 

good at time t. The term Xt, is a demand shift factor that evolves stochastically over time 

according to the following Geometric Brownian Motion: 

 

(2)  tttt dZXdtXdX   , 

 

where  is the drift parameter,  is the instantaneous volatility, and dZt is the increment of a 

standard Wiener process satisfying     dtdZEdZE tt 
2

,0  at each time t.  

Firms are risk-neutral and maximize their expected value. Each firm rationally forecasts 

the future evolution of the whole market. An active firm produces a flow of one unit of output, 

at the production cost of w > 0. An idle firm can enter the market at any time. The basic model 

by Dixit (1989) introduces irreversibility of the investment via a fixed entry cost, denoted k. 

He also allows the firm to exit the market if demand goes sufficiently law, where exit bears the 

fixed cost l, which can be negative if by exit the firm sells its capital. Irreversibility in this case 

springs from the assumption k + l > 0, implying that part of the entry cost, k, is necessarily lost 

by entry. Such modelling prevents an analytical solution, and necessitates numerical analysis, 

and therefore it is often helpful to examine the extreme case where l is infinite, implying that 

the firm cannot exit at all. Dixit and Pindyck (1994) too adopt this assumption in the model 

which is followed here. It simplifies the analysis greatly, enables analytical solution, and also 
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enables dropping the entry cost k from the model, as irreversibility springs from the 

commitment to stay in the market and produce at the flow of production cost w.2  

To prevent the value of the firms from going to infinity it is also assumed that the 

interest rate r satisfies r > . In addition to the production cost w, each unit also costs the firm 

with a tax at the size of .  

The decision to enter the market is driven by expected profitability, and therefore takes 

place only when Xt is sufficiently large. In particular, given the current market quantity, Qt, a 

firm enters the market only if Xt hits an entry threshold which denoted by X*(Qt). To find this 

threshold, let  tt QXV ,  denote the value of an active firm. An analysis based on a Bellman 

equation (see Appendix A) shows that  tt QXV ,  is of the following form: 

 

(3)     
r

w

r

P
XQYQXV t

ttt





 



, , 

 

where and  is the upper root of the quadratic: 

 

(4)    02

2
122

2
1  rxx  , 

 

and satisfies  > 1, while  tQY  is to be found together with the entry threshold X*(Qt) via the 

following two boundary conditions which holds at time instances in which Xt hits the threshold 

and a new firm enters the market: 

 

                                                 
2 See McDonald and Siegel (1986) and Pindyck (2000) as additional examples for influential model assuming no 

exit in order to obtain a closed form solution. 
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(5)     0,* tt QQXV  

 

and:  

 

(6)     0,* ttX QQXV . 

 

The condition captured by (5) is known as the Value Matching condition. It states that 

the net value of entry (i.e., of becoming an active firm) is zero, as follows from the perfect 

competition in this market. It holds for any investment threshold, and not merely for the optimal 

threshold. (6) on the other hand, presents a condition for an optimal threshold, known as the 

Smooth Pasting Condition. Applying (4) in (5) and (6), yields the optimal entry threshold:  

 

(7)      



 tt Qw

r

r
QX 


 ˆ* , 

 

where 
 

̂ . Note that 1ˆ  , and thus scales up the investment threshold, compared with 

the net present value rule, to account for the presence of uncertainty and irreversibility (see 

Dixit and Pindyck, 1994, Ch. 5, Section 2). Note from (7) that 
 

0
*







tQX

 and note from implicit 

differentiation of (4) that 0






. This implies that uncertainty delays investment in the sense 

that the higher the uncertainty the higher the entry threshold. 

Figure 1 presents the resulting entry dynamics in the market. At a point like A that lies 

inside the region below X*(QA), small movements of the continuous demand shock Xt shift the 

industry’s position vertically but do not provoke changes in industry capacity. As soon as Xt 

hits X*(QA) however, investment occurs, increasing industry capacity. This raises the 
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investment threshold, so the industry lies again below the X*(Qt) function and further 

investment is postponed until the next time in which Xt hits the threshold function. 

 

  

Figure 1: Demand swings and entry dynamics in a competitive industry. When the market 

is at a point like A, below the entry threshold, the swings in the demand shit factor, Xt, do not 

change market quantity. When Xt hits the threshold function X*(Qt), firm entry leads to an 

incremental increase in Q making Xt once again below the threshold line.  

 

 

This pattern of investment in a competitive industry results in an endogenous cap on 

the price process, such that at any time Pt  P*, where from (1) and (7) it follows that: 

 

(8)  
 

 








 w
r

r

Q

QX
P

t

t ˆ
*

* . 
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3. The Optimal Tax 

At time t = 0 the government decides on the optimal tax rate . Following this decision, there 

are two possibilities to the immediate market reaction, given Q0 and X0 and based on the 

formula for the entry threshold, as given in (7).  

First, if the government chooses a sufficiently high level of , then X0 < X*(Q0), 

implying that no entry occurs at that time. The market quantity remains at Q0 for a while and 

changes only later, when the process Xt will reach the threshold level X*(Q0). Specifically, 

based on (7), this occurs if the government chooses a tax level within the range  00 , XQ  

where: 

 

(9)    w
Q

X

r

r
XQ 











0

0

00 ˆ
, . 

 

Otherwise, if the government choses  in the range  00 , XQ , then X0  X*(Q0) 

and there is an immediate entry raising quantity immediately from Q0 to the level  ,0

* XQ  

for which X0 is no longer above the entry threshold, but equals it. Based on that,  ,0

* XQ  is 

found, via (7) and the equality X0 = X*(Q0), and therefore given by:  

  

(10)   
   






1

0
0

*

ˆ
, 














wr

Xr
XQ . 
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3.1 The value of tax collection  

In this sub-section the tax collection from time t onwards is calculated, given the time t values 

of X and Q, and for the case where Xt < X*(Qt) so that not entry occurs right away at time t. 

For the simplicity of the analysis it shall be assumed that when, at  time t = 0, the 

government chooses the size of the tax per unit of output,  , then it is relevant only for firms 

entering from that point onwards, and not for the firms that were already active before this 

decision, and producing the quantity Q0.  

This assumption simplifies the analysis as it helps maintaining the simplifying 

assumption of extreme irreversibility taken before. Otherwise, the extreme irreversibility may 

lead to the undesirable result that the optimal tax rate is infinite, as the firms active in the market 

at time 0 cannot exit, so the quantity Q0 may be supplied even at an infinite tax rate. As 

mentioned earlier, allowing exit prevents analytical solutions and leaves only the option of 

conducting a numerical analysis. The same applies for relaxing the assumption that each firm 

produces a flow of one unit of output and, instead, allowing temporary production in a variable 

scale. This, too, will which will enable only numerical analysis rather than an analytical one.  

The assumption that the tax is levied only on firms entering after the time in which the 

tax is set is merely a simplifying one and does not affect the qualitative results. The is so 

because although the tax levied at time t = 0 does not lower market quantity at that point in 

time, it nonetheless does lower the expected flow of market quantity from then on as the tax is 

an additional cost for the firms which may enter the market later. Thus, the two main effects of 

the tax on welfare are preserved: First, welfare in the taxed market is harmed as the tax serves 

as an additional cost for the firms and makes them lower their production; Second, the tax 

collection (which finances the supply of the public good) is subject to the classic tradeoff where 
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raising the tax rate lowers the tax base and thus yields more from every unit of output, but 

lowers the number of such units. 

The function  ,, tt XQT  denotes the value of the tax collection from time t onwards, 

given the time t values of X and Q and given the tax rate . Based on the assumptions so far, it 

is defined as:   

 

(11)             
r

Q
XQHdseQQEXQT tt

t

tsr

stt
0

0 ,,,  


   

 

where  

 

(12)     
 




t

tsr

stt dseQEXQH , , 

 

and serves therefore as the present value of the flow of taxed market quantity from time t 

onwards. An analysis similar to the one conducted in Appendix A shows that  tt XQH ,  is of 

the form: 

  

(13)     
r

Q
XQCXQH t

tttt 


, , 

 

where  tQC  is to be determine by the following boundary condition: 
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(14)     0, * ttQ QXQH . 

 

Applying (13) in (14), simplifying, and then applying (7) and (8), yields that: 

 

(15)   
   







tt

t

QPrQXr
QC

**

11
' . 

 

Recall that  tt XQH ,  is the present value of the flow of taxed market quantity from 

time t onwards, and note that the second term in (13), namely 
r

Qt , is the present value of the 

flow of quantity if no firms enter after time t so that the quantity remains Qt. Thus, the first 

term in (13), namely   

tt XQC  , shows the contribution to  tt XQH ,  of future entries. This 

leads to the following boundary condition:    

 

(16)    0


t
Q

QCLim
t

, 

 

which holds because when Qt is infinitely large, then, by (7), the threshold X*(Qt) is infinitely 

large too, and the probability that Xt will ever reach it is 0, so no future entries will take place.  

Based on (16), there are two possibilities for the integration of (15) in order to obtain 

the function  tQC . First, if  < 1 then integrating yields that   tQC . The logic under 
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this result is that the smaller  the more elastic the demand and therefore the smaller the decline 

in price each time the entry threshold is hit, implying a shorter expected time until the next 

time the threshold is hit. Thus, the smaller  the faster the process of quantity growth and below 

a certain level of  this process is so fast that  tt XQH , , the present value of the flow of 

quantity, is infinite. This is highly unrealistic and therefore this case is not in the focus of the 

current study. 

We therefore focus on the second case and assume henceforth that  > 1. Integrating 

(15) under this assumption, bearing condition (16) in mind, yields: 

 

(17)   
    t

t
t

QXr

Q
QC

*1 
 . 

 

From (11), (12), (13) and (17) it follows therefore that:   

 

(18)   
 

 
 














w
XQK

r

QQ
XQT tt

t
tt

0,, , 

 

where: 

 

(19)   
    



 






rQ

r
QK

t

t
ˆ1

1
. 
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If, at setting the tax at time t = 0 the government was maximizing its tax collection, 

rather then maximizing welfare, then the optimal tax would be achieved via:  

 

(20)     
 

 
0

1
,,

10000 















w

w
XQKXQT , 

 

which implies that the tax level that maximizes the tax collection is: 

 

(21)  
1





wMax . 

 

3.2 The welfare function 

From (1) it follows that the present value of the surplus created from time t onwards by 

production of the private good is given by: 

  

(22)     
 























t

tsrs
stt dseQw

Q
XEXQS






1
,,

1

. 

 

Based on (22), a procedure similar to the one presented in Appendix A, leads to: 

 

(23)     
r

QwQ

r

X
XQFXQS ttt

tttt


















1
,,

1

, 
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where  tQF  is to be determine by the following boundary condition: 

 

(24)     0,,
*

tttQ QXQS . 

 

Applying (23) in (24), simplifying, and then applying (7) and (8), yields that: 

 

(25)   
  








QPr

w
QF t

*1
'  

 

Note that the second and third terms in the RHS of (23) represent the present value of 

the surplus created by production of the private good from time t onwards if quantity does not 

change and remains Qt over time. This implies that  the first term of (23), namely   

tt XQF  , 

represent the contribution of future entries to the present value of the surplus. This leads to a 

boundary condition: 

 

(26)    0


t
Q

QCLim
t

, 

 

which holds for similar reasons for those underlying condition (16). Integrating (25), leads, 

via (26) and by applying (19), to: 
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(27)   
   

   








w

wQK
QF t

t
1

. 

 

The welfare in the market for the private good is defined as the surplus created by 

production of that good, less the amount taken from the market via taxation, i.e.: 

 

(28)            ,,,,,, tttttt

PR XQTXQSXQW   

 

The welfare that the government generates by supplying the public good is assumed to 

be positively connected to its expenditures on it, which in turn, is based on the proceeds from 

taxing the market for the private good. To apply the simplest form for this assumption, it is 

assumed that the welfare from supplying the public good equals the expenditure on it, i.e: 

   

(29)      ,,,, tttt

PU XQTXQW  . 

 

As shall be seen later, this simplifying linearity assumption does not lead to a corner solution. 

The reason for that is the curvature in the welfare at the market for the private good, which 

follows from the curvature in the demand for this good as capture by (1). 

The overall welfare in this economy at time t , denoted  ,, tt XQW , is assumed to be 

the following composite of the surplus created in the market for the private good and the 

welfare from supplying the public good:  
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 (30)        ,,,,,, tt

PU

tt

PR

tt XQWXQWXQW   

                    ,,,, tttt XQTXQS  , 

 

where the coefficient   represents the weight that welfare from the public good has in the 

overall welfare, and the second equality follows from (28) and (29).  

From (30) it follows that taxation contributes to welfare only if the  > 1, which will be 

assumed from now on.  

Applying (20), (23) and (27) in (30) leads to: 

 

(31)   ,, tt XQW
    

  r

QwQ

r

X

w

wXQK ttttt 
































1

1
1

 

 
 

r

QQt 01





 . 

3.3 The optimal tax 

The optimal tax is found by looking at the welfare at time t = 0 in which the government sets 

the tax. Given the values of X and Q at this time, there are two possibilities. In the first one, the 

government chooses a value of  in the range  00 , XQ  and therefore X0  X*(Q0) so that 

no entry occurs immediately. In the second case, the government chooses a value of  in the 

range  00 , XQ  and therefore X0 > X*(Q0) so that entry occurs immediately making 

quantity immediately rise. In this section both cases will be analyzed, revealing the optimal tax 

level under each one, and finding the condition that show to which of the two ranges it is better 

for the government to turn. 
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3.3.1 The optimal tax in the range   *(Q0, X0)  

In this case, there is no immediate entry after the tax is set, so the quantity remains Q0 for a 

while. Recall also that, by construction, (31) represents welfare at a time instant in which 

there is no entry. Thus, in this case the welfare is captured by evaluating the (31) at (Q0, X0), 

and the optimal tax is found by differentiating it with respect to  . This yields: 

 

(32)    ,, 00 XQW  
    

  100

11















w

w
XQK  

 

From (19) it follows that   00 QK , and this implies that the sign of the derivative is 

the sign of the numerator on the RHS of (32). As  goes from 0 to infinity, this numerator 

continuously falls from   01  w  to -∞, implying that  ,, 00 XQW  is an inverse u-shape 

function of , maximized at:    

 

(33)  
 

wopt 





11


 . 

 

Note that  > 1 and  > 1 assert that opt is positive. Another property of the optimal 

tax is that it is smaller than the level that maximizes tax collection, xM , as the government 

balances between collecting taxes and the welfare in the taxed market. This result is 

established by: 
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(34)  
   

xMopt w
ww 








 














101

0

11
, 

 

where Max is captured by (21). 

Note that the entire analysis in this subs-section, leading to equation (33) for the optimal 

tax, was done under the assumption that the level of  that the government chooses is in the 

range   *(Q0, X0). Thus, it is important to verify that the optimal tax level captured by (33) 

is indeed within that range. This occurs if the right end of the relevant range, namely *(Q0, 

X0), is within the downward-sloping part of   ,, 00 XQW , so that the peak of this inverse u-

shaped function of  is indeed within the relevant range. This condition takes the form of the 

inequality    0,,, 00

*

00 XQXQW  , and applying (9) and (32) in it yields the following 

necessary and sufficient condition for opt to be within the relevant range: 

  

(35)  
 

  
**

0

0
0

11

ˆ
Pw

r

r

Q

X
P 











. 

 

Thus, the initial level of demand for the private good has to be sufficiently low, given 

the initial supply of that good, to make the government choose the tax level captured by (33) 

for which no immediate entry occurs in that market. 

If (35) does not hold, then, within the range this sub-section focuses on, namely,  

 00 , XQ , the welfare function is a downward-sloping function of , which implies that 
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the optimal tax level is in the complementary range  00 , XQ . The next sub-section 

analyzes the properties of the welfare function and finds the optimal tax within that range. 

 

3.3.2 The optimal tax in the range  <  *(Q0, X0) 

 In this subsection the welfare-maximizing tax is found for the case in which the tax that 

government chooses satisfies  00 , XQ  so that X0 > X*(Q0) and therefore there is 

immediate entry taking quantity at once from Q0 to  ,0

* XQ , which was introduced earlier 

and captured by (10). Based on that, in this case the welfare function at time 0 will be denoted 

by  ,, 00 XQW   and defined by: 

 

(36)       ,,,,, 00

*

00 XXQWXQW  . 

 

The optimal tax is found by differentiating the welfare function (36) with respect to . The 

derivative will be denoted  ,, tt XQG  and it is characterized by:  

 

(37)   
    










d

XXQdW

d

XQdW
XQG tt

,,,,,
,, 00

*

00 


 

   
    

  



  ,,,

,
,,, 00

*0

*

00

* XXQW
d

XdQ
XXQWQ 

  
    

 

   ,,, 00

* XXQW , 
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where the last equality follows from    0,,, 00

*  XXQWQ  which follows from  ,0

* XQ  

being the quantity in which entry stops as the current level of X equals the entry threshold, so 

that the case from the previous sub-section is met and (12), (23) and (27) are satisfied. 

Thus, applying  ,0

* XQ , as captured by(10), in (31), taking the partial derivative 

with respect to , and simplifying, yields: 

  

(38)   
           

  1

00

*

00

11111

1

,
,,

























w

wXXQK
XQG

          
 

r

QXQ 00

* ,
1





 . 

 

Applying  ,0

* XQ  and   ,0

* XQK , as captured by(10) and (18), and simplifying 

yields: 

 

(39)   
   

   
 

 
r

Q

r

XQ

w

w
XQG 00

*

00 1
,

1

1
,, 




 






 . 

 

The optimal tax rate can be found and characterized via (39), as the following 

Proposition 1 establishes: 
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Proposition 1: For any X0 and Q0: 

(a)  ,, 00 XQW   is an inverse u-shaped function of , peaking at the level of  for 

which   0,, 00 XQG , 

(b) The level of   that maximizes  ,, 00 XQW   is in the relevant range of this 

case, namely,  00 , XQ , if and only if X0 and Q0 satisfy P0 > P**.   

 

Proof: In Appendix B.                

 

3.3.3 The optimal tax – a unified analysis 

This sub-section unifies, via Proposition 2, the results of subsection 3.3.2, which has focused 

on the range  00 , XQ , and the results of subsection 3.3.1, which has focused on the range 

where  00 , XQ , and presents thus a unified look on the optimal tax rate.  

 

Proposition 2:  If  Q0 and X0 are such that P0 < P** then the optimal tax rate is located within 

the range  00 , XQ  and captured by (33).  

Otherwise, the optimal tax rate is located within the range  00 , XQ  and can be found as 

the single root of   0,, 00 XQG , where  ,, 00 XQG  is captured by (39). 

 

Proof: By construction,  ,, 00 XQW   and  ,, 00 XQW  meet one another when 

 00 , XQ , as can be verified by (9), (10) and (36).  
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In the case where P0 < P** the meeting point is characterized by both 

  0,, 00   XQW and   0,, 00  XQW implying that the optimal tax rate is to the left of this 

point, i.e., within the range  00 , XQ  and therefore, by Proposition 1, it is the root of 

  0,, 00 XQG . 

The opposite happens in the case where P0  P**. In this case the meeting point is 

characterized by both   0,, 00   XQW and   0,, 00  XQW , implying that the optimal tax 

rate is to the right of this point, i.e., within the range  00 , XQ  and therefore, by the 

analysis in sub-section 3.3.1, it is captured by (33).           

 

4. The effect of uncertainty on the optimal tax 

The purpose of this section is to show that the uncertainty in the economic environment, as 

captured by the parameter  2, raises the optimal tax rate opt. We start the analysis with case 

where P0 < P** and the optimal tax is given by (33). In this case 2 affects opt only via  and 

it is immediate to notice that 0




d

d opt

. Applying   for x in (4) leads via implicit 

differentiation conducted in Appendix A, to 0




d

d
 and therefore asserts that in this case opt 

is an increasing function of 2.  

We now turn to the complementary case where P0  P**. To analyze this case it is useful 

to apply (39) in the equation   0,, 00 XQG  from which the optimal tax, opt, is found, and to 

present resulting equation as follows:  
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(40)          01 0* 
r

Q
NMG optopt  , 

 

where: 

 

(41)   
 

r

XQ
N t 
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

,

1

*




 , 

(42)       
opt

opt
opt

w

w
M











1
. 

 

From the assumption that 01  , together with (1), it follows that  N , as 

captured by (41), is always positive. This, together with (40), asserts that  optM   is always 

positive too. Also note from the definition of ̂  that: 

 

(43)  
 21

1ˆ










d

d
. 

 

Differentiating (10), applying (43), and simplifying yields: 

 

(44)  
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d

XdQ t ,
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Differentiating  N , as captured by (41), and using (43) and (44), yields: 

 

(45)   'N
 

 
 1

,

1

1 *

















r

XQ t  < 0 

 

Based on that: 

 

(46)        0'*   NMG optopt .  

 

Appendix B establishes that   opt
optG* .3 This leads to: 

 

(47)  
 
 

0
*

*



















opt

optopt

optG

G

d

d
. 

 

Then, from 0




d

d
 it follows that opt is an increasing function of  2 also in this case 

where initial values of X and Q lead to P0  P**. 

 

 

 

                                                 
3Specifically, it is established there via equation (B.4). 



26 

 

5. Conclusion 

In this study I have presented the problem of a government that searches for the welfare 

maximizing tax rate, where the tax is levied on a private good in order to finance the supply of 

a public good. The novelty in the analysis is that the private good is modelled with the standard 

features of the literature about investment under uncertainty, namely that the profitability firms 

face is a stochastic process, that production requires an initial irreversible investment, and that 

firms can chose the timing for when to invest and start producing. The analysis leads to a 

solution for the optimal tax rate and to a characterization of the market dynamics under the 

optimal choice of the government. A result of particular importance is that the higher the 

uncertainty in the demand swings over time the higher the optimal tax rate. 

 Another comparative static result is that the optimal tax rate is increasing in the weight 

that the public good captures in the overall welfare function. This is a rather intuitive result, 

almost trivial, and therefore was not highlighted in the analysis. On the other hand, the results 

regarding the role of demand elasticity plays in determining the optimal tax rate, are rather 

ambiguous, in contrast to results from static modelling. On the one hand, demand elasticity 

should be sufficiently large, at leas at very small quantities, to ensure that welfare is finite 

(under the standard assumption that the demand curve does not cross the axis in the price-

quantity plane). On the other hand, the analysis reveals that demand elasticity also cannot be 

too elastic, because if it will then the process in which firms enter when demand is sufficiently 

high will not delay subsequent investment enough, leading to the non-plausible result of an 

infinitesimally large tax collection. These different effects of the demand elasticity translate to 

an ambiguous effect on the optimal tax rate.     

 While the issue of the optimal finance of public goods has been extensively studied 

over the years, it is important to study it further as in recent years, prices, and in particular 
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housing prices, have soared and public cries for the government to lower taxes are often heard. 

Thus, if changes in tax rates are to be considered, then, as the results here show, the role of 

uncertainty should be considered as well. 
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Appendix A – The value of an active firm 

This appendix presents the derivation of the value function  QXV , , as captured by (3). It does 

so by following the analysis in Dixit (1989). The starting point of the analysis is noting that by 

its definition, 𝑉(𝑄, 𝑋) satisfies: 

 

(A.1) 𝑉(𝑄0, 𝑋0) = 𝐸𝑋0
[∫ [𝑋𝑡 ∙ 𝑓(𝑄𝑡) − 𝑤] ∙ 𝑒−𝑟𝑡 ∙ 𝑑𝑡

∞

0

]. 

 

(A.1) leads to the following Bellman equation for time instants in which the entry 

threshold is not reached and Q is unchanged: 
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(A.2) 𝑉(𝑄𝑡, 𝑋𝑡) = [𝑋𝑡 ∙ 𝑓(𝑄𝑡) − 𝑤] ∙ 𝑑𝑡 +
1

1 + 𝑟 ∙ 𝑑𝑡
∙ 𝐸[𝑉(𝑄𝑡, 𝑋𝑡+𝑑𝑡)]. 

 

Multiplying by 1 + 𝑟 ∙ 𝑑𝑡, and rearranging, yield:    

 

(A.3) 𝑟 ∙ 𝑑𝑡 ∙ 𝑉(𝑄, 𝑋) = [𝑋 ∙ 𝑓(𝑄) − 𝑤] ∙ 𝑑𝑡 ∙ (1 + 𝑟 ∙ 𝑑𝑡) + 𝐸[𝑑𝑉(𝑄, 𝑋)], 

 

where 𝑑𝑉(𝑄𝑡, 𝑋𝑡) = 𝑉(𝑄𝑡, 𝑋𝑡+𝑑𝑡) − 𝑉(𝑄𝑡, 𝑋𝑡), as we look at a time in which Q is not 

changed. By Itô's lemma,  

 

(A.4) 𝐸[𝑑𝑉(𝑄, 𝑋)] = [
1

2
∙ 𝜎2 ∙ 𝑋2 ∙ 𝑉𝑋𝑋(𝑄, 𝑋) + 𝜇 ∙ 𝑋 ∙ 𝑉𝑋(𝑄, 𝑋)] ∙ 𝑑𝑡, 

 

where time indexes are omitted from here on for notational convenience. Substituting (A.4) 

into (A.3), dividing by 𝑑𝑡, taking the limit 𝑑𝑡 → 0, and rearranging, yields:  

 

(A.5) 
1

2
∙ 𝜎2 ∙ 𝑋2 ∙ 𝑉𝑋𝑋(𝑄, 𝑋) + 𝜇 ∙ 𝑋 ∙ 𝑉𝑋(𝑄, 𝑋) − 𝑟 ∙ 𝑉(𝑄, 𝑋) + 𝑋 ∙ 𝑓(𝑄) − 𝑤 = 0. 

 

 

Trying a solution of the type 𝑋𝑏 for the homogenous part of (A.5) and a linear form as 

a particular solution to the entire equation yields 
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(A.6) 𝑉(𝑄, 𝑋) = 𝑍(𝑄) ∙ 𝑋𝛼 + 𝑌(𝑄) ∙ 𝑋𝛽 +
𝑋 ∙ 𝑓(𝑄)

𝑟 − 𝜇
−

𝑤

𝑟
= 0, 

 

where 𝑍(𝑄) and 𝑌(𝑄)  are to be found later via additional conditions, and  𝛼 < 0 and 𝛽 > 1 

solve the quadratic 

 

(A.7) 
1

2
∙ 𝜎2 ∙ 𝑥 ∙ (𝑥 − 1) + 𝜇 ∙ 𝑥 − 𝑟 = 0. 

 

Applying x = 0 and then x = 1, and bearing in mind that r >  asserts that (A.7) has 

two roots, one of them negative and the other exceeds 1.  

By the standard properties of a geometric Brownian Motions, it follows that4: 

 

(A.8) 𝐸𝑋0=𝑋 [∫ 𝑋𝑡

∞

0

∙ 𝑒−𝑟∙𝑡𝑑𝑡] =
𝑋

𝑟 − 𝜇
 . 

 

Eq. (A.8) implies that the term 
𝑋∙𝑓(𝑄)

𝑟−𝜇
−

𝑤

𝑟
 in (A.6) represents the expected value of the 

flow of profits if 𝑄 remains at its current level forever. The two other terms in (A.6) therefore 

represent how expected future changes in 𝑄 affect the value of the firm.  

As a geometric Brownian motion, when 𝑋 goes to 0 the probability of its ever hitting 

𝑋∗(𝑄) > 0, and thus of an increase in 𝑄, tends to zero. Therefore 

 

                                                 
4 Dixit and Pindyck (1994, page 72) prove (A.6). 
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(A.9) lim
𝑋→0

(𝑍(𝑄) ∙ 𝑋𝛼 + 𝑌(𝑄) ∙ 𝑋𝛽) = 0. 

 

Because 𝛼 < 0, (A.9) implies 𝑍(𝑄) = 0. Substituting into (A.6) then gives Eq. (6) in 

the text. 

Finally, from implicit differentiation of (A.7), evaluated at x = , it follows that:  

 

(A.10) 
𝑑𝛽

𝑑𝜎2
= −

1
2 ∙ 𝛽 ∙ (𝛽 − 1)

1
2 ∙ 𝜎2 ∙ (2 ∙ 𝛽 − 1) + 𝜇

= −

1
2 ∙ 𝛽 ∙ (𝛽 − 1)

1
2 ∙ 𝜎2 ∙ 𝛽 +

1
2 ∙ 𝜎2 ∙ (𝛽 − 1) + 𝜇

 

 

 

 

= −

1
2 ∙ 𝛽 ∙ (𝛽 − 1)

1
2 ∙ 𝜎2 ∙ 𝛽 +

𝑟
𝛽

< 0, 

 

where the last equality follows from (A.7), and the inequality follows from  > 1.  

 

Appendix B – the proof of Proposition 1 

This appendix presents the proof of Proposition 1. The first part of the proposition states that 

 ,, 00 XQW   is an inverse u-shaped function of . To establish that, note from the analysis 

in sub-section 3.3.2 that  ,, 00 XQG  is the derivative of   ,, 00 XQW  , and that, based on 

(39), it satisfies:  

  

(B.1)   0,, 00 XQG    0,1
1

11
00

* 













 QXQ

r





, 
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where the inequality follows from  > 1,  > 1, and also from   00

* , QXQ   which follows 

from  ,0

* XQ  being the outcome of immediate entry of firms that occurs in this case. Another 

property of   ,, 00 XQG  that follows from (39) is: 

 

(B.2)   


,, 00 XQGLim


  01 
r

Qt . 

 

(B.1) and (B.2) prove existence, via continuity. To prove uniqueness, first notice from 

(10), that: 

 

 (B.3)  
   

 










wr

XQ

d

XdQ t ,, *

0

*

  

 

Differentiating (39) with respect to , applying (B.3) and simplifying, yields: 

 

(B.4)    ,, 00 XQG
   

 
r

XQ

w

w 



 ,

1

0

*

2





     

      
 

   
   

 
 










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


wr

XQ

w

w t ,

1

1 *

 

      

       
   

 
r

XQ

w

w 



 ,

1

0

*

2





  

 








wr

Q0  < 0, 
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where the 2nd equality follows from (39). This proves uniqueness and completes the proof of 

part (a) of the proposition. To prove part (b) of the proposition note that by definitions of Q* 

and  *, and therefore by (9) and (10): 

 

(B.5)     0000

* ,, QXQXQ   

 

Applying (9) and (B.5) in (39), and simplifying, yields: 

 

(B.6)    0000 ,,, XQXQG 
  r
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r

r

w



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


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
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ˆ

0

0

0 



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

 

 

    
 
  0

0

**

1
1

11
Q

P

P

r


















, 

 

where the second equality follows from (1) and (35). From (B.6) it follows that if and only if 

X0 and Q0 satisfy P0 > P** then    0,,, 0000  XQXQG  , implying that the level of  that 

maximizes  ,, 00 XQW   satisfies  00 , XQ . This establishes part (b) of the proposition. 


