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REAL LAYERED COLLAR OPTIONS   

   

  

 

 

Abstract 

 

We derive the optimal investment timing and real option value for an investment opportunity, and 

separate values for each of the options with price uncertainty, where there are layers specifying the 

proportions of the price (at different layers) that are shared (with a third party).  The general model is for 

collars consisting of two upside and two downside risk-sharing layers, thus eight option coefficients, from 

which several other models can be easily derived, where the variables other than price are constant or 

deterministic. Analytical solutions are derived for the separate embedded option values.  Sensitivities of 

the real option values and the thresholds justifying immediate investment to changes in the important 

parameter values are examined.  Notable findings are the real option value of a layered collar 

arrangement is lower with increased high volatility at high prices, that layered values as function of the 

sharing proportion depend on the level of prices, and the layered collar investment threshold “vegas” 

depend on the risk sharing proportions.   Lower thresholds justifying immediate investment are obtained 

through reducing the investment cost and the layers, and increasing the floors, with layer and floor 

adjustments possibly economical for the third party (government). 

JEL Classifications: D81, G31, Q42, Q48 

Keywords: risk sharing, investment incentives, layered collars, real option values, thresholds. 
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1 Introduction 

Is a government subsidy the least costly method for encouraging early investment in a socially (or 

politically) desirable infrastructure or renewable energy facility? Are layered collars less/more 

sensitive to changes in prices than basic collars and no collars? Are layered collar “vegas” 

(sensitivity to volatility) always positive? Are the separate option values in layered collars 

significant compared to other risk-sharing elements? These are the critical questions we seek to 

answer while developing analytical solutions for the embedded options in layered collar 

arrangements.  

We assume that in evaluating a perpetual opportunity to invest in an infrastructure, an investor 

uses modern investment criteria, allowing for volatility and drift over time of the expected net 

price for a unit quantity (“P”).  She may then consider what proportions of risk sharing (layered 

options), volatility and drift characteristics of a proposed arrangement justify commencing an 

investment expenditure, given the physical characteristics of the infrastructure.   

Our approach is consistent with some other real option models, where valuing matching and 

smooth pasting conditions hold.  Analytical solutions for perpetual collars were first introduced in 

Adkins and Paxson (2016, 2017).  Takashima et al. (2010) design a private-public partnership deal 

involving government debt participation that incorporates a floor on the future maximum loss level 

where the investor has the right to sell back the project whenever adverse conditions emerge. 

Armada et al. (2012) make an analytical comparison of various subsidy policies including 

minimum revenue guarantees. Barbosa et al. (2018) and Barbosa et al. (2020) develop models for 

a feed-in tariffs contract with a minimum price guarantee (price-floor regime) with regulatory 

uncertainty. Adkins and Paxson (2019) provide analytical solutions for perpetual collars, floors 

and ceilings, plus partial floors and ceilings, and show the sensitivity of these collars to changes 

in most of the parameter values.   Adkins et al. (2019) contain solutions for the investment criteria 

involving basic collars. To our knowledge, the specific models herein for active and investment 

layered collars, and complete decomposition of value for each regime, are novel contributions.  

Shaoul et al. (2012) report that for a U.K. rail franchise agreement, investors are reimbursed for 

50% of any revenue shortfall below 98% of forecast and 80% below 96%, but suffer a claw-back 

of 50% of revenue exceeding 102%, equivalent to partial puts and calls. The Hinkley Point C 
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arrangement specifies that if the project IRR exceeds 11.4% in nominal terms, the gain is shared 

30:70 between the GOV and the OWN, and 60:40 if the IRR exceeds 13.5% in nominal terms and 

11.5% in real terms.   

Section 2 develops the analytical solution for the eight options embedded in a layered collar. 

Section 3 extends these solutions to derive the optimal investment timing and real option value 

pre-investment, Section 4 shows the basic spreadsheet models for pre and post investment value 

with these embedded options and sharing proportions. Section 5 summarizes the interesting 

findings and suggests future research. 

2 ACTIVE Layered Collars 

We consider a number of regimes and formulate the shared price for the outer regimes of the collar 

to depend on a proportion (less than 100%) of the price under the floors and over the ceilings. 

Analytical solutions are obtainable despite the increase in complexity.  Some of the sensitivities to 

changes in parameter values are similar to the basic collar model, but some are surprising. 

For a firm in a monopolistic situation confronting a sole source of uncertainty due to output price 

(P) variability, and ignoring operating costs and taxes, the revenue of the firm depends on the price 

evolution, which is specified by the geometric Brownian motion process: 

 d d dP P t P W = +   (1) 

where   denotes the expected price risk-neutral drift,   the price volatility, and dW  an increment 

of the standard Wiener process. Using contingent claims analysis, a project subject to a layered 

collar arrangement ( )V P  follows the risk-neutral valuation relationship: For an active project, the 

revenue accruing to the firm subject to a four-layer collar is given by a conditional net price ( )C P

and its value CV  is described by the risk-neutral valuation relationship: 

 ( ) ( )
2

2 21
2 2

0C C
C C

V V
P r P rV P

P P
  

 
+ − − + =

 
.  (2) 

where r   denotes the risk-free interest rate and r = −  the convenience yield or the rate of 

return shortfall.  
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We suppose there is a symmetrical arrangement with two downside risk sharing and two upside 

risk sharing arrangements. For the purpose of determining the price to be received by the 

infrastructure investor-owner OWN, the agreement with the government GOV divides the price 

schedule into 5 distinct mutually-exhaustive regimes.  The four junctions for neighboring regimes 

occur at 
LLP P= , where 

LLP  represents the lowest limit, at 
LP P=  where 

LP  is the lower limit,  at 

HP P=  where 
HP  is the higher limit, and at 

HHP P=  where 
HHP  is the highest limit. Under 

Regime I with 
LLP P , the “price received” by the OWN is the actual price P  plus a proportion 

1 LLw−  of the shortfall below 
LLP and a proportion 1 Lw− of the difference (PL-PLL).  Under 

Regime II with 
LL LP P P  , the price received is P  plus a proportion 1 Lw−  of the shortfall from 

PL, where 0 1LL Lw w   . Under Regime III with 
L HP P P  , the price received is P , and under 

Regime IV with 
H HHP P P  , the price received is P  less a proportion 1 Hw−  of ( )HP P− . 

Under Regime V with 
HHP P , the price received is P  less a proportion 1 HHw−  of  (P-PHH) and 

less a proportion 1 Hw−  of (PHH-PH), where 0 1HH Hw w   . In the absence of any fixed costs 

and taxation, the regime value is determined not only from the price schedule but also from the 

presence of any switch options.  The conditional net price is: 

( , (1 )*( ) (1 )* (1 )*( ),

( ( , , (1 )*( ),

( ( , , ,

( ( , , (1 )*( ),

(1 )*( ) (1 )*( ).

LL LL LL L L L L LL

L LL L L

H L

HH H H H

HH HH H H HH

IF P P P w P P w P w P P

IF AND P P P P P w P P

IF AND P P P P P

IF AND P P P P P w P P

P w P P w P P

 + − − + − + − −

 = + − −

 =

 = + − −

+ − − + − −

                                              (3)                                                   

For each regime, opportunities for switching to a higher or lower neighboring regime are 

represented by options, a call-style option for upward switching and a put-style option for 

downward switching, so both Regime II, III and IV are characterized by both call and put options, 

while Regime I by a call and Regime V by a put. Also, a switch producing a price advantage is 

represented by a positive option value coefficient, while that for a price disadvantage by a negative 

coefficient. The specifications for each of the five regimes are listed in Table 1. 

Table 1      Regime Specification and Price Schedule  

Regime Specification Value 
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I EQ 4 LLP P   ( )

( ) ( )

1

11

1 ( ) 1

I

L L LL L LLLL

V P A P

w P P w Pw P

r r





=

− − −
+ + +

  

II EQ 5 LL LP P P    ( )

( )

1 2

21 22

1

II

L LL

V P A P A P

w Pw P

r

 



= +

−
+ +

  

III EQ 6 L HP P P    ( ) 1 2

31 32IIIV P A P A P

P

 



= +

+
  

IVEQ 7 H HHP P P    ( )

( )

1 2

41 42

1

IV

H HH

V P A P A P

w Pw P

r

 



= +

−
+ +

  

 

V EQ 8 HHP P   ( )

( ) ( )

2

52

1 ( ) 1

V

H H HH HH HHHH

V P A P

w P P w Pw P

r r





=

− − −
+ + +

  

 

The power parameters are 1 2,  , respectively, the positive and negative roots of the fundamental 

equation, which are given by:  

2

1 1
1 2 2 22 2 2

2
,

r r r 
 

  

− −   
= −  − +   

   
                  (9) 

The eight unknown switch option coefficients, 
11 21 22 31 32 41 42 52, , , , , , ,A A A A A A A A , are determined 

from the value matching relationships and associated smooth pasting condition s. The value 

matching relationships, defined at each of the 4 junctions of neighboring regimes are: 

 ( ) ( ) 0
LL

II I
P P

V P V P
=

− =      (10) 

 ( ) ( ) 0
L

III II
P P

V P V P
=

− =     (11) 

 ( ) ( ) 0
H

IV III
P P

V P V P
=

− =    (12) 

 ( ) ( ) 0
HH

V IV
P P

V P V P
=

− =      (13) 
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Equations (10)-(13) together with the 4 associated smooth pasting conditions are sufficient to solve 

for the eight unknowns. The resulting solutions1 together with their signs are in Table 2. The 

coefficients having a positive value (involving the lower layers) indicate that the corresponding 

switch options are held by the OWN and contribute to their value, whilst those having a negative 

sign (involving the higher layers) are sold or written.      

  

Table 2 

Solutions and Conditions for the Option Coefficients of a Layered Collar 

 

 
1 Derivations are shown in Appendix A. 

Coefficient Solution Condition 

( ) ( )2(1 )

2 2

11 21

1 2( )

L LL LLw w P r r
A A

r

  

  

−
− − −

= −
−

      EQ 14  22 0A    

( ) ( )

( )

1(1 )

2 2

21 31

1 2

1 L Lw P r r
A A

r

  

  

−
− − −

= −
−

              EQ 15 21 0A   

  
( ) ( )

( )

2(1 )

1 1

22

1 2

L LL LLw w P r r
A

r

  

  

−
− − −

=
−

             EQ 16 22 0A    

( ) ( )

( )

2(1 )

1 1

32 22

1 2

1 L Lw P r r
A A

r

  

  

−
− − −

= −
−

            EQ 17 32 0A    

  

( ) ( )

( )

2(1 )

2 2

31 41

1 2

1 H Hw P r r
A A

r

  

  

−
− − −

= +
−

              EQ 18 

( ) ( )1(1 )

2 2

41

1 2( )

H HH HHw w P r r
A

r

  

  

−
− − −

=
−

            EQ 19 

( ) ( )2(1 )

1 1

42 32

1 2

1

( )

H Hw P r r
A A

r

  

  

−
− − −

= +
−

            EQ 20 

( ) ( )2(1 )

1 1

52 42

1 2( )

H HH HHw w P r r
A A

r

  

  

−
− − −

= +
−

      EQ 21        

 

<0 
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The first subscript 1,2,3,4,5 refers to the regime, while the second subscript indicates 1=call or 

2=put. Note that most of these options are expressed by adding other option values, due to the 

method of deriving the analytical solutions.  Possibly there are other simplified expressions.  It is 

convenient that the denominators are the same 1 2[( ) )]r  −  with repeating expressions in the 

numerators 1 1( )r r − − , 2 2{ }r r − − which are stochastic adjustment functions.  

3   Investment Criteria for Layered Collars 

The optimal exercise of an investment opportunity held by an owner (OWN) is characterized by 

the unknown price threshold denoted by 0P̂ , which is derived from the value matching relationship 

and optimality condition. At 0
ˆP P= , the opportunity value, 1

0 0
ˆA P


 with unknown coefficient 

0 0A  , is sufficient to compensate the value of the net price per unit, less the investment cost K, 

plus the values of any available switch options. For the purpose of analysis, we presume that 

exercise occurs for 
0L HP P P  . The value matching relationship is: 

 1 1 20
0 0 31 0 32 0

ˆ
ˆ ˆ ˆP

A P K A P A P
 


= − + +   (22) 

The smooth pasting condition is: 

1 1 21 1 1

1 0 0 1 31 0 2 32 0

1ˆ ˆ ˆA P A P A P
   



− − −
= + +    (23) 

It is straightforward to deduce that 0P̂  and 
0 0A   are given by, respectively: 

 20 1 1 2
32 0

1 1

ˆ
ˆ

1 1

P
K A P

  

  

−
= −

− −
  (24) 

 ( ) 10
0 2 2 0 31

1 2

ˆ1 ˆ1 .
P

A K P A
 

  

−
 

= − + + 
−  

  (25) 

(24) shows that the investment threshold is determined by 
32A , which depends on the floor-like 

attributes 
LP  and 

Lw , and on 
22A , which depends on the floor-like attributes 

LLP  and 
LLw . (25) 
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shows that the real option value depends not only on 
32A  but also 

31A , which depends on the cap-

like attributes 
HP  and 

Hw , so the investment option value is determined by both floor- and cap-

like attributes. (26) shows the expansion of (24) with clear and distinct identification of the 

threshold drivers, , , , ,LL L LL LK P P w w .  

2 2

2

(1 ) (1 )
( )1 1 2 1 1

0 0

1 1 1 2

(( ) ) (1 ) ))*( )ˆ ˆ[ { } ]
1 1 ( )

L LL LL L L rw w P w P r
P P

r
K

 
    


    

− −
− − − − − −

= −
− − −              (26) 

A systematic approach for a government (GOV) with the objective of motivating early (indeed 

instantaneous) investment2 is to identify the threshold level 0P̂ P= , close or just less than the 

prevailing P level, and determine level of K (probably the actual physical investment cost less cash 

subsidies, or equivalent tax credits) which results in that threshold.   The direct subsidy is 

transparent, and in many countries enters into the fiscal budget. For comparison, with such a 

subsidy, it is appropriate to determine the floor-like attributes, which reduce the threshold to the 

same level, and then to evaluate the (less transparent) immediate value of that policy. Although 

these findings are based on assuming that 0
ˆ

L HP P P  , there are similar results when assuming 

that 0
ˆ

LL LP P P  .  There are some alternative criteria given in Adkins et al. (2019) for investment 

opportunities with basic collars, even assuming possible retraction of the collar arrangements.   

4. NUMERICAL RESULTS 

 

ACTIVE layered collars have somewhat different sensitivities to changes in P and P volatility than 

basic collars without layers3. Layered collars with the specified parameter values are in Table 3: 

floors are 3.5,4, ceilings 10, 10.5, and the risk sharing is .25, .5 on the downside and .5, .25 on the 

upside.                                       

Table 3  

 
2 Governments may have alternative objectives, such as maximizing the real option investment value, possibly if 

concessions with collar arrangements are sold to private investors at or above that value.  
3 No collars are defined by PLL=PL=0, PH=PHH=.  Basic collars are defined by wLL=wHH=0, wL=wH=1.0.  
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Appendix B shows, with the first derivatives  and second derivatives  of the regime values, that 

the ODE (2) is solved for all regimes. 

Figure 1 shows a static diagram of the Net Price going to the OWN as P increases. 

Figure 1 

 

Figure 2 shows some sensitivity to increases in P, which is intuitive compared to 100% risk sharing 

below the floor and above the ceiling, but naturally less than for No Collar.                            

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

A B C D E F

 ACTIVE LAYERED COLLAR

INPUT   

P 6.00

 0.25

r 0.04

 0.04

PLL 3.50

PL 4.00

PH 10.00

PHH 10.50

wLL 0.25 75 % from GOV below PLL

wL 0.50

wH 0.50

wHH 0.25 75 % to GOV over PHH

OUTPUT Eqs

1 1.7369 0.5-(B5-B6)/(B4^2)+SQRT(((B5-B6)/(B4^2)-0.5)^2 + 2*B5/(B4^2)) 9

2 -0.7369 0.5-(B5-B6)/(B4^2)-SQRT(((B5-B6)/(B4^2)-0.5)^2 + 2*B5/(B4^2)) 9

A11 1.4501 B19-((B12-B11)*(B7^(1-B16))*-B28)/B26 14 + Hold Call

A21 0.4465 B21-((1-B12)*B8^(1-B16)*-B27)/B26 15 + Hold Call

A22 22.2594 (-((B12-B11))*B7^(1-B17)*-B27)/B26 16 + Hold Put

A31 -1.3726 B23+((1-B13)*(B9^(1-B16)*-B28)/B26) 17 - Write Call

A32 78.3993 B20-((1-B12)*B8^(1-B17)*-B27)/B26 18 + Hold Put

A41 -0.4466 ((B13-B14)*(B10^(1-B16))*-B28)/B26 19 - Write Call

A42 -197.3193 B22+((1-B13)*B9^(1-B17)*-B27)/B26 20 - Write Put

A52 -347.3708 B24+((B13-B14)*(B10^(1-B17))*-B27)/B26 21 - Write Put

[      ] 0.0040 (B5*(B16-B17)*B6)  

(     ) 0.0400 (B5*(1-B16)+B6*B16)  

{      } 0.0400 (B5*(1-B17)+B6*B17)  

   

ACTIVE OWN 140.0925 IF(B3<B7,B31,IF(AND(B8>B3,B3>=B7),B32,IF(AND(B9>B3,B3>=B8),B33,IF(AND(B10>B3,B3>=B9),B34,B35))))  

Regime I 141.9579 B18*(B3^B16)+B11*B3/B6+(1-B12)*(B8-B7)/B5+(1-B11)*B7/B5 4

Regime II 140.9761 B19*(B3^B16)+B20*(B3^B17)+B12*B3/B6+(1-B12)*B8/B5 5

Regime III 140.0925 B21*(B3^B16)+B22*(B3^B17)+B3/B6 6

Regime IV 137.2745 B23*(B3^B16)+B24*(B3^B17)+B13*B3/B6+(1-B13)*B9/B5 7

Regime V 135.3675 B25*(B3^B17)+B14*B3/B6+(1-B13)*(B9-B10)/B5+(1-B14)*B10/B5 8

Price 0 1 2 3 4 5 6 7 8 9 10 11 12

Net Price 2.8750 3.1250 3.3750 3.6250 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 10.3750 10.6250

Regime I 2.8750 3.1250 3.3750 3.6250 3.8750 4.1250 4.3750 4.6250 4.8750 5.1250 5.3750 5.6250 5.8750

Regime II 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000 5.5000 6.0000 6.5000 7.0000 7.5000 8.0000

Regime III 0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 11.0000 12.0000

Regime IV 5.0000 5.5000 6.0000 6.5000 7.0000 7.5000 8.0000 8.5000 9.0000 9.5000 10.0000 10.5000 11.0000

Regime V 7.6250 7.8750 8.1250 8.3750 8.6250 8.8750 9.1250 9.3750 9.6250 9.8750 10.1250 10.3750 10.6250

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12

Price

Layered Net Price

Price Net Price
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Figure 2  

 

Figure 3 

 

The sensitivity of a layered collar to changes in P volatility (“vegas”) when P=2 (right vertical 

axis) first increases then decreases as volatility increases as shown in Figure 3, but this is dependent 

on the particular other parameter values in addition to the P level.  

How does the particular collar setting affect the exposure of an OWN to changes in prices, which 

is a critical risk consideration?  Without a collar, the price exposure (delta) is of course simply 

P 2 4 6 8 10 12 14 16 18

No Collar 49.79 99.31 148.60 197.70 246.61 295.34 343.91 392.32 440.58

Basic Collar 94.93 112.21 133.63 153.07 168.83 180.60 189.40 196.25 201.75

Layered Collar 89.21 112.97 140.09 166.10 189.47 209.97 228.45 245.60 261.84

Regime I 89.2085 112.9863 141.9579 175.5781 213.5022 255.4821 301.3265 350.8812 404.0176

Regime II 89.8442 112.9744 140.9761 171.3435 203.4425 237.0064 271.8902 308.0010 345.2730

Regime III 92.4654 112.9744 140.0925 166.1012 189.4673 209.7559 226.8439 240.7179 251.4076

Regime IV 30.1169 98.9993 137.2745 165.8350 189.4673 209.9335 228.0580 244.2895 258.8993

Regime V -5.3024 90.5656 135.3675 165.5876 189.4657 209.9692 228.4457 245.6015 261.8447

OPTION 4.8335 12.9744 -9.9075 -33.8988 -60.5327 -55.6558 -49.6793 -45.0235 -41.2803

Regime I 4.8335 16.1113 32.5829 53.7031 79.1272 108.6071 141.9515 179.0062 219.6426

Regime II 14.8442 12.9744 15.9761 21.3435 28.4425 37.0064 46.8902 58.0010 70.2730

Regime III 42.4654 12.9744 -9.9075 -33.8988 -60.5327 -90.2441 -123.1561 -159.2821 -198.5924

Regime IV -119.8831 -76.0007 -62.7255 -59.1650 -60.5327 -65.0665 -71.9420 -80.7105 -91.1007

Regime V -208.4274 -125.0594 -92.7575 -75.0374 -63.6593 -55.6558 -49.6793 -45.0235 -41.2803

Net Price 3.3750 4.0000 6.0000 8.0000 10.0000 10.6250 11.1250 11.6250 12.1250

Regime I 3.3750 3.8750 4.3750 4.8750 5.3750 5.8750 6.3750 6.8750 7.3750

Regime II 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 11.0000

Regime III 2.0000 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000 16.0000 18.0000

Regime IV 6.0000 7.0000 8.0000 9.0000 10.0000 11.0000 12.0000 13.0000 14.0000

Regime V 8.1250 8.6250 9.1250 9.6250 10.1250 10.6250 11.1250 11.6250 12.1250

ODE 0.0000

Regime I 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Regime II 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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1/=2.  With a collar, the price exposure is shown in Figure 4, changing regimes as P increases. 

G has a U-shape possibly due to the various combinations of puts and calls across the regimes.  

Figure 4 

 

 

Figure 5 
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The layered collar value sensitivity to the middle risk-sharing proportion wL (when wL=wH, 

wLL=wHH=.5wL) is dependent on the price level P, shown in Figure 5.  When P<PL, the layered 

collar option value is given by A11, A21, (including A31 and A41), involving both wLL and wL in 

equations 14-15-18-19. 

Naturally, the layered collar value will be affected by changes in the floor and ceiling levels.  

Figure 6 shows that increasing the lowest floor PLL does not increase the overall layered collar 

value by much.   

 

      Figure 6     

 

 

DECOMPOSITION of REGIME VALUES 

Most of the regime values are dominated by the present values of stochastic prices and 

floors/ceiling but at different risk sharing proportions. Then each regime has a collection of 

switching option values.  

ACTIVE OWN 134.15 134.35 134.82 135.51 136.40 137.46 138.70 140.09 141.64

Regime I 1787.89 195.2675 160.5498 149.0121 144.0936 142.0537 141.5458 141.9579 142.9695

Regime II 135.0325 135.2346 135.7069 136.3966 137.2809 138.3455 139.5799 140.9761 142.5277
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OPTION -15.8512 -15.6490 -15.1768 -14.4871 -13.6027 -12.5382 -11.3038 -9.9075 -8.3560

Regime I ######## 104.6425 66.7998 52.1371 44.0936 38.9287 35.2958 32.5829 30.4695

Regime II 10.0325 10.2346 10.7069 11.3966 12.2809 13.3455 14.5799 15.9761 17.5277

Regime III -15.8512 -15.6490 -15.1768 -14.4871 -13.6027 -12.5382 -11.3038 -9.9075 -8.3560

Regime IV -68.6691 -68.4669 -67.9947 -67.3050 -66.4206 -65.3561 -64.1217 -62.7255 -61.1739

Regime V -98.7011 -98.4990 -98.0267 -97.3370 -96.4527 -95.3881 -94.1537 -92.7575 -91.2059

Net Price 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000

Regime I 3.5025 3.6250 3.7500 3.8750 4.0000 4.1250 4.2500 4.3750 4.5000

Regime II 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

Regime III 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000

Regime IV 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000

Regime V 9.1250 9.1250 9.1250 9.1250 9.1250 9.1250 9.1250 9.1250 9.1250

ODE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Regime I 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Figure 7 

 

 

In Regime III shown in Figure 7, the aggregate ACTIVE value increases as P increases 

substantially due the 100% proportion of P/ received, but decreases as the negative value of the 

written call option 1

31A P
 to give up the stochastic price P to a ceiling PH increases, while the put 

option 2

32A P
 to receive the floor PL should P fall decreases. Generally, in this middle Regime, real 

option values are relatively less important than in other regimes.   

 

Whether any of these separate layered collar options could be detached, monetarized, or hedged is 

an interesting research (and practical) topic. 
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Sum Parts 112.9744 123.0625 133.3049 143.4558 153.3752 162.9794 172.2163 181.0527 189.4673

0.0000

50.0000

100.0000

150.0000

200.0000

250.0000

300.0000

-100.0000

-80.0000

-60.0000

-40.0000

-20.0000

0.0000

20.0000

40.0000

4.0000 4.7500 5.5000 6.2500 7.0000 7.7500 8.5000 9.2500 10.0000

Price

Decomposition of Value: Regime III

   CallOption    PutOption    P/d



15 

 

INVESTMENT NUMERICAL ILLUSTRATIONS 

Table 4 shows the analytical solution for the real option value of the without collar (ROV CALL) 

and the with layered collar (ROV L COLLAR) with the same general parameter values as Table 3 

for the ACTIVE operation. At these parameter values, the ROV CALL is 50% more valuable than 

the ROV L COLLAR, and the threshold that justifies immediate investment P̂ is one-third higher 

than threshold 0P̂ with a layered collar.   

Table 4 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

A B C D

   INVESTMENT OPPORTUNITY WITH A LAYERED COLLAR OPTION EQUAL THRESHOLDS THROUGH CHANGING PARAMETER VALUES
INPUT            CASH  COST FOR GOV

P 6.00 if PL<P<PH

K 100.00

 0.25

r 0.04

 0.04

PLL 3.5  

PL 4.0  

PH 10.0

PHH 10.5

wLL 0.25  

wL 0.50  

wH 0.50

wHH 0.25  

OUTPUT EQ

1 1.7369 0.5-(B6-B7)/(B5^2)+SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 9

2 -0.7369 0.5-(B6-B7)/(B5^2)-SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 9

ROV CALL 61.8978 IF(B3<B21,((B4/(B17-1))*(B3/B21)^B17),B20)

P/-K 50.0000 MAX(B3/B7-B4,0)

P^ 9.4279 (B17/(B17-1))*B4*B7

A0 2.7547 (B4*(B21^-B17))/(B17-1)

ROV L COLLAR 40.8466 IF(B3<B26,B27*(B3^B17),B3/B7-B4+B29*(B3^B17)+B30*(B3^B18)) 22

FIND P^C 0.0000 B26/B7-(B17/(B17-1))*B4+((B17-B18)/(B17-1))*B30*(B26^B18) 24

P^0 6.8889 Set B25=0, changing B26

AC0 1.8179 (1/(B17-B18))*((1-B18)*(B26/B7)+B18*B4)*(B26^-B17)+B30 25

A22 22.2594 (-((B13-B12))*B8^(1-B18)*-B33)/B32 16

A31 -1.3726 B31+((1-B14)*B10^(1-B17)*-B34)/B32 18

A32 78.3993 B28-((1-B13)*B9^(1-B18)*-B33)/B32 17

A41 -0.4466 ((B14-B15)*(B11^(1-B17))*-B34)/B32 19

[      ] 0.0040 (B6*(B17-B18)*B7)

(     ) 0.0400 -(B6*(B17-1)-B7*B17)

{      } 0.0400 -(B6*(B18-1)-B7*B18)

Value Matching at P^0  

Pre 51.9245 B27*(B26^B17) 22

Post 51.9245 B26/B7-B4+B29*(B26^B17)+B30*(B26^B18)) 22

AC31 P0^1
-39.2070 B29*(B26^B17)

AC32 P0^
2

18.9083 B30*(B26^B18)
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Figure 8 shows that the investment threshold “vega” is significantly different for the risk-sharing 

proportions wL  

Figure 8 

 

                                                                  Figure 9 
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P^0  wL=.50 4.52 4.78 5.05 5.32 5.61 5.91 6.22 6.55 6.89

P^0  wL=.75 4.62 4.93 5.25 5.59 5.95 6.33 6.72 7.14 7.57
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In Figure 9, the ROV for the layered collar decreases with increases in volatility, due to the 

constrained variability imposed by the collar, which possibly has significant implications for 

optimal collar arrangement design. 

As discussed in Section 3, the investment threshold 0P̂  depends on 
32,A which involves wL and PL, 

but also A22 (wL, wLL, PLL).  Figures 10-11-12 show that the threshold is nearly a linear function 

of changing K, but an upward convex function of decreasing the risk sharing proportion wL (when 

wLL=.5wL), and a downward convex function of PL (similarly for wLL and PLL). 

Figure 10 

 

Figure 11 

 

Figure 11 
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This offers possibilities for designing a layered collar with a low threshold that has a lower 

effective cost (the combined option values, the opposite signs for the OWN and the GOV) than 

reducing K.  An example is in Table 5, where a reduction in K (through a $1 direct subsidy) 

reducing 0P̂  from 6.8889 to 6.7587 is compared to the reduction of wLL, wL, or increase of PLL,PL 

resulting in the same threshold.  

Table 5 

    

In the base case OWN holds a perpetual option to invest in a perpetual project with a perpetual 

collar arrangement worth 40.8466 when P=6, and 51.9245 when 0
ˆ 6.8889P P= = . At the threshold 

the OWN has written a call option worth -39.2070 and holds a put option worth 18.9082, for a 

combined value of -20.2987.  Naturally GOV holds a call option and has written a put option for 

PL 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

P^0 9.43 9.37 9.24 9.05 8.79 8.46 8.06 7.55 6.89

6.0000

6.5000

7.0000

7.5000

8.0000

8.5000

9.0000

9.5000

10.0000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

PL (PLL=.875 PL)

P^0 as function of PL

EQUAL THRESHOLDS THROUGH CHANGING PARAMETER VALUES
           CASH  COST FOR GOV $1 GOV

P 6.00 6.00 6.00 6.00 6.00 6.00

K 100.00 99.00 100.00 100.00 100.00 100.00

 0.25 0.25 0.25 0.25 0.25 0.25

r 0.04 0.04 0.04 0.04 0.04 0.04

 0.04 0.04 0.04 0.04 0.04 0.04

PLL 3.50 3.5 3.7531 3.5 3.5 3.5

PL 4.00 4.0 4.0 4.1165 4.0 4.0

PH 10.00 10.0 10.0 10.0 10.0 10.0

PHH 10.50 10.5 10.5 10.5 10.5 10.5

wLL 0.25 0.25 0.25 0.25 0.2178 0.23

wL 0.50 0.50 0.50 0.50 0.50 0.4576

wH 0.50 0.50 0.50 0.50 0.50 0.50

wHH 0.25 0.25 0.25 0.25 0.25 0.25

OUTPUT  

ROV L COLLAR 40.8466 41.6464 41.4041 41.4041 41.4041 41.4041

FIND P^C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

P^0 6.8889 6.7587 6.7587 6.7587 6.7587 6.7587

COMBINED ROV -20.2987 -18.7523 -18.0502 -18.0502 -18.0502 -18.0502

Pre 51.9245 51.2148 50.9169 50.9169 50.9169 50.9169

Post 51.9245 51.2148 50.9169 50.9169 50.9169 50.9169

AC31 P0^1 -39.2070 -37.9284 -37.9284 -37.9284 -37.9284 -37.9284

AC32 P0^2 18.9083 19.1761 19.8782 19.8782 19.8782 19.8782
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a combined value of 20.2987. Pre-investment GOV could reduce the threshold by spending $1 

subsidy to reduce K to 99, reducing 0
ˆ 6.7587P =  but also reducing the GOV combined option 

values to 18.7523.  Total cost is 1+(20.2987-18.7523) =2.5454 for the GOV.  Alternatively, the 

GOV could reduce the risk-sharing proportion wL to 45.76% from 50% (keeping wLL=.5wL) 

thereby reducing  0
ˆ 6.7587P =  but reducing the GOV combined option values to 18.0502.  Total 

cost is (20.2987-18.0502) =2.2485, so this alternative is economical for the GOV (and perhaps 

sadly less transparent). The results will be somewhat different for other regimes, and changes in 

the levels of other parameter values (r,  ).  The real option values change after the collar 

arrangement is established as other parameter values, especially volatility, change, as illustrated in 

Adkins and Paxson (2019).  

5. Conclusion 

Analytical solutions are suggested for the eight separate embedded option values in an operation 

subject to a layered collar consisting of two upside and two downside risk-sharing arrangements. 

Such layered collars are less sensitive to increases in prices than no collar, but more than basic 

collars with 100% risk sharing below the floor and above the ceiling. Layered collar value “vegas” 

(sensitivity to volatility) are not always positive, or monotonic, sometimes increasing, then 

decreasing with increasing volatilities.  The optimal investment layered collar threshold “vegas” 

depend on the risk-sharing proportions. The separate option values in layered collars are not always 

large compared to other risk-sharing elements, but the increase/decrease with increased prices can 

be significant. We provide some examples of floor/ceiling (collar) arrangements that may have 

significant effects on reducing the threshold that justifies immediate investment, compared to 

reducing the thresholds through direct subsidies.  Alternative configurations (and for lower price 

regimes) are intriguing.   

Future research might focus on such alternative optimal arrangements incentivizing early 

investment timing, along with the possibility of replicating these real option values through 

dynamic trading in prices, along with monetarizing and/or hedging embedded options.  Extension 

to other multi-layer arrangements including finite, retractable collars, and competition, with 

stochastic floors, ceilings, proportions and price volatility is challenging.  
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APPENDIX A      Derivations of Analytical Solutions for Layered Collar 

Let x  described by the geometric Brownian motion process: 

 d d d ,t t tx x t x W = +  (1) 

where   denotes the expected drift,   the volatility, and dW  an increment of the standard Wiener 

process. At 0t ,=
0 0.tx x=   Using Ito’s Lemma, the valuation relationship for the opportunity, 

( )F x , has the form: 

 ( )
2

2 21
2 2

0
F F

x r x r ,
x x

 
 

+ − − =
 

 (2) 

where r  is the risk-free rate, and 0r = −   the return shortfall. The generic solution to (2) is: 

 ( ) 1 2

01 02F x A x A x
 

= +  (3) 

where 01 02A ,A are to-be-determined constants, and 1 21 0,    are the roots of: 

 ( ) ( ) ( )21
2

1 0Q r r .     = − + − − =  (4) 

Since ( )0 0F = , 02 0A = . From (4), 0r r . − −   

 

The periodic net revenue flow ( )g   is formulated to be continuous but not smooth and is specified 

by: 
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=

+ −

+ − −

+ − −

+ − −   + − −

 (5) 

where )1 0, ,LLR x=    )2 , ,LL LR x x=  )3 , ,L HR x x=    )4 , ,H HHR x x= and  )5 , .HHR x=    

 

The valuation relationship for the installed opportunity is: 

 ( ) ( )
2

2 21
2 2

0,
V V

x r x rV g x
x x

 
 

+ − − + =
 

 (6) 

where V  denotes the value of an installed opportunity. The generic solution to (6) is: 
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 ( ) ( ) ( )1 2

1 2 , 1,2,3,4,5,j j j j j jV x R V x A x A x G x R j
   = = + +  =  (7) 

where the coefficients 
1 2,j jA A  depend upon 

LL L H HHx , x , x , x  and 
LL L H HHw , w , w , w , and: 

 ( )

( )
( )( ) ( )

( )
( )

( )

( )
( )

( )
( )( ) ( )

1 1

2 2

3 3

4 4

5 5

for ,

for ,

f

r

1 1

or ,

for ,

fo .

1

1

1 1

L L LL LL LL LL

L L L

H H H

H H HH HH HH HH

w

G x R

G x R

G

w x x w x w x

r r

w x w x

r

x

x w x

r

w x x w x

x G x R

G

x
w x

r r

x R

G R





















 
=  

 
 

=  
 
 

= =  
 
 

=  
 
 

= 

− − −
+ +

−
+

−
+

− − −


+ + 



 

In (7), 12 0A =  since ( )0V  is finite and 51 0A =  since ( )V   is not explosive. The expressions 

1 2

11 22,A x A x
   represent the expected present values accruing to the installed opportunity as x

approaches the bound LLx x→  from below and above, 1 2

21 32,A x A x
  as x approaches the bound 

Lx x→  from below and above, 1 2

31 42,A x A x
   as x approaches the bound Hx x→  from below and 

above, and 1 2

41 52,A x A x
  as x approaches the bound HHx x→  from below and above.  Dependent 

upon whether it is economically advantageous or disadvantageous when x equals these bounds, 

the respective coefficient is either positive or negative, respectively. 

 

The value-matching relationship at LLx x=  is ( ) ( )1 2 0V x V x− = : 

 

( ) ( )( )

( )

1 1 2

11 21 22

1 1

1
0

L L L L LL

LL LL L LL

w x w x x
A x A x A x

r r

w x w x w x
.

r

  

 

− − −
− − − +

−
+ − + =

 (8) 

The smooth-pasting condition associated with (8) is: 

 1 1 21 1 1

1 11 1 21 2 22 0L LLw w
A x A x A x .

    
 

− − −
− − − + =  (9) 

Multiplying (9) by 1x  , adding to (8) and setting LLx x=  yields: 
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( ) ( )

( )

21

1 1

22

1 2

0
L LL LLw w x r r

A .
r

   

  

−
− − −

= − 
−

 (10)=(EQ 16) 

The value-matching relationship at 
Lx x=  is ( ) ( )2 3 0V x V x− = : 

 
( )

1 1 2 2

21 31 22 32

1
0

L L L
w x w xx

A x A x A x A x .
r

   

 

−
− + − + − + =  (11) 

The smooth-pasting condition associated with (11) is: 

 1 1 2 21 1 1 1

1 21 1 31 2 22 2 32

1
0Lw

A x A x A x A x .
      

 

− − − −
− + − − + =  (12) 

Multiplying (12) by 
1x  ,  adding to (11) and setting 

Lx x=  yields: 

 
( ) ( )

( )

21

1 1

32 22

1 2

1
0

L Lw x r r
A A .

r

  

  

−
− − −

= − 
−

 (13)=(EQ 18) 

The value-matching relationship at Hx x=  is ( ) ( )3 4 0V x V x− = : 

 
( )

1 1 2 2

31 41 32 42

1
0

H H H
w x w xx

A x A x A x A x .
r

   

 

−
− + − − + − =  (14) 

The smooth-pasting condition associated with (14) is: 

 1 1 2 21 1 1 1

1 31 1 41 2 32 2 42

1
0Hw

A x A x A x A x .
      

 

− − − −
− + − + − =  (15) 

Multiplying (15) by 1x  , adding to (14) and setting Hx x=  yields: 

 
( ) ( )

( )

21

1 1

42 32

1 2

1 H Hw x r r
A A .

r

  

  

−
− − −

= +
−

 (16)=(EQ 20) 

The value-matching relationship at HHx x=  is ( ) ( )4 5 0V x V x− = : 

 

( )

( )( ) ( )

1 2 2

41 42 52

1

1 1
0

H H

H H HH HH HH H HH

w x
A x A x A x

r

w x x w x w x w x
.

r r

  

 

−
+ − +

− − −
− − + − =

 (17) 

The smooth-pasting condition associated with (17) is: 

 1 2 21 1 1

1 41 2 42 2 52 0H HHw w
A x A x A x .

    
 

− − −
+ − + − =  (18) 

Multiplying (18) by 2x  , adding to (17) and setting HHx x=  yields: 
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( ) ( )

( )

11

2 2

41

1 2

0
H HH HHw w x r r

A .
r

  

  

−
− − −

= 
−

 (19)=(EQ 19) 

Substituting (19) in (18) and setting 
HHx x=  yields: 

 
( ) ( )

( )

21

1 1

42

1 2

52

H HH HH
A .

w w x r r
A

r

  

  

−
− − −

+=
−

 (20)=(EQ 21) 

Substituting (16) in (15) and setting 
Hx x=  yields: 

 
( ) ( )

( )

11

2 2

3 41

1

1

2

1 H Hw x r r
A .A

r

  

  

−
− −

+=
−

−
 (21)=(EQ 17 ) 

Substituting (13) in (12) and setting 
Lx x=  yields: 

 
( ) ( )

( )

11

2 2

2 31

1

1

2

1 L Lw x r r
A .A

r

  

  

−
− −

−=
−

−
 (22)=(EQ 15) 

Substituting (10) in (9) and setting LLx x=  yields: 

 
( ) ( )

( )

11

2 2

21

1 2

11

L LL LL
A .

w w x r r
A

r

  

  

−
− − −

−=
−

 (23)=(EQ 14) 
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APPENDIX B     Table B1 Complete Analytical Solutions for Table 3  

 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

A B C D E F

 ACTIVE LAYERED COLLAR

INPUT   

P 6.00

 0.25

r 0.04

 0.04

PLL 3.50

PL 4.00

PH 10.00

PHH 10.50

wLL 0.25 75 % from GOV below PLL

wL 0.50

wH 0.50

wHH 0.25 75 % to GOV over PHH

OUTPUT Eqs

1 1.7369 0.5-(B5-B6)/(B4^2)+SQRT(((B5-B6)/(B4^2)-0.5)^2 + 2*B5/(B4^2)) 9

2 -0.7369 0.5-(B5-B6)/(B4^2)-SQRT(((B5-B6)/(B4^2)-0.5)^2 + 2*B5/(B4^2)) 9

A11 1.4501 B19-((B12-B11)*(B7^(1-B16))*-B28)/B26 14 + Hold Call

A21 0.4465 B21-((1-B12)*B8^(1-B16)*-B27)/B26 15 + Hold Call

A22 22.2594 (-((B12-B11))*B7^(1-B17)*-B27)/B26 16 + Hold Put

A31 -1.3726 B23+((1-B13)*(B9^(1-B16)*-B28)/B26) 17 - Write Call

A32 78.3993 B20-((1-B12)*B8^(1-B17)*-B27)/B26 18 + Hold Put

A41 -0.4466 ((B13-B14)*(B10^(1-B16))*-B28)/B26 19 - Write Call

A42 -197.3193 B22+((1-B13)*B9^(1-B17)*-B27)/B26 20 - Write Put

A52 -347.3708 B24+((B13-B14)*(B10^(1-B17))*-B27)/B26 21 - Write Put

[      ] 0.0040 (B5*(B16-B17)*B6)  

(     ) 0.0400 (B5*(1-B16)+B6*B16)  

{      } 0.0400 (B5*(1-B17)+B6*B17)  

   

ACTIVE OWN 140.0925 IF(B3<B7,B31,IF(AND(B8>B3,B3>=B7),B32,IF(AND(B9>B3,B3>=B8),B33,IF(AND(B10>B3,B3>=B9),B34,B35))))  

Regime I 141.9579 B18*(B3^B16)+B11*B3/B6+(1-B12)*(B8-B7)/B5+(1-B11)*B7/B5 4

Regime II 140.9761 B19*(B3^B16)+B20*(B3^B17)+B12*B3/B6+(1-B12)*B8/B5 5

Regime III 140.0925 B21*(B3^B16)+B22*(B3^B17)+B3/B6 6

Regime IV 137.2745 B23*(B3^B16)+B24*(B3^B17)+B13*B3/B6+(1-B13)*B9/B5 7

Regime V 135.3675 B25*(B3^B17)+B14*B3/B6+(1-B13)*(B9-B10)/B5+(1-B14)*B10/B5 8

OPTION -9.9075 IF(B3<B7,B37,IF(AND(B8>B3,B3>=B7),B38,IF(AND(B9>B3,B3>=B8),B39,IF(AND(B10>B3,B3>=B9),B40,B41))))  

Regime I 32.5829 B18*(B3^B16)

Regime II 15.9761 B19*(B3^B16)+B20*(B3^B17)

Regime III -9.9075 B21*(B3^B16)+B22*(B3^B17)

Regime IV -62.7255 B23*(B3^B16)+B24*(B3^B17)

Regime V -92.7575 B25*(B3^B17)

Net Price 6.0000 IF(B3<B7,B43,IF(AND(B8>B3,B3>=B7),B44,IF(AND(B9>B3,B3>=B8),B45,IF(AND(B10>B3,B3>=B9),B46,B47)))) 3

Regime I 4.3750 B11*B3+(1-B12)*B8+(B12-B11)*B7

Regime II 5.0000 B12*B3+(1-B12)*B8

Regime III 6.0000 B3

Regime IV 8.0000 B13*B3+(1-B13)*B9

Regime V 9.1250 B14*B3+(1-B13)*B9+(B13-B14)*B10

ODE 0.0000 IF(B3<B7,B49,IF(AND(B8>B3,B3>=B7),B50,IF(AND(B9>B3,B3>=B8),B51,IF(AND(B10>B3,B3>=B9),B52,B53)))) 2

Regime I 0.0000 0.5*(B4^2)*(B3^2)*B61+(B5-B6)*B3*B55-B5*B31+B43

Regime II 0.0000 0.5*(B4^2)*(B3^2)*B62+(B5-B6)*B3*B56-B5*B32+B44

Regime III 0.0000 0.5*(B4^2)*(B3^2)*B63+(B5-B6)*B3*B57-B5*B33+B45

Regime IV 0.0000 0.5*(B4^2)*(B3^2)*B64+(B5-B6)*B3*B58-B5*B34+B46

Regime V 0.0000 0.5*(B4^2)*(B3^2)*B65+(B5-B6)*B3*B59-B5*B35+B47

ACTIVE  13.5003 IF(B3<B7,B55,IF(AND(B8>B3,B3>=B7),B56,IF(AND(B9>B3,B3>=B8),B57,IF(AND(B10>B3,B3>=B9),B58,B59))))

Regime I 15.6824 B16*B18*(B3^(B16-1))+B11/B6

Regime II 14.6742 B16*B19*(B3^(B16-1))+B17*B20*(B3^(B17-1))+B12/B6

Regime III 13.5003 B16*B21*(B3^(B16-1))+B17*B22*(B3^(B17-1))+1/B6

Regime IV 16.0662 B16*B23*(B3^(B16-1))+B17*B24*(B3^(B17-1))+B13/B6

Regime V 17.6427 B17*B25*(B3^(B17-1))+B14/B6

ACTIVE  -0.3523 IF(B3<B7,B61,IF(AND(B8>B3,B3>=B7),B62,IF(AND(B9>B3,B3>=B8),B63,IF(AND(B10>B3,B3>=B9),B64,B65))))

Regime I 1.1585 B16*(B16-1)*B18*(B3^(B16-2))

Regime II 0.5680 B16*(B16-1)*B19*(B3^(B16-2))+B17*(B17-1)*B20*(B3^(B17-2))

Regime III -0.3523 B16*(B16-1)*B21*(B3^(B16-2))+B17*(B17-1)*B22*(B3^(B17-2))

Regime IV -2.2302 B16*(B16-1)*B23*(B3^(B16-2))+B17*(B17-1)*B24*(B3^(B17-2))

Regime V -3.2980 B17*(B17-1)*B25*(B3^(B17-2))
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APPENDIX C      Table C1 Complete Analytical Solutions for Table 4 

 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

A B C D

   INVESTMENT OPPORTUNITY WITH A LAYERED COLLAR OPTION EQUAL THRESHOLDS THROUGH CHANGING PARAMETER VALUES
INPUT            CASH  COST FOR GOV

P 6.00 if PL<P<PH

K 100.00

 0.25

r 0.04

 0.04

PLL 3.5  

PL 4.0  

PH 10.0

PHH 10.5

wLL 0.25  

wL 0.50  

wH 0.50

wHH 0.25  

OUTPUT EQ

1 1.7369 0.5-(B6-B7)/(B5^2)+SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 22

2 -0.7369 0.5-(B6-B7)/(B5^2)-SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 24

ROV CALL 61.8978 IF(B3<B21,((B4/(B17-1))*(B3/B21)^B17),B20)

P/-K 50.0000 MAX(B3/B7-B4,0)

P^ 9.4279 (B17/(B17-1))*B4*B7

A0 2.7547 (B4*(B21^-B17))/(B17-1)

ROV L COLLAR 40.8466 IF(B3<B26,B27*(B3^B17),B3/B7-B4+B29*(B3^B17)+B30*(B3^B18))

FIND P^C 0.0000 B26/B7-(B17/(B17-1))*B4+((B17-B18)/(B17-1))*B30*(B26^B18)

P^0 6.8889 Set B25=0, changing B26

AC0 1.8179 (1/(B17-B18))*((1-B18)*(B26/B7)+B18*B4)*(B26^-B17)+B30 25

A22 22.2594 (-((B13-B12))*B8^(1-B18)*-B33)/B32 16

A31 -1.3726 B31+((1-B14)*B10^(1-B17)*-B34)/B32 18

A32 78.3993 B28-((1-B13)*B9^(1-B18)*-B33)/B32 17

A41 -0.4466 ((B14-B15)*(B11^(1-B17))*-B34)/B32 19

[      ] 0.0040 (B6*(B17-B18)*B7)

(     ) 0.0400 -(B6*(B17-1)-B7*B17)

{      } 0.0400 -(B6*(B18-1)-B7*B18)

Value Matching at P^0  

Pre 51.9245 B27*(B26^B17) 22

Post 51.9245 B26/B7-B4+B29*(B26^B17)+B30*(B26^B18)) 22

AC31 P0^1
-39.2070 B29*(B26^B17)

AC32 P0^2
18.9083 B30*(B26^B18)

PV 172.2232 B26/B7

ODE 0.0000 0.5*(B5^2)*(B3^2)*B43+(B6-B7)*B3*B42-B6*B24

VC  11.8246 B17*B27*(B3^(B17-1))

VC  1.4523 B17*(B17-1)*B27*(B3^(B17-2))

ROV 40.8466 B27*(B3^B17)

P0^ 6.8889 B7*((B17/(B17-1))*B4-((B17-B18)/(B17-1))*B30*(B26^B18))

Part I 235.6978 (B17/(B17-1))*B4

Part II 3.3570 ((B17-B18)/(B17-1))

Part III -7.7580 ((-((B13-B12))*B8^(1-B18)-((1-B13)*B9^(1-B18)))*-B33/B32)

Part IV 0.0400 (-(B6*(B17-1)-B7*B17))

Part V 0.0040 (B6*(B17-B18)*B7)

P0^ 6.8889 B7*(B46-(B47*B48*(-B33/B32)*(B26^B18)))


