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We consider a real-options problem in which the underlying project value follows a geometric or exponen-

tial Lévy process, capturing rare events besides continuous fluctuations. Such rare events lead to ambiguity

because of inconclusive empirical data or market incompleteness. We use ambiguity theory —leveraging the

notion of variational preferences and g-expectations— to pin down for the general case a pricing kernel under

which to value real options and derive the firm’s optimal real-option exercise strategy under this pricing

kernel. We also provide sufficient conditions for the optimality of a threshold policy in the general case. For

the specialized case with multi-priors preferences, we obtain explicit expressions for the optimal investment

threshold, expected investment time, and value function and prove comparative statics to assess analyti-

cally the effect of small jumps on these. Closed-form expressions are not readily available for multipliers

preferences, but we provide approximate solutions for the cases with negligible and deep ambiguity. Rare

events, which are priced under ambiguity aversion, generally lead to a higher investment threshold, delayed

investment and higher option value.

Key words : Real options, ambiguity, optimal stopping, variational inequalities.
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1. Introduction

Recent political and socioeconomic developments (e.g., the unexpected vote for Brexit, the Covid-

19 pandemic, war in Ukraine) underscore the impact rare or unexpected events can have on firm

decisions. Following Merton’s (1976) pioneering work, introduced pure jump processes to model

rare events in option pricing theory. A a large class of jump-diffusion models (also known as

Lévy processes) (e.g., Duffie et al., 2000; Kou, 2002) have since been used in the literature on

asset pricing. These models assume that an asset’s price dynamics is driven by two fundamental

processes, a Brownian motion implying continuous shocks and a pure jump process implying rare

events. Empirical evidence shows that such models fit well with financial time series, with the

discontinuous rare events explaining more of the underlying risk in the economy (Ornthanalai,

2014).

A key issue in finance is to assess the fair price of future cashflows by determining an appropriate

pricing kernel (e.g., via a constant discount rate). This issue is also fundamental for an operational

perspective because it influences the firm’s investment decisions under uncertainty, e.g., to launch a

new project (Dixit and Pindyck, 1994; Trigeorgis, 1996). If the decision maker can readily identify

the factors that drive a project’s value (e.g., commodity prices, demand patterns), the time series of

these factors’ fluctuations (“empirical data”) can be quite useful for valuation purposes (see Ross,

1976). In many cases, the decision maker is able to identify traded financial securities or market

indexes that are closely correlated with the project’s value. The notion that real investment projects

can be valued using principles rooted in (financial) asset pricing theory is well accepted under the

assumption that the project’s prospects are perfectly spanned by traded financial instruments (see,

e.g., Constantinides, 1978). However, if a project’s value is subject to both continuous fluctuations

and rare events, then “ambiguity” (“Knightian uncertainty”) may arise for several reasons:

a. Rare events introduce discontinuous shocks, e.g., due to paradigm shifts in technologies, mar-

ket regulation, or industry structure. Because such events are rare, statistical models for their

distribution and dynamics are prone to error, such that several models may well be consistent
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with the observed empirical data. As a result, decision makers cannot confidently identify one

distribution model among such multiple models (e.g., Hansen and Sargent, 2001).

b. When benchmarking against traded financial instruments, inferring the market price of risk

or the equivalent martingale measure (EMM) from financial time series is key. If the market is

complete, then there is a unique market price of risk (or EMM) which can be used to price an

American option allowing the discounting of cashflows at the riskfree rate (Bensoussan, 1984;

Karatzas, 1988). However, under market incompleteness (which is typical in markets exhibiting

rare events besides continuous fluctuations), there are multiple market prices of risk (or EMMs)

consistent with the financial time series data (Riedel, 2009; Thijssen, 2011). Under such ambiguity,

there again is a range of models that are consistent with the empirical data: investors may fail to

agree on a common prior (see Burzoni et al., 2021). Further, the optimal exercise for real options

as well as the price of these options depend on the manager’s subjective ambiguity preferences for

a particular statistical model.

In this paper, we consider an investment problem in the spirit of McDonald and Siegel (1986)

in which the firm decides about the launch of a new project whose value follows a geometric or

exponential Lévy process. Samuelson (1965), Merton (1976), and Kou (2002) examine different

special cases and variants of such processes. Because of ambiguity, the investment problem embeds

two subproblems, one of optimal stopping (for a given choice of a statistical model) and another

related to the multiplicity of statistical models that fit the empirical data. We reduce the set of such

models by using notions from ambiguity theory, focusing first on a general theory assuming the

decision maker has variational preferences (see Maccheroni et al., 2006b,a) and then constructing

the optimal exercise policy assuming she has multiple-priors (see Gilboa and Schmeidler, 1989)

or multipliers preferences (see Hansen and Sargent, 2001). This approach essentially consists of

formulating the alternative models in terms of an ambiguity-adjusted drift, a well-established

methodology aligned with the standard treatment of ‘outside uncertainty,’ model mis-specification,

and model ambiguity (see Hansen, 2014). Within this reduced set of models, we show that the firm’s
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optimal investment strategy is unique and characterized by an investment threshold. The value

function, which prices in the effect of rare events onto the firm’s cashflows and onto its business

decisions, is also unique. We express the continuation set, the value function, and the expected

stopping time for the geometric Lévy process explicitly in case of multiple-priors preferences.

Under assumptions leading to nice financial interpretations (comparable to those in Dixit and

Pindyck (1994) and McDonald and Siegel (1986)), we establish that a firm facing rare events

besides continuous fluctuations generally faces a higher investment threshold and is thus less prone

to investing, its deferral option being more valuable. These results are robust to the choice of arrival

rates, jump size distributions and their (positive or negative) contribution to the value process

dynamics. These results are also robust to alternative ambiguity preferences such as multipliers

preferences. To the best of our knowledge, ours is the first study to prove such results analytically.

2. Literature review

This paper is at the interface of the literatures on Lévy processes and ambiguity theory.

Lévy processes

The geometric Brownian motion—used by, e.g., Samuelson (1965), Black and Scholes (1973), Mer-

ton (1973), and McDonald and Siegel (1986)—does not allow for rare events. Merton (1976) intro-

duces Poisson-type rare events in the asset’s log-return dynamics assuming that jumps occur at

a constant arrival rate and have normally distributed sizes. Bates (1996) extends this geometric

jump model to allow for a square-root variance process, while Kou (2002) assumes a double expo-

nential (or Laplace) distribution for the jump size. Duffie, Pan, and Singleton (2000) synthesize

the earlier literature via a larger class of geometric Lévy processes in which the drift, diffusion and

jump intensity are all affine in the state variable. Empirical evidence suggests such models with

jumps exhibit higher skewness and leptokurtosis consistent with observed financial times series and

can better explain empirical phenomena such as the “volatility smile” (Duffie et al., 2000; Kou,

2002; Ornthanalai, 2014). For tractability, we focus on one-dimensional processes—setting aside



Author: Real options under model uncertainty
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 7

stochastic volatility—and benchmark against the models of Samuelson (1965), Merton (1976), and

Kou (2002) which are well-established in the literature.

In the presence of discontinuous rare events, market incompleteness becomes an issue as it leads to

multiple EMMs. Merton (1976) assumed that rare events are not systematic (i.e., are firm-specific)

and hence command no risk premium, which allows selecting one specific EMM among a larger

set. However, if rare events embed systematic risk as the recent experiences with Brexit, Covid 19,

and the War in Ukraine suggest, then the key assumption made by Merton (1976, pp. 132-134) in

order to price a (European) option written on an underlying asset following (his simple variant of)

a geometric Lévy process does not hold. Duffie et al. (2000, Section 3.1) and Kou (2002, Section 6)

make less restrictive choices that allow the selection of an arbitrary EMM. Instead of considering

a large set of EMMs (within which one makes an arbitrary choice), we narrow down the selection

within a subset of EMMs that are aligned with the agent’s ambiguity preferences (considering

various types of ambiguity preferences in turn).

Ambiguity theory

The literature introduced various types of ambiguity preferences: multiple priors (Gilboa and

Schmeidler, 1989), κ-ignorance (Chen and Epstein, 2002), multiplier preferences (Hansen and Sar-

gent, 2001), variational preferences (Maccheroni et al., 2006a,b; Petracou et al., 2022), and smooth

preferences (Klibanoff et al., 2005). A key insight from this literature is that the fair pricing of

financial claims in the presence of ambiguity involves a minimization over a given set of probability

measures, so as to identify a “worse-case scenario” under which to price these claims. This pro-

cedure leads one to consider a nonlinear generalization of the concept of conditional expectation

(Burzoni et al., 2021)—typically a g-expectation (Pardoux and Peng, 1992). Our paper focus on

variational preferences, which encompass both Gilboa and Schmeidler’s (1989) multiple-priors and

Hansen and Sargent’s (2001) multipliers preferences for which we construct the value function.

Our goal is to study a real options problem à la McDonald and Siegel (1986) for which the

underlying project value is subject to a geometric Lévy process. Several authors have contributed
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in this direction already. For instance, Nishimura and Ozaki (2007) study a problem in which

an agent has multiple-priors preferences à la Gilboa and Schmeidler and decides when to launch

a project whose value follows a geometric Brownian motion. Trojanowska and Kort (2010) and

Thijssen (2011) study a similar problem, but under κ-ignorance. Cheng and Riedel (2013) con-

sider a more general problem in which the underlying process has continuous sample paths and

the agent has variational preferences. Specifically, Cheng and Riedel (2013) characterize the value

process as the smallest g-supermartingale that dominates the payoff process. For cases in which

the underlying asset follows a diffusion, Cheng and Riedel (2013) identify a variational inequality

(hereafter VI) and proves that, if a function solves this VI (in the weak or distributional sense),

then it coincides with the value function of optimal stopping. The authors also provide examples

involving κ-ignorance. Chen et al. (2013) pursue similar objectives than Cheng and Riedel (2013)

and leverage the techniques for solving optimal stopping problems in case of reflected backward

stochastic differential equations (BSDE) introduced by El Karoui et al. (1997). Compared to Cheng

and Riedel (2013) and Chen et al. (2013), our focus is on the impact of rare events alongside con-

tinuous fluctuations (by considering geometric Lévy processes). In that respect, our paper is closer

to Quenez and Sulem (2014) and Dumitrescu et al. (2015) who study optimal stopping problems

involving variational preferences and Lévy processes. Quenez and Sulem (2014) characterize the

value process as the solution to a reflected BSDE, while Dumitrescu et al. (2015) prove that, in

the Markovian case, the value function of optimal stopping solves a VI (in the viscosity sense) and

establishes the uniqueness of such a (viscosity) solution. These papers do not fully study the effects

of ambiguity on the optimal policy or on the value function (as they focus more on the character-

ization of the value function rather than its construction). The study of such effects, which have

far-reaching consequences from the operations (research) viewpoint, is the main objective of this

paper. We state key results in Quenez and Sulem (2014) and Dumitrescu et al. (2015) for the sake

of completeness. We further provide closed-form expressions for the investment thresholds, value

functions, and expected exercise time in case of Gilboa and Schmeidler’s multiple-priors. We fur-

ther derive useful comparative statics, which yield novel and interesting managerial insights: Rare
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events are show to lead to a higher investment threshold, a delayed investment and a higher real

option value, but a concurrent high degree of ambiguity may reduce the investment threshold and

the real option value of waiting. Under Hansen and Sargent’s multiplier preferences, we provide

approximate solutions for the case with negligible and deep ambiguity.

3. Project valuation under model uncertainty

3.1. Ambiguity about multiple uncertainty sources

Consider a firm contemplating launching a project whose value is subject to continuous fluctuations

as well as rare events. On a measurable space (Ω,F), consider that continuous random fluctuations

are modeled by a continuous process W , while rare events are modeled by a suitable random

measure N . Let F := {Ft, t∈R+} be the natural filtration associated with these two fundamental

processes. The characterization of the project value dynamics requires the adoption of laws of

probability for W and N , which is equivalent to transforming the measurable space (Ω,F) into a

filtered probability space (Ω,F ,F,P) and selecting the stochastic processesW and N such that they

correspond, under the probability measure P, to a Wiener process and a Poisson random measure,

respectively. In particular, under the probability measure P, the random measure N counts the

number of jumps of size dZs ∈U ⊂R occurring in the time interval [0, t]:

N(t,U) :=
∑

s:0≤s≤t

1U(dZs), where dZs =Zs −Zs− and 1· denotes the indicator function.

The mapping U 7→EP[N(1,U)] =: ν(U) defines the Lévy measure. This defines a norm given by

∥ν∥=
∫
R dν(z).

For the sake of generality, consider first the dynamics in Quenez and Sulem (2014) and

Dumitrescu et al. (2015), with the underlying state process solving

Xt = x, and dXs = µ̃(Xs)ds+ σ̃(Xs)dWs +

∫
R
γ̃(Xs, z)N̄(ds,dz) for s > t, (1)

where γ̃(X,z) captures the impact of the random jumps on the project value of size in the interval

[z, z + dz] at time t, and N̄ is the compensated Poisson measure. In our work, we focus (unless

specified otherwise) on a standard model of a geometric Lévy process, with

µ̃(X) = µX, σ̃(X) = σX and γ̃(X,z) = γ(z)X, (2)
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where µ and σ > 0 are constant parameters and γ(·) is a function such that γ(z)≥−1 ν-almost

everywhere (“ν-a.e.”). This process subsumes Samuelson’s (1965) geometric Brownian motion

(obtained for γ ≡ 0 or ν ≡ 0) and the jump-diffusion models introduced by Merton (1976), Kou

(2002) and Øksendal and Sulem (2007). The assumption γ(·)≥−1 ensures, roughly speaking, that

the worse impact of jumps on the project value dynamics is for this project value to vanish.

Given a common prior P, it is standard to pin down a single EMM, say Q, for the purpose of

fairly pricing a contingent claim paying off an amount modeled as a suitable random variable ξ

(see Harrison and Kreps, 1979). In the context of option pricing, the random variable ξ could be

interpreted as the discounted value as of time t of receiving an amount F (XT ) at time T ≥ t where

X is the underlying security modeled in eq. (1) and F : R+ → R is a known payoff function, i.e.,

ξ = e−r(T−t)F (XT ). Given this (and denoting by EQ[· | Ft] the conditional expectation under the

measure Q with respect to Ft), one then uses a formula given by

ξ 7→ J (ξ) :=EQ[ξ | Ft] to price that contingent claim as at time t∈ [0, T ]. (3)

In the presence of rare events leading to ambiguity (i.e., multiple probability models for some

underlying process), one cannot find a unique EMM, so that for non–replicable assets there are

multiple pricing formulas of the form in eq. (3) depending on the choice of prior measure.

3.2. Characterizing variational preferences via backward stochastic differential equations

The dynamics of eq. (1) are based on the modeling assumption that the stochastic value process

can be split into a mean behavior and random fluctuations (ideally of zero mean) around the mean

behavior. These characteristics depend on the two fundamental processes W and N , and whether

they can be modeled as mean-zero fluctuations around a mean behavior under a prior P. However,

there is no consensus among economic agents about a common prior P, leading to ambiguity about

the dynamics of eq. (1). Typically, several priors are compatible with past observed empirical data,

which differ in the drift, diffusion term, jump arrival rate or jump magnitude. As a result, adopting
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an alternative probability measure Q for these fluctuations leads to variations in the mean behavior

of the dynamics of eq. (1) under the corresponding measure.

Assume there is a reference prior P such that the relevant set consists only of the probability

measures Qλ that are absolutely continuous with respect to P. One can associate to any of these

probability measures a Radon-Nikodym derivative, namely

dQλ

dP
|FT

=Zλ
T , where dZλ

t =Zλ
t

[
λW,tdW (t)+

∫
R
λJ,t(z)N(dt,dz)

]
and Zλ

0 = 1, (4)

which is expressed in terms of a stochastic process λ := (λW , λJ)∈H2×H2
ν . (All relevant functional

spaces are defined in Appendix A.) It is possible that it is more common in finance to

write a − sign in the bracket in eq. (4)? For instance on page 156 of Dumas and

Luciano (2017). (Sorry, I have limited access to my books, so I cannot find a more

common finance references.) In finance, it is common for the market price of risk to

be positive, which leads to a negative adjustment to the drift when we have a − sign.

If we have a +, it may mean that the market price of risk takes negative value? Again,

I am not challenging the math, but rather the economic interpretation of the market

price of risk. See also comment below. The process λ is interpreted, in the context of finance

or real options, as the market price of risk: the real-valued process λW captures the market price

of risk from the continuous shocks, while the function-valued process λJ captures the market price

of risk from the rare events. Let L[t,T ] denote the set of market prices of risk λ characterizing the

alternative probability measures Qλ for ξ at time t. Applying Girsanov’s Theorem, with use of the

Radon-Nikodym derivative in eq. (4), leads us to consider a drift given by

µ̃λ(Xt) := µ̃(Xt)+

[
σ̃(Xt)λW,t +

∫
R
γ̃(Xt, z)λJ,t(z)ν(dz)

]
(5)

under the new measure Qλ.

If ambiguity results from inconclusive empirical data, as in the motivation (a) on page 5, then

more than one choices of λ are compatible with the empirical data. If, on the other hand, the

decision maker aims to benchmark the project’s excess return (over the riskfree rate r > 0) to
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the excess return of a stock market index (following a state process of the same form as eq. (1)),

spanning is imperfect as the Poisson-type jumps lead to market incompleteness (motivation (b) on

page 5). Market incompleteness introduced by the jumps allows for an infinity of suitable choices

for λ within the set L[t,T ]. In particular, assuming that the underlying project value in eq. (1) with

the choice of eq. (2) is spanned by a traded security, S, whose price dynamics takes a similar form

(with µS, σS, and γS in lieu of µ, σ, and γ), market incompleteness on account of the jump process

results in an infinity of EMMs, which by Girsanov transformation are related to the reference prior

P through an exponential martingale transform of the form eq. (4), with possible choices of the

drift process λ constrained by the following condition:

σSλW +

∫
R
γS(z)λJ(z)ν(dz) = µS − r. (6)

If jumps are absent (i.e., ν ≡ 0, where the symbol “≡” signifies “is identically equal to”) or incon-

sequential (i.e., γS ≡ 0), then eq. (6) admits a unique solution, λW = [µS −r]/σS, the classic Sharpe

ratio. Again, I am not confident with the sign. If λW = [µS − r]/σS, then the drift of the

risky traded security becomes

µ̃λ(St) = µSSt +σSSt

µS − r

σS

=
(
2µS − r

)
St,

while I was expecting r as risk-neutral drift. If the + sign in eq. (5) is mathematically

correct, but the market price of risk in the case with no or inconsequential jumps

λW =−[µS − r]/σS, we should correct the text, not necessarily the math. Further, could

it be that eq. (6) should read

r= µS +σSλW +

∫
R
γS(z)λJ(z)ν(dz) ⇐⇒ −σSλW −

∫
R
γS(z)λJ(z)ν(dz) = µS − r?

In the case of firm-specific jumps (and hence diversifiable rare-event risk), Merton (1976) argues

that the European option is replicable at all times except the random times at which the jumps

occur. Because the rare events are assumed diversifiable and not priced (i.e., λJ ≡ 0), eq. (6) again

yields the Sharpe ratio. In all other cases (i.e., if ν ̸≡ 0, γS ̸≡ 0, and λJ ̸≡ 0), eq. (6) admits an
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infinity of solutions, leaving the choice of market prices of risk λ =
(
λW , λJ(·)

)
at the decision

maker’s discretion.

Ambiguity theory helps one identify a probability measure Qλ that is consistent with the decision

maker’s ambiguity preferences by essentially introducing a minimization problem over the space

L[t,T ] of equivalent probability measures. This calls for the use of the notion of g–expectations, a

nonlinear generalization of the concept of conditional expectation that applies under ambiguity.

A widely–used family of g–expectations are the so–called variational preferences (see Maccheroni

et al., 2006a,b). In this framework, an ambiguity–averse agent determines the fair price Et(ξ,T ) at

time t of receiving an amount ξ payable at T ≥ t by solving the problem:

Et(ξ,T ) = inf
λ∈L[t,T ]

{
EQλ

[
ξ
∣∣Ft

]
+ ζ(t, λ,T )

}
, with ζ(t, λ,T ) =EQλ

[∫ T

0

G
(
s,λs)ds

∣∣∣Ft

]
. (7)

The fair price Et(ξ,T ) in eq. (7) results from a worst–case valuation (“inf”) among the relevant

market prices of risk λ ∈ L[t,T ] for the payoff ξ. Not all models λ ∈ L[t,T ] are given equal consid-

eration: certain models λ are more penalized by the penalty functional or “ambiguity index” ζ

of eq. (7). The choice of ζ in eq. (7) is a characteristic of the agent’s ambiguity preferences (see

Maccheroni et al., 2006a,b). Given the penalty function G in eq. (7), one may define a function

g : [0, T ]×R×L2
ν →R by a Fenchel-Legendre transform

g
(
t,ΛW ,ΛJ

)
:= inf

(λW ,λJ )∈R×L2
ν

{
G
(
t, λW , λJ

)
+λWΛW +

∫
R
λJ(z)ΛJ(z)dν(z)

}
. (8)

Following standard arguments in convex analysis, this transformation can be inverted to provide

G
(
t, λW , λJ

)
:= sup

(ΛW ,ΛJ )∈R×L2
ν

{
g
(
t, λW , λJ

)
−λWΛW −

∫
R
λJ(z)ΛJ(z)dν(z)

}
. (9)

(The problems (8) and (9) are static optimization problems taken over the space R × L2
ν and

not over the space of stochastic processes that take values on the latter space. When we need to

emphasize that λ is considered as a stochastic process rather than as a static element, we will

use the notation λ·.) We can be a little more concrete as to the definition of the set L[t,T ]: it is

the set of predictable processes λ such that G(·, λ) ∈H2. Because the fair price Et(ξ,T ) in eq. (7)
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is itself a random variable depending on the information set Ft as of time t, one can consider

a stochastic process {Yt : t∈R+} := {Et(ξ,T ) : t∈R+} that is F-adapted. This stochastic process

can be expressed in terms of a backward stochastic differential equation (BSDE, see Pardoux and

Peng, 1992; Dumitrescu et al., 2015):

Theorem 1 (Theorem 5.2 in Quenez and Sulem, 2013). If g is Lipschitz continuous and

concave with respect to (ΛW ,ΛJ), and satisfies a monotonicity property for ΛJ , then the process

(Y,ΛW ,ΛJ) solves a BSDE of the form

−dYt = g
(
t,ΛW,t,ΛJ,t

)
dt−ΛW,tdWt −

∫
R
ΛJ,t(z)N(dt,dz) for t∈ [0, T ]

YT = ξ.

(10)

Moreover, there exists a market price of risk λ̂· =
(
λ̂W,·, λ̂J,·

)
∈L[t,T ] such that

G
(
t, λ̂W,t, λ̂J,t

)
= g
(
t,ΛW,t,ΛJ,t

)
− λ̂W,tΛW,t −

∫
R
λ̂J,t(z)ΛJ,t(z)dν(z) a.s. for t∈ [0, T ],

with the process λ̂· being optimal for (7).

The choice ofG in eq. (7) uniquely characterizes the penalty functional ζ in eq. (7) and consequently

the fair price Et(ξ,T ) (see Maccheroni et al., 2006a,b). Classical models include multiple-priors

preferences (Gilboa and Schmeidler, 1989) and Hansen and Sargent’s (2001) multiplier preferences.

Following Theorem 1, one can compute a function g as the outcome of a static problem in eq. (8)

and then solve the BSDE in eq. (10). By doing so, one obtains the fair prices Y of the contingent

claim paying ξ at time T under ambiguity and determining the market price of risk λ consistent

with the payoff ξ.

3.3. Real options problem under variational preferences – General results

Assume that the decision–maker has variational preferences of the form introduced in eq. (7) and

that the project value process {ξs}s is given by

ξs = f(s,Xs) for t < s< T and ξT = fT (XT ). (11)
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Then, the optimal investment rule obtains as the solution of the optimal stopping problem:

sup
τ∈T[t,T ]

Et(ξτ , τ) where Et(ξτ , τ) := inf
λ∈L[t,T ]

{
EQλ

[
ξτ
∣∣Ft

]
+ ζ(t, λ, τ)

}
. (12)

For the problem under consideration, a classical choice for the function f is

f(s,Xs) = e−rs(Xs −K), (13)

the net discounted project value, where the amount K > 0 is interpreted as a fixed investment cost.

The fair price Et(ξ,T ) in eq. (12) results from solving two subproblems: one of optimal stopping

explicit through the sup operator in eq. (12) and another subproblem embedded in the definition of

the conditional g-expectations via the worse-case scenario (inf operator) in eq. (12). In eq. (12), the

“sup” is interpreted as the essential supremum and T[t,T ] is the set of all stopping times with values

in [t, T ]. A stopping time τ̂ is optimal for the agent who wants to maximize the fair price Et(ξτ , τ)

by choosing the probability measure that corresponds to the worst-case scenario (see Corollary

6.2 in Quenez and Sulem, 2014). (The stated result holds for L[t,T ] compact, or for a bounded

convex and closed subset of a separable Hilbert space.) (Note that the optimal stopping problem

in eq. (12) has a minimax structure and can be interpreted as a saddle-point equilibrium. In fact,

Theorem 6.1 in Quenez and Sulem (2014) guarantees that, for Lipschitz continuous g, a saddle

point exists for problem (12), i.e., one may interchange the order of the (essential) sup and inf in

problem (12), and there is a pair (τ̂ , λ̂) for which the sup and the inf are respectively attained.)

In the general case allowing for non-Markov processes (see Cheng and Riedel, 2013 and Chen

et al. (2013) for processes with continuous sample paths and Quenez and Sulem, 2014 for Lévy

processes), the optimal stopping problem in eq. (12) can be solved by constraining the solution of

the BSDE in (10) to dominate the payoff process {ξs;s∈ [t, T ]} in eq. (11). From this Snell-envelope

representation of the value process, Chen et al. (2013) (Theorem 10) and Quenez and Sulem (2014)

(Theorem 4.1) deduce that the value process is decreasing in the ambiguity driver g and that the

optimal stopping time is increasing pathwise (Chen et al., 2013, Theorem 10).
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The specific problem considered in eq. (12) has a Markovian structure, so its solution can be

obtained via a value function

u(t, x) = sup
τ∈T[t,T ]

Et(ξτ , τ), (14)

where (t, x) denote the initial conditions of the state equation (1). The principle of optimality also

holds, so one can determine a dynamic programming equation that the value function satisfies. This

equation is called a variational inequality (VI) in the context of optimal stopping (see Bensoussan

and Lions, 1982). Dumitrescu et al. (2015) establish that the value function u is continuous and

can be obtained as the viscosity solution of an appropriate VI. To state this result, we introduce

the operators A,T ,B, and G, defined on a suitable function space by:

Au(t, x) := 1

2
σ̃2(x)

∂2u

∂x2
(t, x)+ µ̃(x)

∂u

∂x
(t, x)

T u(t, x) :=
∫
R

{
u
(
t, x+ γ̃(x, z)

)
−u(t, x)− ∂u

∂x
(t, x)γ̃(x, z)

}
ν(dz),

Bu(t, x)(·) := u(t, x+ γ̃(x, ·))−u(t, x)

Gu(t, x) := g
(
t, σ̃(x)∂u

∂x
(t, x),Bu(t, x)(·)

)
,

(15)

where (see eq. (8))

g
(
t,ΛW ,ΛJ

)
:= inf

(λW ,λJ )∈R×L2
ν

{
G(t, λW , λJ)+λWΛW +

∫
R
λJ(z)ΛJ(z)dν(z)

}
.

Theorem 2 (see Theorem 3.1 in Dumitrescu et al., 2015). The value function u in eq. (14)

is a viscosity solution of the variational inequality

min

{
u(t, x)− f(t, x);−

(
∂
∂t
+A+ T +G

)
u(t, x)

}
= 0 (16a)

u(T,x) = fT (x), (16b)

for all (t, x)∈ [0, T )×R.

(Dumitrescu et al. (2015) discuss a dynamic risk measure minimization problem: Their results are

stated in a modified form for suitability with our variational utility maximization problem.) Several

adjustments are noteworthy. If there are jumps (i.e., T ̸≡ 0) but no ambiguity (i.e., G ≡ 0), then the
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VI (16a) simplifies to the evolutionary VI corresponding to an optimal stopping problem of a Lévy

process without ambiguity adjustment (see, e.g., Øksendal and Sulem, 2007, Edition 3, Chapter

3). If there is ambiguity (i.e., G ̸≡ 0), but no jumps (i.e., T ≡ 0), then the VI (16a) simplifies to the

one in Cheng and Riedel (2013, eq. (8)) with an operator G given by Gu(t, x) = g
(
t, σ(x)∂u

∂x
(t, x)

)
Gu(t, x) = g

(
t, σ̃(x)∂u

∂x
(t, x)

)
. If there is no ambiguity (i.e., G ≡ 0) and no jumps (i.e., T ≡ 0), then

eq. (16a) generates to the evolutionary VI corresponding to the optimal stopping problem of a

diffusion (see, e.g., Bensoussan and Lions, 1982, Section 3.2).

In the spirit of McDonald and Siegel (1986) and Dixit and Pindyck (1994), we consider a perpet-

ual American call option: the payoff is of the form in eq. (13), while the infinite horizon T =∞ leads

us to impose restrictions on the discount rate r > 0 and the dynamics of X. By time–homogeneity

of the state equation, and assuming that the penalty function G is time–independent, it follows

that the starting–time dependence on t becomes irrelevant in the sense that the value function in

eq. (14) can be written as u(t, x) = e−rtv(x), with v given by

x 7→ v(x) := sup
τ∈T

E0

(
e−rτ (Xτ −K), τ

)
, (17)

where T denotes the set of stopping times with values in R+. Letting τ go arbitrary to ∞ leads to

a lower bound for v(·), so v(·)≥ 0. Besides, it can be shown using standard arguments that v(·) is

convex on its domain. Is there an easy argument to show it? For instance, g-expectation

are sublinear so

E0

(
e−rτ

(
(αx1+(1−α)x2X

1
τ −K), τ

)
≤ αE0

(
e−rτ

(
x1X

1
τ −K), τ

)
+(1−α)E0

(
e−rτ

(
x2X

1
τ −K), τ

)
, ∀α∈ [0,1].

Because sup(a+ b)≤ sup(a)+ sup(b), we have

v (αx1 +(1−α)x2)≤ αv
(
x1)+ (1−α)v

(
x2

)
.

It might be good to prove rigorously convexity as it would “motivate” the assumption

of convexity we do later.

We look for solutions of eq. (16) in the form u(t, x) = e−rtv(x) using the specific model in eq. (2)

(under the integrability condition lim
t→∞

e−rtv (Xt) = 0). Doing so leads us to the following corollary

of Theorem 2:
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Corollary 1. The value function in eq. (17) is a viscosity solution of the variational inequality

min

{
v(x)− (x−K);−

(
A+ T − rI+G)v(x)

}
= 0, x > 0,

lim
x→0+

v(x) = 0 and lim
x→∞

v(x)/[x−K] = 1

(18)

where

Av(x) := 1

2
σ2x2 d

2v

dx2
(x)+µx

dv

dx
(x)

T v(x) :=
∫
R

{
v
(
x+ γ(z)x

)
− v(x)− dv

dx
(x)γ(z)x

}
ν(dz),

Bv(x)(·) := v(x+ γ(·)x)− v(x)

Gv(x) := g
(
σx dv

dx
(x),Bv(x)(·)

)
.

(19)

If there are neither jumps (i.e., T ≡ 0) or ambiguity (i.e., G ≡ 0), then the VI in eq. (18) degenerates

to the one for McDonald and Siegel’s (1986) problem.

One can infer from Corollary 1 that the optimal stopping time is inf
{
t≥ 0

∣∣v(Xt) =Xt−K
}
. Yet,

at this stage, one cannot readily establish whether the optimal strategy is of the threshold type or

whether the stopping region is the union of disconnected sets. We now state sufficient conditions

for the case with variational preferences under which the optimal stopping time for the problem in

(17) is a threshold policy.

Proposition 1 (Threshold policy). Assume that the PDE
(A+ T − rI+G)w(x) = 0, ∀x∈ (0, x̂),

w(x) = x−K, ∀x≥ x̂

with lim
x→0+

w(x) = 0 and w′(x̂) = 1. (20)

has a sufficiently smooth solution w(·). Do we actually need to add w′(x̂) = 1 as we said that

w ∈C1(R+)? We make the parameter restrictions g ≤ 0 and −1≤ γ(·)≤ 0 ν-a.e. and assume that

the solution w(·) of eq. (20) is positive and convex and satisfies the condition

w

(
r+ ||v||
r−µ

K

)
>K

µ+ ||ν||
r−µ

.

Then, the function w(·) is strictly increase in (0,∞) from 0 to ∞ with 0<w′(·)≤ 1 and coincides

with the value function v(·) in eq. (17). Further, the optimal strategy is the first-hitting time given

by inf
{
t≥ 0

∣∣Xx
t ≥ x̂

}
, with t̂ defined implicitly by eq. (20).
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The sufficient conditions in Proposition 1 hold independently of the specific modeling of ambi-

guity preferences within the class of variational preferences. Besides, the standard smooth-fit con-

ditions, the Proposition specifies other sufficient conditions. Clearly, if the solution w(·) of eq. (20)

fails to be positive or convex, then w(·) cannot be a candidate for the value function in eq. (17) as

one can establish the value function satisfies these properties.

4. Real options problem under multiple-priors preferences

We now consider the specialized case of multiple–priors preferences à la Gilboa and Schmeidler

(1989) for which the penalty function is

G
(
λW , λJ

)
=


0, if |λW | ≤ θk1 and |λJ(z)| ≤ θk2 for all z ∈R

∞, otherwise.

(21)

The parameter θ≥ 0 in eq. (21) models the degree of the agent’s ambiguity aversion. In this case,

the solution of the optimization problem in eq. (8) simplifies to

g(ΛW ,ΛJ) =−θ
(
k1|ΛW |+ k2

∫
R
|ΛJ(z)|dν(z)

)
, for θ, k1, k2 > 0, (22)

which translates to choosing with the infimum attained at the boundaries, namely at λW =−θk1

and λJ(·) ≡ −θk2. In this case, the function g in eq. (22) turns out to be negative, a feature

consistent with our assumption in Proposition 1.

4.1. Value function and optimal stopping policy

To ensure a nice financial interpretation and on account of convexity arguments, We look for a

convex solution of eq. (20), so we consider functions of the form x 7→ xβ for a suitable β > 1 in the

continuation region. Given the expressions for the operators in eq. (19) for the case of multiple-

priors, upon substituting the above ansatz in the equation, we are led to define β as a root of the

function given by

β 7→ h(β) := r− 1

2
σ2β(β− 1)−µβ−ϕ(β)+ θ

[
k1σβ+ k2ψ(β)

]
, (23a)
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where

ϕ(β) :=

∫
R

[
(1+ γ(z))β − 1−βγ(z)

]
dν(z) and ψ(β) :=

∫
R

∣∣∣(1+ γ(z))β − 1
∣∣∣dν(z). (23b)

In the absence of jumps (as ν ≡ 0 leads to ϕ≡ψ≡ 0), the function h(·) in eq. (23) becomes quadratic

in β: it has a root β > 1 already given in eq. (37) in Nishimura and Ozaki (2007). If, further,

ambiguity is irrelevant (i.e., θ→ 0), h(·) simplifies to Dixit and Pindyck’s (1994) “fundamental

quadratic” function; provided r > µ, this function β 7→ r − 1
2
σ2β(β − 1)− µβ has a root denoted

β0 > 1 herein. We also consider the quantity

βcr :=
r+ ∥ν∥
µ+ ∥ν∥

(24)

and make the

Assumption 1 (Assumption for multiple-priors optimal stopping problem). Assume

that −1≤ γ(·)≤ 0 ν-a.e., µ< r and

0≤ θ < θcr :=
1
2
σ2βcr(βcr − 1)+µβcr +φ(βcr)− r

k1σβcr + k2ψ(βcr)
.

If we agree with the new conditions for Proposition 1, Benoit suggests to put the

following paragraph just below Proposition 1 instead of here and to slightly rephrase

Assumption 1, so we don’t repeat our assumptions too often. Because of the condition

γ(·) ≤ 0 in Assumption 1, the underlying process cannot jump from the continuation set to the

interior of the stopping set. Under the stated assumption, the process has a tendency to revert back

to the interior of the continuation set; the process may only leave the continuation set because of

continuous fluctuations. The assumption of negative jumps is not unduly restrictive, as it captures

fairly well most market-wide jumps (e.g., due to stock market crashes, economic recessions, or phys-

ical events like hurricanes or the pandemic) and industry or firm-specific shocks from introduction

of new technologies or substitute products by competition.

Why do we state the lemma before Assumption 1? I believe, to the contrary, the

assumption comes from the Lemma. Can we state the lemma just before “We also

consider the quantity βcr . . .”? In order to prove the main result of this paper, we need to

establish the following lemma first:
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Lemma 1 (Root of h(·) in eq. (23) ). Let

θ̄(M) :=−
r− 1

2
σ2M(M − 1)−µM −φ(M)

k1σM + k2ψ(M)
. (25)

θ̄(M) :=
1
2
σ2M(M − 1)+µM +φ(M)− r

k1σM + k2ψ(M)
. (26)

I suggest re-writing eq. (26) as in the second equation, so the parallel with the

inequality in Assumption 1 appears more clearly. Then, if θ < θ̄(M), h(·) has a root β in

(1,M); otherwise, i.e., if θ≥ θ̄(M), there is no root in (1,M), but not otherwise.

The proof of the Lemma is provided in Appendix C. We now state the main a key result of the

our paper:

Theorem 3 (Optimal stopping problem for multiple-priors preferences in eq. (21).).

Under Assumption 1, the VI in (18) Shall we talk about the VI’s solution or the value function?

The value function may sound less technical to non-VI-fans admits a solution of the form

w(x) =


K

β−1

(
x
x̂

)β
, 0<x< x̂,

x−K, x≥ x̂,

where x̂=
β

β− 1
K, (27)

with β defined as the unique root of the function h(·) in eq. (23) in the interval (1, βcr). The optimal

stopping time is τ̂(x) := inf
{
t≥ 0

∣∣Xt ≥ x̂
}
.

The proof of the Theorem is provided in Appendix D.

The functional form of the value function in eq. (27) is reminiscent of the solution of McDonald

and Siegel’s (1986) problem. The difference, however, lies in the value of β, which obtains in our

case by solving the equation h(β) = 0, while it obtains from solving a quadratic equation for the

former. Provided the degree of ambiguity θ is within the range [0, θcr), the optimal stopping rule

is a threshold policy whereby the optimal stopping time is the first time that the project value

exceeds the project value exceeds the cut-off value in eq. (27).

Remark 1. Here we assume that µ< r, which is a standard condition for the existence/finiteness

of the value function in the non–ambiguous case. Note that in the presence of ambiguity, one
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may still admit solutions for µ > r, since the effect of ambiguity is to lower the effective drift to

µλ̂ := µ− θ (k1 + k2∥ν∥), hence allowing the above condition for the effective drift as long as θ is

sufficiently large.

The explicit nature of this solution allows us to study the effects of ambiguity on the value function

and optimal stopping rule:

Corollary 2 (Monotonicity in θ.). Under Assumption 1, the value function w and the invest-

ment threshold x̂ decrease with the ambiguity parameter degree of ambiguity aversion θ.

See Appendix E for the proof. The result in Corollary 2 is consistent with Theorem 4.1 in Quenez

and Sulem (2014) and Theorem 10 in Chen et al. (2013) obtained for the general case based

on the Snell envelope representation of the value process. It is intuitive that a larger degree of

ambiguity aversion θ leads the firm to discount future cashflows more (or to reduce the ambiguity-

adjusted drift more while keeping the discount rate constant). The effect on the optimal investment

threshold, which may seem unexpected at first, is consistent with known results in real options

analysis (see, e.g., Dixit and Pindyck, 1994, Figure 5.6, p. 157). Because a higher degree of ambiguity

aversion leads the expected appreciation of the project value (in the sense of g-expectations) to

fall, the opportunity cost of killing the real option is reduced. So, the firm sets a low investment

threshold to benefit earlier from a flow of income generated by the project.

4.2. Expected investment time

We next turn our attention to the expected investment time. Under ambiguity, which involves

adopting different probability measures for the process {Xt; t≥ 0}, we need to clarify the notion of

‘expected value’ is somewhat unclear. To this end, we could We may either consider the expectation

under the physical measure P, or under any alternative measure Qλ adopted by the decision–maker

and compatible with the measure change rule in eq. (4). Clearly, even though while the stopping

time τ̂(x) := inf
{
t≥ 0

∣∣X0 = x and Xt ≥ x̂
}
takes the same values in all cases remains unchanged,

the probability by which these values are assigned depends on choice of any probability measure



Author: Real options under model uncertainty
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 23

Qλ (note that Q0 ≡ P) affects , and the same applies for the its expected stopping time value. For

example, setting λ= 0 in eq. (4) leads us to compute its expectation under the physical measure

(as Q0 ≡ P), while setting λ= λ̂ as in Theorem 1 corresponds to calculating yields its g–expectation

of the stopping time. Going from one calculation to the Switching from one measure to another

essentially corresponds to changing the drift of the process {Xt; t ≥ 0} to µ̃λ in eq. (5), which

for the model under consideration under multiple-priors preferences reduces to µ̃λ(Xt) = µλXt,

where µλ:=µ+σλW +
∫
R γ(z)λJ(z)ν(dz). For a similar discussion for the non–ambiguity case, see

Shackleton and Wojakowski (2002). It indeed seems the market price of risk is negative?

Proposition 2 derives the expected investment time under various probability measures explicitly:

Proposition 2 (Expected investment time). We make Assumption 1. and For a given choice

of market price of risk λ, suppose that

δλ := µλ − 1

2
σ2 − 1

2

∫
R
γ2(z)ν(dz)≥ 0. (28)

Further, assume that the solution ρ of

1

2
σ2ρ(ρ− 1)+µλρ+ψ(ρ) = 0 (29)

for ψ(·) given in eq. (23b) satisfies ρ < 0. Then, the expectation of the investment time

τ̂(x) := inf
{
t≥ 0

∣∣X0 = x and Xt ≥ x̂
}
, under the probability measure Qλ, is given by

T λ(x) =
1

δλ
ln
( x̂

min{x, x̂}

)
≥ 0. (30)

For the geometric Brownian motion (GBM), it is known (see, e.g., Chevalier-Roignant and Trige-

orgis, 2011, p. 448) that the expected time T0(x) :=EP [inf{t≥ 0 |Xt ≥ x̂0}] to reach the investment

threshold x̂0 :=
β0

β0−1
K (from below) is finite if

δ0 := µ− 1

2
σ2 > 0, and is given by T0(x) =

1

δ0
ln
( x̂0

min{x, x̂0}

)
. (31)

We can recover this result from Proposition 2 by taking the γ≡0 and θ= 0 (λ= 0 Do you mean

λW = 0 and λJ ≡ 0 ν-a.e.?), that corresponds to the absence of jumps and (nonpriced) ambiguity,
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respectively. Proposition 2 generalizes the expression for the expected investment time of eq. (31)

for the Lévy process of eq. (1) for µ̃, σ̃, and γ̃ given in eq. (2), including as well the presence of

ambiguity. Although an investment threshold x̂ may exist according to Theorem 3, this does not

necessarily imply that the first-hitting time inf{t≥ 0 |Xt ≥ x̂,X0 = x} has a finite g-expectation

expectation under the chosen measure Qλ?. For the Qλ-expectation to be finite, it must

be that the ambiguity-adjusted project value’s growth is sufficiently strong to compensate for the

inherent uncertainty arising from both continuous shocks (via σ) and negative Poisson-type jumps

(via the Lévy measure ν and the function γ(·)).

4.3. Impact of rare events on the firm’s decisions

We make the assumption that Again, multiple risk–neutral probability measures arise only as

an effect of the jump term from market incompleteness due the combination of continuous and

jump events. Benoit did not like your sentence because incompleteness comes from the

combination. If there is only jumps, the market is complete, no? This assumption implies

that µλ is affected only by λJ , while λW is set to zero under P or (r−µ)/σ under Qλ. Benoit is

confused with the previous sentence. Are we arguing that “To focus on the effect of

jumps, we set an arbitrary value for λJ , for instance 0 under P and −µ−r
σ

under the

arbitrary choice of Qλ in Merton (1976).” Under this assumption we will provide a small

jump–size expansion for the solution of the optimal stopping problem, which sheds light on the

qualitative features of the solution in Theorem 3 and the effect of jumps on the firm’s decisions.

Proposition 3. Let Assumption 1 and condition (28) hold. Express γ(z) as γ(z) = γγ̄(z) where

γ > 0 is a small constant and let γ̄2 :=
∫
R γ̄

2(z)ν(dz). Denote by the subscript 0 the relevant quan-

tities for the GBM, in the absence of rare events. Then, the following results hold:

(i) The root β of h(·) in eq. (23) admits an expansion in γ of the form

β = β0 + γ2β1 +O(γ3), where β1 =−
1
2
γ̄2β0(β0 − 1)

1
2
σ2(β0 − 1)+ 1

2
σ2γ̄2β0 +µλ

< 0.
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(ii) The investment threshold x̂ in Theorem 3 admits an expansion in γ of the form

x̂= x̂0 + γ2x̂1 +O(γ3), where x̂1 =
−β1x̂0

β0(β0 − 1)
> 0.

(iii) The expectation of the investment time under the measure Qλ, denoted by T λ(v) in Propo-

sition 2 admits an expansion in γ of the form

T (x) = T0(x)+ γ2T1(x) where δ0 and T0(x) are given in eq. (31) and T1(x) =
1

δ0

(
T0(x)+

x̂1

x̂0

)
> 0.

(iv) The value function v(·) in Theorem 3 admits an expansion in γ of the form

v(x) = v0(x)−β1γ
2v0(x)

[
2

β0

+ ln
x̂0

x

]
+O(γ3).

Proposition 3 establishes that a firm facing rare events besides the usual continuous fluctuations

of the GBM is less prone to investing. In particular, compared to the GBM benchmarks, the pres-

ence of rare events lead to a decrease in β (Proposition 3i), an increase in the investment threshold

x̂ (Proposition 3ii), and to more caution in the sense that the investment is delayed on average

(Proposition 3iii). It also increases the value function w in comparison to the GBM benchmark

(Proposition 3iv). The option to defer one’s investment is more valuable in the presence of rare

events, as it offers a further insurance against adverse rare-event-type developments. Provided the

jumps have a small magnitude, these results are robust to the modeling choices concerning the

jump arrival rates and size distributions (embedded in the Poisson measure ν), as well as con-

cerning the effect of the contributions of the rare events on the project value dynamics (via the

function γ(·) γ̄(·)?). To the best of our knowledge, this is the first study to obtain such analytic

results. Intuitively, rare events lead to more total risk and consequently more caution by the firm,

an effect analogous to when the volatility σ of the continuous fluctuations is increased.

4.4. Illustrative examples

Table 1 summarizes the specifies parameter values and the jump-size distribution functions used

for providing benchmark examples as benchmarks of geometric Lévy processes: Samuelson’s (1965)
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Table 1 Geometric Lévy processes used as benchmark examples.

Project dynamics Common features Model-specific features
Jump size density p(·) Parameter values

Samuelson (1965) Discount rate r= 0.05,
drift µ= 0.035,
volatility σ= 0.1,
arrival rate Λ= 3,
γ(z) =−γ|z|/2, γ = 0.5
θ= 0.05, k1 = k2 = 1
investment cost K = 1

p≡ 0 Not applicable

Merton (1976) 1√
2πs2

exp
(
1
2

[
z−m

s

]2)
m=−0.05,
s= 0.086

Kou (2002) pη1e
−η1z1{z≥0} + qη2e

η2z1{z<0},
where p+q= 1, η2 > 1 and η1 > 0

p= 0.30,
η1 = 40, η2 = 12

Note: Parameter values adapted from Feng and Linetsky (2008)
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2.2731.187 1.439

Figure 1: The effect of jumps and ambiguity on the function h(·) in (23). The values of all

parameters values are provided in Table 1.

no jumps or ambiguity case , Merton’s (1976) normally distributed jumps and Kou’s (2002) double-

exponential jumps. Parameter values are adapted from Feng and Linetsky (2008).

Figure 1 plots the function h(β) h(·) in (23) for different values of β. The graph This function

h(·) meets crosses the horizontal axis at a root β > 1. The blue line (“No jumps or ambiguity”)

refers to the Samuelson (1965) model, while the red line (“Jumps”) refers to the model in Merton

(1976). The green line (“Ambiguity”) refers to a model with jumps and ambiguity as in Kou (2002).

As is apparent from the Figure observed, the introduction of introducing jumps (from the blue to

the redlines) decreases the root of h(·) as rare events raise the overall risk profile of the project,
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while the combined effect of jumps and ambiguity is to increase the root (from the blue to the

greenline) leads to a larger root for our choice of parameter values?.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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3
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4.5

=0.30

=0.10

=0.50

Figure 2: The effect of the ambiguity parameter θ on the investment threshold x̂ for

different values of σ. The values of all parameters values are provided in Table 1.

Figure 2 plots the threshold x̂ as a function of the ambiguity parameter θ, for different values of

the volatility parameter σ. It illustrates a key result in Corollary 2 pertaining to the monotonicity

of x̂ in θ. A larger degree of ambiguity aversion implies a lower expected future value of the project,

reduces the opportunity cost of killing one’s option, and so decreases the optimal threshold x̂ as the

firm prefers accumulating cashflows from the project earlier. Because the downward adjustment

to the ambiguity-adjusted drift is increasing in the volatility σ, the effect of ambiguity highlighted

above is more pronounced for higher values of σ.

Finally, Figure 3 depicts the value function w(·), highlighting the points at which the value func-

tion “touches” the net present value from investing (x 7→ x−K) for the first time (corresponding

to the investment thresholds x̂). Again, compared to the Samuelson (1965) case (blue line), jumps
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Figure 3: The effect of the ambiguity parameter θ on the value function w(·) and the

threshold x̂. The values of all parameters values are provided in Table 1.

(red line) increase firm value in the continuation region, but jumps and ambiguity (green line)

contribute jointly to a reduction in firm value function (and of the threshold) as established in

Corollary 2. If we switch Figure 2 and Figure 3, I suggest adding the sentence: ”Building

on these first insights, Figure 2 isolates the effect of ambiguity on the threshold.”

5. Real options problem under multipliers preferences

We now consider multipliers preferences à la Hansen and Sargent (2001) where the penalty function

G is given by

G
(
λW , λJ

)
=

1

2θ

(
k−1
1 λ2

W + k−1
2

∫
R
λJ(z)

2dν(z)

)
(32)

for some k1, k2 > 0. In this case as well, the parameter θ ≥ 0 drives the agent’s degree of ambi-

guity aversion. In contrast to the case with Gilboa-Schmeidler preferences, the optimal choice for

(λW , λJ(·)) is not obtained on the boundaries of the allowed regionfor the information drifts, with

the function g in eq. (8) now being given by

g(ΛW ,ΛJ) =−θ
2

{
k1Λ

2
W + k2

∫
R
λ2
J(z)dν(z)

}
. (33)

Here, again, g is negative, consistently with our assumption in Proposition 1.
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For this new case, we cannot obtain the value function in eq. (17) in closed form. We may,

however, construct an approximate solution by using a perturbation approach. We consider two

extreme cases of interest: (a) the limit as θ→ 0, corresponding to probability models cases in which

where we restrict ourselves to models which are very close to the common prior P and (b) the limit

as θ→∞ which is known as to the deep (Knightian) uncertainty in the literature.

Proposition 4. Let x̂0 = β0
β0−1

K be the free boundary corresponding to the optimal stop-

ping problem with jumps in the absence of ambiguity (i.e., for which the VI is

min
{
w(x)− (x−K);−

(
A+ T − rI)w(x)

}
= 0 almost every x> 0). In the limit as θ→ 0 the VI in

Corollary 1 Again, shall we call it VI’s solution or value function? with g given by eq. (33)

admits a solution of the form

v(x) =


[
1− θ

2
x̂0
β0

C0
C1

(
1−

(
x
x̂0

)β0
)](

x
x̂0

)β0
, x≤ x̂ :=

(
1− θ

2
1

β0(β0−1)
C0
C1

)
x̂0,

x− k, otherwise,

where C0 and C1 are positive constants given in Appendix I and corrections of order O( θ
2

2
) are

omitted.

The above solution satisfies the smooth pasting condition up to order O(ϵ2). Moreover, the effects of

ambiguity in this limit are to decrease the threshold x̂ as well as the value function. We established

comparable results in Corollary 2 for the case with multiple-priors ambiguity preferences. Again,

a higher drift adjustment due to ambiguity depreciates the future expected project value, reduces

the opportunity cost of killing one’s option, and leads to an earlier exercise.

As far as the deep uncertainty limit θ→∞ is concerned, one sees that x 7→ g(σxv′(x),Bv(x))

with g given in eq. (33) diverges to −∞, unless v(·) is a constant ? Benoit does not see v(·)

in eq. (33). By observing the boundary conditions in eq. (18) with g in eq. (33), we see that v(·)

cannot be a constant. Hence, (18) implies that v(x) = x−K, i.e., the value function collapses onto

the obstacle, Benoit does not understand the arguments with the boundary conditions.

If g → −∞, then G → −∞ and so −(A + T − r1 + G) → +∞, so the min in eq. (18) is
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v(x) − (x −K) = 0? which is not an acceptable solution. Benoit remembers a discussion

about why the value function cannot be the obstacle, but does not remember the key

argument. We may want to recall it here. For instance, the superharmonicity does

not rule out the possibility for the value function to be linear (unless I am mistaken).

6. Conclusion

This paper considers an investment problem in which the underlying project value follows a geomet-

ric Lévy process. In such circumstances involving rare events, empirical data may be inconclusive

to infer the underlying probability model and capital markets may be incomplete, so that the deter-

mination of a unique market price of risk is infeasible. In these cases, there are multiple models that

may be consistent with the observed empirical data. We narrow down the set of such models to

those that are aligned with the decision-maker’s multiple-priors ambiguity variational preferences

as per Gilboa and Schmeidler (1989). The main contribution to the extant real options literature

is the incorporation of the nondiversifiable rare events into the firm’s optimal investment problem.

We show that, in the presence of rare events, the value function is unique, with the optimal

strategy characterized by an investment threshold. Under (general) variational preferences, we

specify a dynamic programming equation that is satisfied by the value function and embeds adjust-

ments for rare events and ambiguity. We further specify a set of sufficient conditions that ensure the

optimality of a threshold policy. For the case with multiple-priors preferences, we obtain analytic

expressions for the optimal investment threshold, the expected investment time and the value func-

tion , and study (analytically) the impact of rare events on them. Under reasonable assumptions

that ensure a nice financial interpretation and comparability with the extant real options literature,

Rare events—whatever the arrival rates and distribution of the jumps or their contributions to the

project value dynamics—generally lead to a higher investment threshold, a delayed investment and

a higher option value. The case with multipliers preferences is less amenable to explicit expressions,

but we were able to construct an approximate solution for the limit case of negligible ambiguity by

using a perturbative approach. Under both multiple-priors and multipliers preferences (close to the
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reference prior), a higher degree of ambiguity aversion is proven to lead to an earlier investment

and reduced firm value. This is because the project value grows at a lower expected rate under the

appropriate ambiguity-adjusted measure, so the incentive to delay the investment is reduced.

Our model has certain limitations which present opportunities for future work in this area. First,

we model a relatively simple real options problem in the spirit of McDonald and Siegel (1986);

it would be interesting to further explore whether model refinements, such as involving switch-

ing options (see, e.g., Pham, Vath, and Zhou, 2009), compound options (see, e.g., Bensoussan

and Chevalier-Roignant, 2018) or strategic interactions (see, e.g., Chevalier-Roignant et al., 2011;

Hellmann and Thijssen, 2018), will confirm the main results on the impact of rare events on the

firm’s investment decisions and lead to EMMs consistent with multiple-priors ambiguity preferences

would confirm the key insights from our paper or not. Second, if multiple priors are due to market

incompleteness, even though our proposed solution identifies a unique ambiguity-adjusted drift at

the upper bound of the uncertainty interval, this unique ambiguity-adjusted drift still allows for

multiple market prices of risk. This concern is not specific to our setting but is endemic to adopt-

ing Gilboa and Schmeidler’s (1989) ambiguity preferences in capital market applications. Further

work may help resolve this by adopting the minimum entropy approach minimizing over a set of

priors subject to penalization or following more general variational preferences as in Maccheroni

et al. (2006a). This issue is less relevant if the source of ambiguity relates to multiple priors due

to inconclusive empirical data. A promising alternative approach to ambiguity aversion may rely

on the Fréchet mean approach to ambiguity, using a convex combination of priors (see, e.g., Petra-

cou, Xepapadeas, and Yannacopoulos, 2022). These alternative ambiguity approaches may lead to

solutions that are not at the boundary of the ambiguity set.



Author: Real options under model uncertainty
32 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

References

Alili, L. and A. E. Kyprianou (2005). Some remarks on first passage of lévy processes, the american
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Appendices

Appendix A: Functional spaces

We now define the functional spaces used in the paper:

• The space L2
ν comprises all ν-measurable functions f such that ||f ||2ν :=

∫
R |f(z)|

2ν(dz)<∞.

• The space H2 comprises all F-adapted processes X such that ||X||2H2 :=E
∫ T

0
X2

t dt <∞

• The space H2
ν comprises all F-adapted processes X such that

||X||2H2
ν
:=E

∫ T

0

∫
RX

2
t dν(z)dt <∞.

• L[t,T ] is the set of market prices of risk λ characterizing the alternative probability measures

Qλ for ξ at time t.

Domains of functions and processes used in this paper: The process λW is assumed to belong to

the Hilbert space H2, while λJ belongs to H2
ν .

Appendix B: Proof of Proposition 1

Let w be a function with integrable second-order derivatives that solves the free-boundary problem

of eq. (20). We look for conditions under which this function w(·) solves the VI in Corollary 1, i.e.,

under which

w(x)≥ x−K, ∀x∈ (0, x̂), (34a)

(A+ T − rI+G)w(x)≤ 0, ∀x> x̂. (34b)

We consider the inequality in eq. (34a) first. The nonlocality of the operator T , B and G makes

the problem somewhat unusual. It follows from eqs. (19) and (20) that

(A+ T − rI)w(x) =−g (σxw′(x),w(x+ γ(·)x)−w(x)) , ∀x∈ (0, x̂).

If we assume that g≤ 0, then

(−A+ rI−T )w(x)≤ 0 ∀x∈ (0, x̂). (35)

We claim that w′(·) does not change sign on (0, x̂). Indeed, assume the contrary, i.e., that there

exists a x0 ∈ (0, x̂) at which w′(·) changes sign and such that

• w(x0)> x̂−K. Then, there necessarily is a point x1 ≥ x0 at which w(·) attains a local maxi-

mum. This is obvious if x0 is itself a local maximum. If x0 is a local minimum, then w(·) increases

to the right of x0. But, because w(x̂) = x̂−K, there must be a x1 at which w(·) attains a local

maximum. In both cases, we have(
−A+ rI

)
w(x1) =−1

2
σ2x2

1w
′′(x1)︸ ︷︷ ︸
<0

−µx1w
′(x1)︸ ︷︷ ︸
=0

+rw(x1)︸ ︷︷ ︸
>0

> 0.
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Further, it follows from the definition of T in eq. (19) and Taylor’s theorem that

T w(x1) =

∫
R

∫ x1+γ(z)x1

x1

w′′(ξ)
(
x1 + γ(z)x1 − ξ

)
dξν(dz)

If we assume that −1≤ γ(·)≤ 0 and that w(·) is convex, then

T w(x1) =

∫
R

∫ x1+γ(z)x1

x1

w′′(ξ)︸ ︷︷ ︸
>0

(
x1 + γ(z)x1 − ξ

)︸ ︷︷ ︸
<0

dξν(dz)< 0.

But these two inequalities contradict ineq. (35), which rule out the possibility w′(·) changes sign

at an x0 ∈ (0, x̂) such that w(x0) > x̂−K. The above confirms Theorem 3.1.4ii in Garroni and

Menaldi (2002) that the function w(·) cannot attain a global? maximum at an interior point of

the interval (0, x̂).

• w(x0)< x̂−K. Here, there are four possibilities: either x0 is a (i) global maximum, (ii) a local

local maximum, (iii) a local minimum or (iv) a global minimum. The possibility (i) that x0 is a

global maximum is clearly ruled out as w(x̂) = x̂−K >w(x0). If (ii) x0 is a local maximum, then

w(·) decreases on the right of x0, · · · , reaches a local minimum x1 ∈ (x0, x̂) and then increases until

it reaches w(x̂) = x̂−K >w(x0). (If there are multiple local maxima and minima, then the previous

statement holds provided we interpret x2 as the largest local minimum in (0, x̂).) This behavior

implies that w(·) has convex and concave segments, which goes against our assumption that w(·)
is globally convex. If (iii) x0 is a local minimum, then there must be a x1 ∈ (0, x0) at which w(·)
attains a local maximum. This implies convex and concave segments and contradicts again our

assumption of global convexity of w(·). If (iv) x0 is global minimum, then w(x0)<w(0) = 0.

As w(x̂) = x̂−K > 0, this implies by continuity that there is a x1 ∈ (x0, x̂) such that w < 0 on

(0, x1) and > 0 on (x1, x̂). This contradicts our assumption that w(·)≥ 0 on (0, x̂).

Because w′ does not change sign and we have w′(x̂) = 1 according to eq. (20), it follows that

0<w′(x)< 1 for x∈ (0, x̂). By differentiating x 7→W (x) :=w(x)−x+K, it is immediate that

W ′(·)< 0 on (0, x̂), with K ≥W (x)≥ 0, (36)

where the values of W (·) at 0 and x̂) obtain from the boundary conditions in eq. (20). So the

inequality in eq. (34a) is satisfied under the stated conditions.

We now consider the ineq. (34b). Define

B(x) := {z ∈R : x(1+ γ(z))≤ x̂} ⊂R.

It follows from the definition of the nonlocal operator T in eq. (19) and the definition of w(·) as

the classical solution of eq. (20) that, for any x> x̂,

T w(x) =
∫
B(x)

{
w(x+ γ(z)x)− (x−K)− γ(z)x

}
ν(dz)



Author: Real options under model uncertainty
38 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

+

∫
B(x)c

{
x+ γ(z)x−K − (x−K)− γ(z)x︸ ︷︷ ︸

=0

}
ν(dz)

=

∫
B(x)

{
W (x+ γ(z)x)+x−K + γ(z)x− (x−K)− γ(z)x

}
ν(dz)

=

∫
B(x)

W (x+ γ(z)x)ν(dz),

where we recall the definition of W (·). It now follows from the estimates in eq. (36) that

0≤T w(x)≤K||ν||, ∀x> x̂.

It now follows from the definition of A in eq. (19) that

(µ− r)x+ rK ≤ (A+ T − rI)w(x)≤ (µ− r)x+ rK +K||ν||, ∀x> x̂.

If we assume that µ< r and g≤ 0—hence, Gw≤ 0 on (x̂,∞)—it thus suffices for ineq. (34b) to be

satisfied that

x̂ >
r+ ||ν||
r−µ

K.

We omit the verification theorem, which follows from standard arguments, and conclude Propo-

sition 1.

Appendix C: Proof of Lemma 1

Re-write the function h(·) in eq. (23) as

h(β) = h0(β)+ θh1(β), where h0(β) := r− 1

2
σ2β(β− 1)−µβ−ϕ(β) and h1(β) := k1σβ+ k2ψ(β).

We first study h0(·). It follows the definition of ϕ in eq. (23) that

h′
0(β) =−σ2β− σ2

2
−µ−

∫
R
[ln(1+ γ(z))eβ ln(1+γ(z)) − γ(z)]dν(z). (37)

We claim that h′
0(β) ≤ 0 for all β > 0 so that h0 is decreasing. To see this, we differentiate the

function z 7→ ρ(z) := ln(1+ z)eβln(1+z) − z for z >−1:

ρ′(z) =
1

1+ z
eβ ln(1+z) +β(ln(1+ z))2eβ ln(1+z) − 1

so that ρ′(0) = 0. This corresponds to a local minimum for ρ. In fact, a graph of this function

immediately reveals that 0 is a global minimum; hence, ρ(z) ≥ 0 for all z ∈ (−1,∞). Then, the

positivity of the Lévy measure implies that
∫
R[ln(1 + γ(z))eβ ln(1+γ(z)) − γ(z)]dν(z) ≥ 0 therefore

(37) yields that h′
0(β)≤ 0. It follows from differentiating h0(·) twice that

h′′
0(β) =−σ2 −

∫
R

(
ln(1+ γ(z))

)2

eβ ln(1+γ(z))ν(dz)≤ 0,



Author: Real options under model uncertainty
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 39

so h0(·) is decreasing and concave. The function h0 diverges to −∞ as β→∞.

We now study h1(·). We re-write ψ in (23) as

ψ(β) =

∫
R
ψ0

(
β, z
)
ν(dz), where ψ0(β,z) :=

∣∣∣[1+ γ(z)
]β − 1

∣∣∣.
Because (as can be easily checked) β 7→ψ0(β, z) is increasing—for both γ(z)> 0 and γ(z)< 0—and

ν is a positive measure, it follows that ψ increases and so does h1. Further, it obtains from the

definitions that ψ(1) =
∫
R |γ(z)|ν(dz)> 0, so h1 is positive valued on (1,∞). It diverges to ∞ as

β→∞.

We now study h(·). The function h is the sum of a decreasing concave function (h0) and of an

increasing, positive valued function (h1). Note that h is continuous due to Lebesgue dominated

convergence. We have ϕ(0) = ϕ(1) =ψ(0) = 0, whence

h(0) = r > 0 and h(1) = r−µ︸ ︷︷ ︸
>0

+θk1σ+ θk2

∫
R
|γ(z)|ν(dz)> 0.

Because h0 is continuous and monotone decreasing on (1,∞) from h0(1)> 0 to −∞, this function

necessarily admits a unique root β > 1. Fix an arbitrary M ≥ 1. By the continuity of h, for h to

have a root β in (1,M), it suffices that h(M)< 0. Because h(M) = h0(M) + θh1(M) and h1 ≥ 0,

this implies that

θ < θ̄(M) :=−h0(M)

h1(M)
.

Note that if h(M)> 0, i.e., θ > θ̄(M), by the properties of h(·) (a sum of a concave function and

an increasing function) we do not have a solution of h(β) = 0 in (1,M). We thus proved Lemma 1.

Appendix D: Proof of Theorem 3

The proof proceeds in several steps.

Step 1. Given preferences à la Gilboa-Schmeidler in (21), it follows from eqs. (8) and (21) that

g(ΛW ,ΛJ) = inf
|λW |≤θk1, |λJ (z)|≤θk2

{
λWΛW +

∫
R
λJ(z)ΛJ(z)dν(z)

}
By the Cauchy-Schwarz inequality (applied pointwise in the second case), we obtain

inf
|λW |≤θk1

λWΛW =−θk1|ΛW | and inf
|λJ (z)|≤θk2

∫
R
λJ(z)ΛJ(z)dν(z) =−θk2

∫
R
|ΛJ(z)|dν(z)

which leads to eq. (22). In the limit as θ→ 0, g ≡ 0 and G ≡ 0. So the VI in Corollary 1 reduces

to the VI corresponding to the optimal stopping problem of a jump-diffusion without ambiguity

(Øksendal and Sulem, 2007, Chapter 2).
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Step 2. We anticipate that the solution in the continuation region will be of the form w(x) =Cxβ

for a suitable β > 1 and that the continuation region will be of the form of an interval [0, v̂), again

for a suitable v̂. The verification will come shortly. The choice of β > 1 follows by the convexity

of the value function. Note that the proposed ansatz satisfies the required boundary condition at

v= 0.

Assume that w(x) = xβ for β ∈ (1,∞). Then, it follows from the definitions of the operators, the

condition −1≤ γ(·)≤ 0 ν-a.e. and the expression for g in eq. (22) that

T w(x) = xβ

∫
R

{
(1+ γ(z))β − 1−βγ(z)

}
ν(dz) =: ϕ(β)xβ,

Gw(x) = g
(
σxw′(x),Bw(x)

)
=−θ

(
k1σβx

β + k2x
β

∫
R

∣∣∣(1+ γ(z)
)β − 1

∣∣∣dν(z))=:−θ
(
k1σβ+ k2ψ(β)

)
xβ,

where ϕ(·) and ψ(·) are defined in eq. (23). Then,

(
A− rI+ T +G

)
w(x) =

1

2
σ2x2F ′′(x)+µxF ′(x)+ T F (x)+ g

(
σxF ′(x),BF (x)

)
− rF (x)

=−
[
r− 1

2
σ2β(β− 1)−µβ−ϕ(β)+ θ

(
k1σβ+ k2ψ(β)

)]
︸ ︷︷ ︸

=:h(β) in eq. (23)

xβ.

Step 3. Here, we need the proof of Lemma 1, which is provided in Appendix C.

Step 4. We conjecture a VI’s solution of the form

w(x) =

{
Cxβ in the continuation region D := (0, x̂),

x−K in the stopping region [x̂,∞),
(38)

where β solves h(β) = 0. Benoit suggests to put the following sentence below Proposi-

tion 1: The validity of the smooth pasting condition in the presence of jumps is justified by the

presence of the Brownian motion component in the value process (see Theorem 6 and Proposition

7 in Alili and Kyprianou, 2005; or Theorem 2.2 and Example 2.5 in Øksendal and Sulem, 2007).

Using the smooth-fit principle, we can specify x̂= βK/[β− 1] and C = x̂1−β/β.

To verify that this conjecture holds requires us to investigate a set of inequalities. Before we

proceed, we establish some auxiliary estimates. First, define φ(x) := x−K − K
β−1

(
x
x̂

)β
on D. We

have

φ′(x) = 1− Kβ

β− 1

xβ−1

(x̂)β
= 1−

(x
x̂

)β−1

≥ 0, for 0<x< x̂; (39)

so, φ(·) is increasing on D. Because φ(x̂) = 0, we just checked that w(x)≥ x−K in D. Second, we

also check that

L(x, z) :=
K

β− 1

(
x+ γ(z)x

x̂

)β

− (x+ γ(z)x) (40)
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satisfies

−K ≤L(x, z)≤ 0, ∀x> x̂, ∀z : x+ γ(z)x≤ x̂ (41)

Indeed, fix x> x̂, let Z = 1+ γ(z) and define the function

Z 7→ S(Z) :=
K

β− 1

(x
x̂

)β

Zβ −xZ

Note that for the values of z as in (41) it holds that Z ≤ x̂
x
, so that

dS

dZ
(Z) =

βK

β− 1

(x
x̂

)β

Zβ−1 −x≤ βK

β− 1

(x
x̂

)β
(
x̂

x

)β−1

−x=

(
βK

β− 1

1

x̂
− 1

)
x= 0.

Hence, S is a decreasing function of Z and since S(0) = 0, and S( x̂
x
) =−K inequality (41) follows.

Note, that the left hand side of inequality (40) could follow directly from eq. (39).

We now verify inequalities to establish whether the solution to the free-boundary problem solves

the VI. In particular, we will now check whether in Dc (x≥ x∗),

(
A− rI+ T +G

)
w(x)≤ 0, ∀x≥ x̂. (42)

We calculate each term in the above separately. For the local term (A− rI)w we have (taking into

account that w(x) = x−K and the local form of the operator) that

(A− rI)w(x) = (µ− r)x+ rK.

We now consider the nonlocal operators T and G. These have to be treated carefully because their

action involves the function w calculated at x(1+γ(z))≤ x̂ (since −1≤ γ(z)≤ 0) so that, for these

terms, we need to involve the form of w which is valid in D. In particular, define

B(x) := {z ∈R : x(1+ γ(z))≤ x̂} ⊂R.

and note that

w(x(1+ γ(z))−w(x)− dw

dx
(x)γ(z)x=

{
K

β−1
(x
x̂
)β − (1+ γ(z))x+K for x> x̂, z ∈B(x),

0 for x> x̂, z ∈B(x)c

Hence,

T w(x) =
∫
B(x)

(
K

β− 1

(x
x̂

)β

− (1+ γ(z))x+K

)
dν(z) =

∫
B(x)

(L(x, z)+K)dν(x).

We note that this term is bounded as follows:

0≤T w(x)≤
∫
B(x)

Kdν(z)≤K

∫
R
dν(z) =K∥ν∥, (43)

where we used the auxiliary result in eq. (41).
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We now estimate the term Gw. We first note that

(Bw)(x)(z) =w(x+ γ(z)x)−w(x) =

{
K

β−1
(x
x̂
)β − (1+ γ(z))x for x> x̂, z ∈B(x),

γ(z)x for x> x̂, z ∈B(x)c

so that

Gw(x) =−θ
(
k1σx+ k2

∫
B(x)

∣∣∣∣ K

β− 1

(x
x̂

)β

− (1+ γ(z))x

∣∣∣∣dν(z)+ k2

∫
B(x)c

|γ(z)|xdν(z)
)

=−θ
(
k1σx+ k2

∫
B(x)

|L(x, z)|dν(z)+ k2

∫
B(x)c

|γ(z)|xdν(z)
) (44)

Note that Gw(x)≤ 0 for any x> x̂.

Combining all the above(
A− rI+ T +G

)
w(x) =(µ− r)x+ rK +

∫
B(x)

(L(x, z)+K)dν(x)︸ ︷︷ ︸
jump contribution

− θ

(
k1σx+ k2

∫
B(x)

|L(x, z)|dν(z)+ k2x

∫
B(x)c

|γ(z)|dν(z)
)

︸ ︷︷ ︸
uncertainty contribution

(45)

Note that the jump contribution in the above is positive, while the uncertainty contribution is

negative. Hence, uncertainty is facilitating the term
(
A− rI+ T +G

)
w(x) for w(x) = x−K to be

negative, whereas the jumps are acting in the opposite way.

We now find sufficient conditions under which the threshold x̂ obtained by the smooth-fit prin-

ciple indeed leads to an optimal stopping policy. We estimate (45) as(
A− rI+ T +G

)
w(x)≤ (µ− r)x+ rK +

∫
B(x)

(L(x, z)+K)dν(x)

≤ (µ− r)x+ rK +K∥ν∥

≤ (µ− r)x̂+ rK +K∥ν∥, ∀x> x̂, (46)

where we first used the fact that Gw(x)≤ 0 then estimate (43) and finally we used the fact that

µ− r < 0 and x≥ x̂. By (46) if

(µ− r)x̂+ rK +K∥ν∥< 0, (47)

then,
(
A− rI+ T + G

)
w(x) ≤ 0 for all x > x̂. In this case, x̂ can be understood as an exercise

threshold. Note that while the term Gw(x) ≤ 0 has been dropped when performing the above

estimates, the role of uncertainty is still present in the condition stated in section D because x̂

depends on θ (through its dependence on β).

The condition in section D leads to

x̂=
Kβ

β− 1
≥ r+ ∥ν∥

r−µ
K ⇐⇒ β ≤ βcr :=

r+ ∥ν∥
µ+ ∥ν∥
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Hence for x̂= β
β−1

K to be an optimal threshold policy, β must not exceed βcr. We now resort to

Lemma 1 which provides explicit bounds for β in terms of θ. Setting M = βcr in Lemma 1, we see

that β ≤ βcr as long as

θ < θcr =−
r− 1

2
σ2βcr(βcr − 1)−µβcr −φ(βcr)

k1σβcr + k2ψ(βcr)

This concludes the proof. QED

Remark 2. We will also obtain a lower bound for (A− rI+ T + G)w(x). Since |γ(z)| ≤ 1 for all

z ∈R and by (41) it holds that |L(x, z)| ≤K in B(x), we can estimate

0≤−Gw(x)≤ θ

(
k1σx+ k2K

∫
B(x)

dν(z)+ k2x

∫
B(x)c

dν(z)

)
≤ θ(k1σx+ k2K∥ν∥+ k2x∥ν∥).

Using this bound, we estimate

(A− rI+ T +G)w(x)≥ (µ− r− θk1σ− θk2∥ν∥)x+ rK

If µ− r− θk1 − θk2∥ν∥ ≥ 0 then

(µ− r− θk1σ− θk2∥ν∥)x+ rK ≥ (µ− r− θk1σ− θk2∥ν∥)x̂+ rK ≥ 0, ∀x> x̂,

so (A− rI+T +G)w(x)≥ 0 for all x≥ x̂ and we cannot have a threshold policy. Note that in this

case we have that

µθ − r := µ− θk1 − θk2∥ν∥− r≥ 0,

where µθ is the drift perceived by the decision maker on the worst case scenario, so this corresponds

to the condition µ ≥ r for the non ambiguity case, where the value function is not defined (the

decision maker never stops).

Appendix E: Proof of Corollary 2

We want to show that v decreases with β, i.e., if β1 < β2 then v(x,β2) ≤ v(x,β1) for all x ∈ R+.

First, x̂ is decreasing with β because dx̂/dβ =−K(β− 1)−2 < 0. Now consider β1 < β2. From the

above, x̂(β2)≤ x̂(β1). We will compare v(x,β1) and v(x,β2). We consider three regions for x:

x< x̂(β2). Here, v(x,βi) =
K

βi−1
( x
x̂(βi)

)βi , i= 1,2. We calculate

d

dβ
v(x,β) =K

d

dβ

(
1

β− 1
exp (β lnx−β ln x̂(β))

)
=K

(
− 1

(β− 1)2
+

1

β− 1

d

dβ
(β lnx−β ln x̂(β))

)(
x

x̂(β)

)β

=
K

β− 1
ln

(
x

x̂(β)

)(
x

x̂(β)

)β

< 0,
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since β > 1 and x< x̂(β). Hence for x< x̂(β2), the value function decreases with β, and

v(x,β2)< v(x,β1), ∀ x< x̂(β2).

x̂(β2)<x< x̂(β1). From the above, we already know that v(x,β1) =
K

β1−1

(
x

x̂(β1)

)β1 ≥ x − K in

(0, x̂(β1))⊇ (x̂(β2), x̂(β1)). It follows from v(x,β2) = x−K for x≥ x̂(β2) that v(x,β2)≤ v(x,β1) for

all x̂(β2)<x< x̂(β1).

x≥ x̂(β1). Here, we have that v(x,βi) = x−K so that the two value functions coincide.

Hence, v(x,β2)≤ v(x,β1) for all x∈R+, i.e., the value function decreases with respect to β.

To complete the proof of Corollary 2, it remains to note that θ 7→ h(β) for h(·) given in eq. (23)

is monotone increasing. So the root β of h(·) is monotone increasing in θ.

Appendix F: Proof of Proposition 2

We begin the proof by noting that E0(·) = EQ
λ̂(·) (see Theorem 1). This means that we can cal-

culate the variational expectation of the stopping time, working with the value process under the

probability measure Qλ̂ and calculating its expected exit time from (0, x̂). The strategy of the proof

is to consider the auxiliary expected exit-time problem from [x0, x1]⊂R+, viz.,

W (x) :=EQ
λ̂

[
τ
∣∣X0 = x

]
where τ := inf

{
t≥ 0 |Xt ̸∈ (x0, x1)

}
and then set x1 = x̂ and take the limit x0 → 0, to obtain T (x). We consider several steps.

Step 1. We use a heuristic approach to obtain W ’s functional representation. The bound-

ary conditions at x0 and x1 are immediate: W (x0) = W (x1) = 0. For a small h > 0, we have

W (x) = h+EQ
λ̂

[
W (Xh)

∣∣X0 = x
]
. Subtracting W (x) on both sides, dividing by h and taking the

limit as h→ 0 yields a integro-differential equation with the operator A + T . In summary, the

solution W to the above auxiliary problem solves the Dirichlet problem

(
A+ T

)
W (x) =−1, W (x0) = 0, W (x1) = 0, (48)

with W = 0 for v > v1. The solution of (48) consists of the general solution of the homogeneous

plus a particular solution of the nonhomogeneous part.

We now look for a general solution of the homogenous part of (48). Let us try for solutions of

the formW (x) = xρ, with an exponent ρ to be determined, supplemented with the above boundary

conditions. Under the assumption γ(·)≤ 0, we can easily see that such a function is a solution of

(48). The exponent ρ must solve the eq. (29), namely

σ2

2
ρ(ρ− 1)+µλρ+ψ(ρ) = 0,
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with the function ψ given in (23b). We can see that ρ= 0 is always a solution. Denote by ρ ̸= 0 the

nonzero solution of (29). Hence, the general solution of the homogeneous is

W (x) =C0 +C1x
ρ, (49)

where C0 and C1 are constants to be determined.

We now look for a particular solution of the nonhomogeneous part of the form W (x) =A ln(x)

for a constant A to be determined, with W (x) = 0 for x > x1. Substituting this ansatz into
(
A+

T
)
W (x) =−1, and taking into account that γ(·)≤ 0, we obtain that

(
A+ T

)
W (x) =A

(
A+ T

)
lnx=A[(µλ −

σ2

2
)+Γ(γ)] =−1 (50)

with

Γ(γ) :=

∫
R
[ln(1+ γ(z))− γ(z)]ν(dz), (51)

from which we immediately obtain that

A=− 1

(µλ − σ2

2
)+Γ(γ)

. (52)

Hence, the general solution of (48) is of the form

W (x) =C0 +C1x
ρ +A ln(x),

where the constants C0 and C1 are such that the boundary conditions in (48) are satisfied:

C1 =−A
ln x1

v0

xρ
1 −xρ

0

and C0 =−A lnx1 +A
xρ
1 ln

x1
x0

xρ
1 −xρ

0

;

hence, the solution of (48) becomes

W (x) =A

{
ln
( x
x1

)
+

1− ( x
x1
)ρ

1− (x0
x1
)ρ

ln
(x1

x0

)}
. (53)

Step 2. We now set x1 = x̂ and pass to the limit as x0 → 0 in (53). If ρ < 0 then (x0
x1
)ρ →∞ as

x0 ↓ 0, so then
1

1− (x0
x1
)ρ

ln

(
x1

x0

)
→ 0

Therefore, in the limit as x0 ↓ 0 we have

W (x) =A ln
(x
x̂

)
.

If ρ> 0 the limit is infinite. Q.E.D.

Appendix G: Proof of Proposition 3

The proof proceeds in 5 steps.
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Step 1. Expansion of ψ(β) in terms of γ. Assume γ(z) = γγ̄(z), with γ a small parameter. Then,

using an expansion around γ = 0, we can write

ψ(β) =

∫
R
[(1+ γγ̄(z))β − 1−βγγ̄(z)]ν(dz)

=

∫
R
[1+βγγ̄(z)+

1

2
γ2β(β− 1)γ̄2(z)+O(γ3)− 1−βγγ̄(z)]ν(dz)

=
1

2
γ2β(β− 1)

∫
R
γ̄2(z)ν(dz)+O(γ3), (54)

with O(γ3) capturing terms of order γ3 and above. Define γ̄2 :=
∫
R γ̄

2(z)ν(dz) so that equation (54)

becomes

ψ(β) =
1

2
γ2γ̄2β(β− 1)+O(γ3). (55)

Step 2. Expansion of β in terms of γ. Substituting (55) into the function h in (23) yields

1

2

(
σ2 + γ2γ̄2

)
β(β− 1)+µλβ− r= 0 (56)

We look for a solution of (56) in the form of β = β0 + γ2β1 +O(γ3), where β1 is the correction in

the expansion due to the jumps. Then (56) becomes

1

2
σ2β0(β0 − 1)+

1

2
γ2γ̄2β0(β0 − 1)+

1

2
σ2γ2β1(β0 − 1)+

1

2
σ2γ2γ̄2β1β0

+µλβ0 + γ2µλβ1 − r= 0+O(γ4) (57)

with O(γ4) capturing terms of order γ4 and above.

At order O(γ0), one gets from (57) the “quadratic equation” (Dixit and Pindyck, 1994)

1

2
σ2β0(β0 − 1)+µλβ0 − r= 0 (58)

where β0 is the solution for the case with a GBM. At order O(γ2), one gets from (57){
1

2
σ2(β0 − 1)+

1

2
σ2γ̄2β0 +µλ

}
β1 +

1

2
γ̄2β0(β0 − 1) = 0,

which yields

β1 =−
1
2
γ̄2β0(β0 − 1)

σ2

2
(β0 − 1)+ σ2

2
γ̄2β0 +µλ

< 0. (59)

Hence, β decreases (from the GBM case) due to jumps, for small γ. This concludes the result (i)

in Proposition 3.

Step 3. Expansion of the threshold x̂ in terms of γ. We recall from Theorem 3 the threshold

x̂= β
β−1

K. We try β = β0+ γ
2β1+O(γ3

0), with β1 < 0 as established in the previous section. Using

a Taylor series expansion of β 7→ β/[β− 1] around γ = 0, it can be shown that

β

β− 1
=

β0 + γ2β1

(β0 − 1)+ γ2β1

+O(γ3) =
β0

β0 − 1
− γ2 β1

(β0 − 1)2
+O(γ4). (60)

Since β1 < 0, the inclusion of jumps increases the threshold v̂ to this order. This concludes the

result (ii) in Proposition 3.
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Step 4. Expansion of the value function F (x) in terms of γ. The optimal threshold for the GBM

is x̂0 = β0K/[β0 − 1]. From (60), we can write

x̂= x̂0 + γ2x̂1 with x̂1 =
−β1

β0(β0−1)
x̂0 > 0 (61)

since β1 < 0. In the continuation region,D= (0, x̂), the value function can be written as v(x) =Cxβ.

Using the expansion, one gets

C =
K

β− 1

1

x̂β
=C0

{
1−β1γ

2

[
2

β0

+ ln x̂0

]}
, (62)

with C0 = x̂1−β0
0 /β0, and, by Taylor expansion of β 7→ exp(β lnx) around γ = 0,

xβ = xβ0(1+β1γ
2 lnx). (63)

Putting (62)–(63) together yields

v(x) =Cxβ = C0x
β0

{
1−β1γ

2

[
2

β0

+ ln
x̂0

v

]}
= v0(x)−β1γ

2v0(x)

[
2

β0

+ ln
x̂0

x

]
, (64)

with v0(x) = C0x
β0 . Given that β1 < 0 and in the continuation region ln(x̂0/x) > 0, the above

provides the conclusion that the inclusion of jumps leads to an increase of the value function v(x)

for 0<x< x̂0.

A legitimate question is whether v(·) also increases, because of the jumps, in the region

x̂0 <x< x̂0 + γ2x̂1, since in this region ln(x̂0/x) is no longer positive. To answer this, observe that

in this region

x< x̂0 + γ2x̂1 ⇔
1

x
>

1

x̂0

(1− γ2 x̂1

x̂0

)⇔ ln
x̂0

x
> ln(1− γ2 x̂1

x̂0

)≈−γ2 x̂1

x̂0

. (65)

Therefore, in this region we have

v(x) = F0(x)−β1γ
2v0(x)

[
2

β0

+ ln
x̂0

x

]
≥ v0(x)−β1γ

2v0(x)

[
2

β0

− γ2 x̂1

x̂0

]
≈ v0(x)−β1γ

2v0(x)
2

β0

+O(γ4) (66)

So there is also an increase in the value function in the region x̂0 < x < x̂0 + γ2x̂1 to this order.

This concludes the result (iv) in Proposition 3.
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Step 5. Expansion of T (v) in terms of γ. We recall the term A introduced in (52) and look for

A=A0 + γ2A1 +O(γ3), (67)

where O(γ3) captures terms of order γ3 and above. Substitute (67) into (50) to get

A0

(
µλ −

σ2

2

)
− γ2

2
γ̄2A0 + γ2A1

(
µλ −

σ2

2

)
=−1 (68)

At order O(γ0), it follows from eq. (68) that

A0 =− 1

δ0
where δ0 := µλ −

σ2

2
. (69)

At order O(γ2), one gets

A1 =− γ̄2

2δ20
. (70)

Hence,

A=− 1

δ0
− γ2 γ̄

2

2δ20
(71)

We now look for a solution of the form ρ= ρ0 + γ2ρ1. Substitute in eq. (29), expand, and use

(55) to get
1

2
σ2(ρ0 − 1)+µλ +

1

2
γ2γ̄2(ρ0 − 1)+

1

2
γ2σ2ρ1 = 0 (72)

At the order O(γ0), we have

1

2
σ2(ρ0 − 1)+µλ = 0⇒ ρ0 = 1− 2µλ

σ2
(73)

At the O(γ2) order, we get
1

2
σ2ρ1 =

1

2
γ̄2(1− ρ0)⇒ ρ1 = γ̄2 2µλ

σ4
(74)

Putting together (73) and (74) yields

ρ= 1− 2µλ

σ2
+ γ2γ̄2 2µλ

σ4
(75)

Thus, in the presence of jumps the exponent increases, however for small γ, ρ can be negative.

We then proceed in the expansion of T (v) in Proposition 2 using the above expansions for A

and ρ. Using the expansion x̂= x̂0 + γ2x̂1 to get

T (x) = T0 + γ2T1, where T0 =− 1

δ0
ln

(
x

x̂0

)
and T1 =− 1

δ20
γ2 ln

(
x

x̂0

)
+

1

δ0

x̂1

x̂0

(76)

Because δ0 > 0, in the continuation region where x< x̂0 < x̂1 we get T0 > 0 and T1 > 0, so we obtain

the result (iii). The proof is complete. Q.E.D.
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Appendix H: Proof of the expression in eq. (33)

We recall the function G in case of Hansen and Sargent’s (2001) multipliers preferences in eq. (32).

In this case, the function g defined in eq. (8) (where the time variable becomes irrelevant) becomes

g(ΛW ,ΛJ) = inf
(λW ,λJ )∈R×L2

ν

{[
1

2θk1
λ2
W +λWΛW

]
+

∫
R

[
1

2θk2
λ2
J(z)+λJ(z)ΛJ(z)

]
dν(z)

}
(77)

We can work each contribution separately. The first–order condition for the first term gives

λW =−θk1ΛW , which yields

inf
λW

{
1

2θk1
λ2
W +λWΛW

}
=−θk1

2
Λ2

W .

The first–order condition of the second term gives λJ(z) =−θk2ΛJ(z), for all z, which yields

inf
λJ

{∫
R

[
1

2θk2
λ2
J(z)+λJ(z)ΛJ(z)

]
dν(z)

}
=−θk2

2

∫
R
Λ2

J(z)dν(z).

Hence, the expression for eq. (77) becomes in eq. (33).

Appendix I: Proof of Proposition 4

Let ϵ := θ
2
and look for a value function in the form v(x) = v0(x) + ϵv1(x) +O(ϵ2). We first look

for a solution of
(
A+ T − rI+ G

)
v(·) = 0 of this form, so that substituting the above ansatz and

expanding in orders of ϵ we obtain

O(ϵ0) :
1

2
σ2v2v′′0 (x)+µxv′0(v)+ T v0(x)− rv0(x) = 0

which admits a solution of the form v0(x) = Āxβ0 where Ā is a constant to be determined and β0

is a root of β 7→ r− 1
2
σ2β(β− 1)−µβ−ϕ(β) for ϕ(·) given in eq. (23b).

Proceeding to next order O(ϵ) we obtain

O(ϵ1) :
1

2
σ2x2v′′1 (x)+µxv′1(x)+ T v1(x)− rv1(x)

−
(
k1σx

2v′0(x)
2 + k2

∫
R

{
v0(x+ γ(z)x)− v0(x)

}2
dν(z)

)
= 0.

A simple calculation yields that(
k1σx

2v′0(x)
2 + k2

∫
R

{
v0(x+ γ(z)x)− v0(x)

}2
dν(z)

)
= Ā2C0x

2β0 ,

where

C0 := k1σ
2β2

0 + k2

∫
R

{
(1+ γ(z))β0 − 1

}2
dν(z)> 0.

Hence, v1 satisfies

1

2
σ2x2v′′1 (x)+µxv′1(x)+ T v1(x)− rv1(x) = Ā2C0x

2β0 (78)
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We look for a solution of (78) of the form v1(x) = Ā1x
2β0 for Ā1 to be determined. Substituting

this form into (78), we obtain that

C1Ā1x
2β0 = Ā2C0x

2β0 ,

C1 =
σ2

2
2β0(2β0 − 1)+2µβ0 − r+

∫
R

{
(1+ γ(z))2β0 − 1− 2β0γ(z)

}
dν(z)

We express C1 as

C1 =
1

2
σ2β0(β0 − 1)+µβ0 − r+

∫
R
[(1+ γ(z))β0 − 1−β0γ(z)]dν(z)

+

∫
R
[(1+ γ(z))2β0 − 1− 2β0γ(z)]dν(z)−

∫
R
[(1+ γ(z))β0 − 1−β0γ(z)]dν(z)

+µβ0 +
1

2
σ2β0(β0 − 1)+σ2β2

0

=

∫
R
[(1+ γ(z))2β0 − (1+ γ(z))β0 −β0γ(z)]dν(z)+

1

2
σ2β0(β0 − 1)+σ2β2

0 ,

so that

C1 =

∫
R
[(1+ γ(z))2β0 − (1+ γ(z))β0 −β0γ(z)]dν(z)+

1

2
σ2β0(β0 − 1)+σ2β2

0 , (79)

Since the function ρ(z) := (1+z)2β0−(1+z)β0−β0z ≥ 0 for z ∈ (−1,∞) as can be shown numerically

and ν is a positive measure, we see that C1 > 0. Hence, Ā1 =
Ā2C0
C1

> 0, and

v(x) = Āxβ0 + ϵ
Ā2C0

C1

x2β0 +O(ϵ2) (80)

Here we seem to get v increasing with θ. This seems to be the opposite effect that what we get for

the Gilboa model. Thanasis: According to Theorem 4.1 of Quenez and Sulem (2014), we should be

getting that higher θ decreases the value function. It may be that we have done something wrong in

one of the signs. Please check as we also do so independently. It may also be that the second–order

term in the expansion has the opposite behaviour and dominates this first–order term.

As (80) shows, we can obtain the value function in terms of a free constant Ā. It remains to

specify the constant Ā in (80). This can be done by employing the smooth pasting condition which

at the same time will allow us to obtain the free boundary. We specify x̂ so that

v(x̂) = x̂−K and v′(x̂) = 1.

Using the representation (80), this yields

Āx̂β0 + ϵ
Ā2C0

C1

x̂2β0 +O(ϵ2) = x̂−K and β0Āx̂
β0−1 + ϵ

Ā2C0

C1

2β0x̂
2β0−1 +O(ϵ2) = 1. (81)
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We look for a perturbative solution of this system of the form Ā=A0 + ϵA1 +O(ϵ2) and

x̂= x̂0 + ϵx̂1 +O(ϵ2). Upon substituting this expansion in (81) we obtain to zeroth order that

A0x̂
β0
0 = x̂0 −K and β0A0x̂

β0−1
0 = 1 (82)

which is identical to the conditions for the ambiguity free problem and lead to

x̂0 =
β0

β0 − 1
K and A0 =

1

β0

x̂1−β0
0 ,

which leads to the familiar representation

v0(v) =
K

β0 − 1

(
x

x̂0

)β0

We now proceed to the first order corrections in (81). This yields the linear system

x̂β0
0 A1 +(A0β0x̂

β0−1
0 − 1)x̂1 =−A

2
0C0

C1

x̂2β0
0 ,

β0x̂
β0−1
0 A1 +β0(β0 − 1)A0x̂

β0−1
0 x̂1 =−2β0

A2
0C0

C1

x̂2β0−1
0

(83)

Solving this for A1 and x̂1 will specify the solution and the free boundary to order O(ϵ2).

Note that by (82) this simplifies to

x̂β0
0 A1 =−A

2
0C0

C1

x̂2β0
0 ,

β0x̂
β0−1
0 A1 +(β0 − 1)x̂1 =−2β0

A2
0C0

C1

x̂2β0−1
0 ,

which immediately yields

A1 =−A
2
0C0

C1

x̂β0
0 =− 1

β2
0

C0

C1

x̂2−β0
0 ,

x̂1 =− β0

β0 − 1

A2
0C0

C1

x̂2β0−1
0 =− 1

β0(β0 − 1)

C0

C1

x̂0.

Hence, we obtain an approximation to the free boundary as

x̂= x̂0 − ϵ
β0

β0 − 1

A2
0C0

C1

x̂2β0−1
0 =

(
1− ϵ

1

β0(β0 − 1)

C0

C1

)
x̂0, (84)

which leads to a reduction of the threshold with ambiguity.

Moreover, the value function admits the expansion

v(x) = Āxβ0 + ϵ
Ā2C0

C1

x2β0 +O(ϵ2)

= (A0 + ϵA1)x
β0 + ϵ

A2
0C0

C1

x2β0 +O(ϵ2)

=

(
A0 − ϵ

A2
0C0

C1

x̂β0
0

)
xβ0 + ϵ

A2
0C0

C1

x2β0 +O(ϵ2)

=

(
1− ϵ

1

β0

C0

C1

x̂0

)
x̂0

β0

(
x

x̂0

)β0

+ ϵ
C0

C1

x̂2
0

β2
0

(
x

x̂0

)2β0

+O(ϵ2)

=

{
1− ϵ

x̂0

β0

C0

C1

(
1−

(
x

x̂0

)β0
)}(

x

x̂0

)β0

+O(ϵ2)
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Note that since this solution is valid in the continuation region x ≤ x̂ = x̂0 − ϵx̂1 the first term(
x
x̂0

)β0
will dominate over the second term

(
x
x̂0

)β0
hence we observe a decrease of the value function

as an effect of uncertainty in the limit of small ambiguity. Q.E.D.
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