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Abstract

This paper presents novel models for firms’ valuation functions of fixed-price and fixed-
premium, under market uncertainty. Our models allow the identification of the equilibrium
bidding, the optimal time to deploy a renewable energy project, and the optimal time of the
auction. We present several findings that are aimed at policy-making decisions.
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1. Introduction

Investing in renewable energy projects is a key strategy for reducing carbon emissions and thus
curbing climate change. Governments have used a myriad of policy instruments to accelerate
renewable energy investments, such as feed-in tariffs (Barbosa, Nunes, Rodrigues & Sardinha 2020)
and renewable energy certificate trading (Boomsma, Meade & Fleten 2012). Renewable auctions
are becoming a popular mechanism for awarding projects to investors due to the potential for
price discovery.

The main difference between the popular feed-in tariff and the renewable auction is the price
discovery mechanism. While feed-in tariff has a price that is determined by policymakers, the
price in renewable auctions is set by the participants through competitive bidding. In particular,
renewable auctions are procurement auctions, in which many sellers compete to sell goods or
services to a buyer, and the winning bids are the ones with the lowest prices. In renewable auctions,
the buyer is the policymaker and the sellers are the renewable energy investors. In addition, most
renewable auctions are multi-unit auctions which means the auction volume consists of multiple
units of energy. Hence, the units are a subset of the total good. For example, the policymaker
may want to auction a total power of 100 MW which is then split into blocks of 5 or 10 MW.
Hence, investors submit bids with energy prices and units of energy.

In the scientific literature, some scholars have analyzed renewable auctions and investment
decisions under uncertainty. For instance, Welisch & Poudineh (2020) develop an agent-based
simulation to analyze UK’s Contracts for Difference scheme where contracts are awarded through
renewable auctions. Through a literature review, the authors state that UK’s Contracts for
Difference have several options, such as the option to invest all the capacity at once or in phases,
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and the option to default. However, the agent-based simulation does not implement these options
and analyze them. Matthäus, Schwenen & Wozabal (2021) analyze the option to invest (or
default) on the awarded projects. The results show that bidders with a high option value are
more aggressive, regardless of the auction format. However, this work does not consider the
optimal auction timing, which can lead to higher welfare.

This work proposes a novel model for renewable auctions that derives the optimal auction
timing, optimal bidding, and optimal investment timing. We include in our model two different
contracts, namely a fixed-price and premium contract. Our numerical analysis also includes
findings of the investment threshold and bidding strategy when we change the parameters.

This paper is organized as follows. Section 2. presents the assumptions of our model. Section
3. derives our model with the optimal auction timing, optimal bidding strategy, and optimal
investment timing. Section 4. discusses the results for the numerical analysis. Finally, Section 5.
presents our concluding remarks.

2. Assumptions

In this section, we present the assumptions of our models. We assume that the energy market
price P follows a Geometric Brownian Motion (GBM) in Equation (1), where P = {Pt, t > 0}.

dPt = µPtdt+ σiPtdWt (1)

where µ < r is a deterministic drift, r is the discount rate, σi > 0 is the volatility, and Wt is the
standard Brownian motion process.

Equation (2) is the profit flow of the winning bidder (i.e., producer with awarded contract)
within the two different types of auctions. The first auction awards a fixed-price contract to a
winning bid bF (i.e., the producer receives bF for each unit of energy). The second auction awards
a contract to a winning bidder that receives a premium bP over the market price for each unit of
energy. In addition, we assume that the production cost is zero, which is a reasonable assumption
for renewable energy projects. {

ΠF (Pt, bF ) = bFQ

ΠP (Pt, bP ) = (Pt + bP )Q
(2)

where Q is the energy produced.
Equation (3) is the government’s instantaneous utility function for both types of auctions

where the first term is the public expenditure and the second term is related to the environmental
benefit in producing renewable energy1.{

WF (P, bF ) = (P − bF )Q+ kQ2

WP (P, bP ) = −bPQ+ kQ2
(3)

where the constant k represents an increment in the marginal environment. So the intuition
behind the second term is that for one unit of renewable energy produced, one less unit of carbon
energy sources is not produce, and consequently, this effect increases the welfare.

In addition, we consider that the value of public expenditure, the first term of Equation (3),
can assume two different values. First, the public expenditure of the fixed price is equal to the
difference between the market price and the winning bid multiplied by the energy produced. The
intuition behind this formula is that the government pays bF (the winning bid) for every unit of

1Note that Equation (3) does not contain the producer surplus and consumer surplus, because in our model,
for simplicity, we assume that policymakers optimize only the public expenditure and environmental damage.
For future work, we will include consumer surplus and producers surplus in the analysis. Consequently, we will
optimize the social welfare
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energy and sells it for market price. In addition, the public expenditure of the premium is equal
to the winning bid multiplied by the energy produced.

We follow Matthäus et al. (2021) and also assume truthful bidding, hence all renewable pro-
ducers bid their true valuation. In addition, the valuations are assumed to be private information
and are modeled as identically distributed random variables with uniform distribution. Another
important assumption is that the firm sells energy for the market price when the awarded contract
terminates.

3. Model

Our model has two sequential stages. In the first stage, the government/policymaker rationally
chooses the best moment to hold the auction, and investors/producers submit a bid to maximize
their profit. In the second stage, the winning bidder rationally chooses the best moment to invest
in the project. We solve the model using backward induction. Hence, we first solve the optimal
investment strategy for the winning bidder. Then, we derive the winning bid by finding the
Bayesian-Nash equilibrium. Lastly, we derive the optimal auction timing.

3.1. Optimal Investment Timing for the Winning Bidder

If the winning bidder invests at time τ then he receives the amount in Equation (4), where the
first term is the firm’s profit until the duration of the contract T . The second term is the amount
received when the contract’s duration is over, whereby the producers sell energy for the market
price. We use the subscript S = {F, P} to denote the particular contract that we are considering,
which can be either fixed-price F or premium P .

VS(P, bS) = E

[∫ τ+T

τ

ΠS(Pt, bS)e−rtdt+

∫ +∞

τ+T

PtQe
−rtdt|P0 = P

]
(4)

Consequently, the investor’s optimization problem that we propose to solve is the following:

FS(P, bS) = sup
τ
E
[
(VS(P, bS)− Ie−rτ )

]
(5)

Equation (5) is a standard investment problem, where I is the investment cost of the winning
bidder. Equation (6) is the auctioneer’s optimization problem, where he chooses the optimal
auction timing that maximizes the utility function in Equation (3).

FWS(P ) = sup
ta

E[WS(Pta , bS)e−rta |P0 = P ] (6)

Next, we present the value of the project and the value of the option for the winning bidder
within the two auctions, namely the fixed-price and premium contract auctions. Equation (7) is
the value of the project for the winning bidder with a fixed-price contract:

VF (P, bF ) =
bFQ

r

(
1− e−rT

)
+

PQ

r − µ
e−(r−µ)T (7)

Proposition 1: The value of the investment option is given by:

FF (P, bF ) =


(VF (P ∗F , bF )− I)

(
P

P ∗F

)β1
for P < P ∗F

VF (P, bF )− I for P > P ∗F

(8)
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where the investment threshold P ∗F is equal to:

P ∗F (bF ) =
β1

(β1 − 1)

r − µ
Qe−(r−µ)T

(
Ii −

bFQ

r

(
1− e−rT

))
(9)

Equation 10 is the value of the project for the winning bidder with a premium contract:

VP (P, bP ) =
PQ

r − µ
+
bPiQ

r

(
1− e−rT

)
(10)

Proposition 2: The value of the investment option is given by:

FP (P, bP ) =


(VP (P ∗P , bP )− I)

(
P

P ∗P

)β1
for P < P ∗P

VP (P, bP )− I for P > P ∗P

(11)

where the investment threshold P ∗P is given by:

P ∗P (bP ) =
β1

β1 − 1

r − µ
Q

(
I − bPQ

r

(
1− e−rT

))
(12)

3.2. Finding the Winning Bidder

Next, we derive the strategic equilibrium in order to find the optimal bid. Recall that we assume
truthful bidding, hence investors bid their true valuation. In addition, support is given to the
producer who bids the lowest bid. If lower bids are more likely to win, then the probability that
the producer that bids bi wins is the probability that all the other producers bid more than bi.
Hence, the probability to renewable energy producer (i) wins the Auction is given by:

P (win|bSi) = P (bSi ≤ min
j 6=i

bSj) = (1− CDF (bSi))
N−1 (13)

where CDF is the cumulative distribution function of the valuation of the producers for the
subsidy. Therefore, producers choose the bid that maximizes the following Equation (i.e.: the
expected value of the option of the winning bidder):

E[FSi] = P (win|bSi)Fi(P, bSi) (14)

3.3. Optimal Auction Timing

Next, we derive the optimal auction timing and the policymaker’s utility function. Recall that the
utility function includes the public expenditure and environmental benefit in producing renewable
energy.

Proposition 3: The policymaker’s utility function for a fixed-price Auction at the time of the
investment is given by:

SWF (P, b∗F (P ∗F )) = −b
∗
F (P ∗F )Q

r

(
1− e−rT

)
+

PQ

r − µ
(1− e−(r−µ)T ) +

kQ2

r
(15)

In addition, the policymaker’s utility function by considering the value of the flexibilities is:

FWF (P, b∗F (P ∗F )) =


WF (P ∗A, b

∗
F (P ∗F ))

(
P

P ∗A

)β1
for P < P ∗A

WF (P, b∗F (P ∗F )) for P > P ∗A

(16)

where P ∗A is the optimal auction timing
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Proposition 4: At the time of the investment, the welfare for a fixed-premium Auction is:

SWP (P, b∗P (P ∗P )) = −b
∗
P (P ∗P )Q

r

(
1− e−rT

)
+
kQ2

r
(17)

Note that the policymaker’s utility function for a fixed-premium Auction does not depend on
the energy market price. Hence, we do not find the optimal auction timing.

4. Analytical and numerical study

Now, we present some results from our models. The blue curve is the investment trigger as a
function of the duration of the contract when bids can be viewed as fixed-price. In addition, the
red curve is the investment trigger when bids can be viewed as premium-price. We can see that
the investment triggers decrease as the duration of the contract increases. However, before the
point that both curves meet, the investment trigger for a premium price is lower than the fixed
price, which suggests that before this point a premium price is a better option for the firm. In
contrast, after this point, the investment trigger of a fixed price is lower, which suggests that after
this point a fixed price is a better option for the firm.

Fixed price (PF
* )

Premium (PP
* )

T

P
F*
,P
P*

Figure 1: Triggers P ∗F and P ∗P as a function of T

Figure 2 represents the investment thresholds P ∗F and P ∗A as a function of T . The green curve
is the auction trigger and the blue curve is the investment trigger of a fixed price scheme. We can
see that firms do not expect that the auctioneer offers a duration of the contract greater than the
point that both curves meet because it increases the public expenditure and does not accelerate
investment.

Figure 3 presents the equilibrium biddings as a function of the duration of the contract. The
dashed blue curve is the optimal bidding strategy of the fixed price. As we can see, the optimal
bid increases as the duration of the contract increases. This result might suggest that the optimal
bid increases because the investment trigger decreases as we have seen in Figure 1. Consequently,
firms bid higher value because they will invest with a lower market price. In addition, the dashed
red curve is the optimal bidding strategy for a premium price. In this case, the duration of the
contract does not influence the optimal bidding strategy.

Figure 4 presents the equilibrium biddings and the investment thresholds for different values of
the volatility. The dashed blue curve is the optimal bidding strategy of the fixed price, the dashed
red curve is the optimal bidding strategy of the premium price, the blue curve is the investment
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Fixed price (PF
* )

Auction (PA
* )

T

P
F*
,P
A*

Figure 2: Triggers P ∗F and P ∗A as a function of T

Fixed price (bF)

T

b F

(a)

Premium (bP)

T

b P

(b)

Figure 3: Optimal Biddings b∗F and b∗P as a function of T

trigger of a fixed price and the red curve is the investment trigger of the premium price. We
can see that for both schemes the investment trigger increases as the volatility increases, which
is consistent with the real options theory where higher volatilities increase the thresholds and
consequently postpone the investment decision.

In addition, we can see that as the volatility increases, the equilibrium bidding decreases for
a fixed price scheme and does not affect the equilibrium bidding for the premium price. For a
fixed-price scheme, the result might suggest that the optimal bid decreases because the investment
trigger increases. So, the firm bids lower value because it will invest with a higher market price.

Figure 5 present the optimal bid and the investment trigger as a function of the duration of
the contract for different values of the volatility. As we already saw, the optimal bid decreases
when the volatility increases, and the investment trigger increases as the volatility increases.

Figure 6 present the optimal bidding strategy and the investment trigger as a function of the
contract for different values of the drift. We can see that the optimal bidding strategy and the
investment trigger decrease as the drift increases because higher drifts lead to higher expected
prices.
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Fixed price (bF)

σ

b F

(a)

Fixed price (PF
* )

σ

P
F*

(b)
Premium (bP)

σ

b P

(c)

Premium (PP
* )

σ

P
P*

(d)

Figure 4: Optimal Biddings b∗F b∗P and P ∗F P ∗P as a function of σ

bF(σ=5%)

bF(σ=19%)

bF(σ=25%)

T

b F

(a)

PF
* (σ=5%)

PF
* (σ=19%)

PF
* (σ=25%)

T

P
F*

(b)

Figure 5: b∗F and P ∗F as a function of T for different values of σ

5. Concluding Remarks

We present a novel model for a firm’s valuation for fixed-price and premium contracts, which
are allocated to an investor with renewable auctions. For each scheme, we use a real options
framework in order to calculate the value of the project, the option value, the optimal investment
threshold, and the auction optimal timing.

We find very interesting results. For example, for a fixed price, as the duration of the contract
increases, the investment trigger decreases, and the equilibrium bidding increases. The model also
allows for the analysis of the auctioneer’s decisions.
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bF(μ=-1%)

bF(μ=0%)

bF(μ=1%)

T

b F

(a)

PF
* (μ=-1%)

PF
* (μ=0%)

PF
* (μ=1%)

T

P
F*

(b)

Figure 6: b∗F and P ∗F as a function of T for different values of µ
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