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Abstract

This study investigates irreversible investment decisions when the exercise payoff is scale-
dependent; thus, it is endogenously determined by the firm’s risk management. We find that the
scale-dependency gives rise to a speculative risk management strategy: a positive relationship
between the firm’s derivatives position and unhedged cash flow. Moreover, investment can
be hastened or delayed as the underlying uncertainty increases depending on the economic
conditions due to the speculative strategy. The main force driving these results, different from
those known in the existing literature, is that the firm’s risk management is designed to optimize
the risk-return trade-off of the endogenous payoff.

JEL classification: G11; G31; G32
Keyword: real options; endogenous payoff; scale-dependency; risk management; speculative usage
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1 Introduction

This study investigates a mixed problem of a firm’s optimal risk management and real option exercise
decision under uncertainty. Specifically, we consider the model in which the firm’s self-financing
risk management strategy endogenously determines the payoff due to its scale-dependency. More
precisely, the real option payoff depends on the underlying process (e.g., output price) and the
amount of investment at the exercise time. We show that the scale-dependency gives rise to
a speculative risk management strategy and the investment timing can be delayed or hastened
depending on the economic conditions. We find that these results are driven by that the firm’s risk
management is designed to optimize the risk-return trade-off of the real option payoff.
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It is worth noting that in standard real option models, the firm only chooses the exercise
time since the amount of investment is exogenously given.1 This assumption is innocuous since it
represents the lumpy investment (e.g., the total cost of building a plant or a factory). The technical
advantage of this assumption is that the underlying payoff is separate from the amount of investment
(the exercise price). Hence, a usual real option problem has the same structure as a perpetual
American option problem. However, there are many cases where the payoff is also scale-dependent.
The output increases as a firm invests more, which is also true for irreversible investments (see
Example 1 in Section 2). In line of this feature, so-called capacity choice problems also have been
considered in the literature (e.g., Dangl (1999), Huisman and Kort (2015), and Bensoussan et al.
(2021)).

A novel and important departure from the literature is that we consider the case in which the real
option payoff is endogenously determined by the firm’s risk management strategy. Note also that in
our model the firm’s risk management strategy is self-financing due to two types of capital market
frictions. The first one is a credit constraint: borrowing is limited and so is the size of investment
when the firm exercise the real option. Second, a firm (or a decision maker in the firm) cannot freely
sell the real option to others (or the firm does not want to sell it since selling incurs a huge discount).
These frictions often arise because while the firm views that the real investment opportunity is
fairly valuable, other parties, such as banks and lenders, significantly underestimate the value due to
moral hazard, adverse selection, limited commitment, or other contractual restrictions. Then, with
a given limited amount of capital, the firm needs to accumulate capital by using a self-financing risk
management strategy before exercising the real option. We assume that there may exist a derivative
or an insurance asset that can be used to hedge the idiosyncratic risk of the underlying process of
the real option.2 Therefore, the firm’s problem is to maximize the value of investment, consisting
of two components: an optimal real option exercise problem and an optimal control problem of
allocating capital over time between insurance contracts and safe (or risk-free) assets. The problem
is transformed into a stochastic control problem of a nonlinear Hamilton-Jacobi-Bellman (HJB)
equation with a free boundary. We obtain explicit solutions and present the implications for the
firm’s risk management and investment strategy.

Our model provides two novel implications. First, the optimal risk management strategy turns
out to be speculative, which seems risk-seeking. In our model, the firm’s position of insurance
holdings takes a positive value even if the insurance (risky) asset is positively correlated with the
underlying price process and its risk premium is zero. This result is in sharp contrast with that of
the usual portfolio selection and conventional risk management wisdom in which the hedge position

1There are models in which the investment cost is given as a stochastic process. However, the cost is still an
exogenous variable unaffected by a firm’s decision.

2We first focus on the case in which the insurance asset exists and is perfectly correlated with the underlying
process of the real option, and then extend the model to more general cases: (i) the case in which no such asset exists
and (ii) the case in which the correlation is imperfect.
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takes a negative value if the hedge asset is positively correlated with the underlying asset process.
Considering the real-estate development example, a typical risk management is to trade housing
futures contracts. It is often taught in MBA classes that producers are recommended to short
futures contracts on the commodity that they are selling for hedging (see, for example, Chapter 6 of
McDonald (2013)). However, our result indicates that the real-estate development firm should take
a long position for the housing futures contracts. Thus, the firm looks like utilizing derivatives not
for hedging but for speculating. This result is even more counter-intuitive, considering that the
firm’s concave objective function essentially generates risk aversion. Moreover, the firm not only
takes such a long position, but also extends the long position as the volatility of the underlying
price increases. Although this risk-seeking behavior basically originates from the nature of real
investment, it does not appear without the scale-dependency of the exercise payoff. It means that
the fundamental driving force of the result is that the insurance strategy is used to optimize the
risk-return trade-off of the payoff process, as explained below.

The second contribution of this study is that the optimal exercise threshold can increase or
decrease with risk, i.e., the volatility of the underlying price process (σx). More precisely, the
threshold increases (decreases, respectively) with σx when the expected growth rate of the underlying
process (αx) is small (large, respectively). This result also sounds counter-intuitive at first because
the value of waiting decreases with σx when the underlying economic environment is favorable (αx is
large). However, recall that in our model, the total payoff is the underlying price multiplied by the
size of the output. An increase in σx increases the absolute value of the proportion of insurance asset
holdings; thus, it increases the expected return of the payoff process and its volatility (even when
the insurance asset has no risk premium). However, a change in σx affects the payoff risk and return
by a different magnitude. To quantify their relative magnitude, we characterize the risk-return
trade-off by investigating the Sharpe ratio of the total payoff process. When the underlying economic
environment is unfavorable (αx is small), the optimal risk management increases the expected return
of the total payoff, which is substantial. Since the original expected return (αx) is small, the extra
return added by the risk management outweighs the added extra risk, thus, increasing the Sharpe
ratio. Therefore, the firm will have more incentives to delay investment as σx increases for low αx.
In contrast, the threshold decreases with σx when the underlying economic environment is favorable
(high αx). Here, the additional return is small relative to the size of the added risk added due to the
risk management; thus, the Shape ratio decreases with σx, which deteriorates the value of waiting.
We also present the impact of the parameter values different from σx in the main body of the paper.

According to the conventional risk management theory, non-financial firms should use derivatives
mostly for hedging, indicating a negative relationship between a firm’s derivatives position and
its unhedged cash flow. Compared with the theoretical clarity, the empirical literature is largely
inconclusive. Guay (1999), Allayannis and Ofek (2001), and Bartram et al. (2011) obtained a
reduction in risk of derivatives users, which is consistent with the hedging argument. However,
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speculative usage of derivatives has also been widely reported (e.g., Adama and Fernado (2006),
Chernenko and Faulkender (2011), Faulkender (2005)), and Geczy et al. (2007)). Furthermore,
Hentschel and Kothari (2001) obtained no difference in risk between derivatives users and non-users.
Bartram (2019) reported that commodity price exposure of firms using commodity derivatives is
marginally high. Guay and Kothari (2003) obtained that the magnitude of the derivatives position
relative to firms’ risk is quite small. In our theory, firms with scale-dependent real investment
opportunities optimally take a positive derivatives position against the unhedged cash flow. Although
firms as commodity producers generally have hedging motives, the existence of firms with scale-
dependent investment opportunities in the sample can offset the hedging effect, which can lead to
no relationship or even a slightly positive relationship between the firm’s derivatives position and
its risk. The above literature attributes firms’ speculative usage of derivatives to that managerial
incentives are designed in such a way or to that hedging with derivatives contributes to a small
fraction of firms’ overall risk management. We suggest another channel to potentially explain the
positive relationship caused by firms’ real investment decisions.

We hope that our theory can help shed light on the empirical debate by suggesting researchers to
design more detailed empirical specifications. Existing empirical studies mostly compare derivatives
users and non-users. Based on our theory, one can further compare firms with different degrees of
scale-dependency in investment opportunities. Our theory predicts that among derivatives users,
firms with high scale-dependency can use derivatives more speculatively. Additionally, among firms
with high scale-dependency, derivatives users have a higher firm value but higher return volatility
than non-users.

This study is broadly related to the real option literature; however, we do not summarize it
since it is too vast and is quite well developed. We note that the main insight from the real option
literature since Brennan and Schwartz (1985) and McDonald and Siegel (1986) is that an increase
in risk increases the value of waiting; thus, delaying investment. This result is preserved for many
extensions, including investment under uncertainty (see, e.g., Abel and Eberly (1994, 1996), Dixit
and Pindyck (1994), and Guo et al. (2005)) and sequential expansion choice (see, e.g., Bensoussan
and Chevalier-Roignant (2019) and references therein). A recent body of literature has pointed out
that when the underlying process has idiosyncratic risk (the market is incomplete) and the agent is
risk-averse, the result can be overturned depending on the level of risk aversion (Henderson (2007),
Miao and Wang (2007), and Evans et al. (2008)) and according to the degree of time-discounting
(Choi et al. (2017)). A similar feature is also found in American option exercise and optimal stopping
problems when the market is incomplete (e.g., Carpenter (2000), Henderson and Hobson (2013), and
Carpenter et al. (2010)). Additionally, the option value may not globally increase with its volatility
if there is incomplete information; thus, the decision-maker learns the drift of the underlying process
over time (Décamps et al. (2005)). However, our study deviates from the literature and proposes a
different channel that affects investment timing. Our model considers the case in which the firm’s
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risk management endogenously determines the payoff process, while the aforementioned literature
has considered the case with the exogenous payoff.

Among the real investment studies, our paper is more closely related to the capacity choice
literature such as Dangl (1999), Huisman and Kort (2015), and Bensoussan et al. (2021) in the sense
that these papers study a firm’s optimal investment timing decision when the payoff is dependent
on its scale choice. Dangl (1999) studies the case in which a firm needs to choose the maximum
production capacity when it invests, considering the future demand.3 Huisman and Kort (2015)
study the duopoly (leader-follower) capacity choice problem, in which the total demand is unchanged
when a new producer enters the market. Bensoussan et al. (2021) consider the expansion timing
problem of a levered firm that optimally chooses its debt capacity. Our paper is different from
these papers in that the capacity choice is a one-time decision in these models. In our model a
firm continuously monitors its derivatives position by choosing the optimal portfolio of insurance
and risk-free assets over time until it exercises the real option, and this risk management decision
eventually affects the exercise payoff. The main insight from our model is that an increase in the
underlying uncertainty can increase or decrease the Sharpe ratio of the payoff process, depending
on the economic environment, which can increase or decrease the value of waiting. We hope that
our setup can shed light on understanding different aspects of the role of risk management when a
firm faces irreversible investment decisions.

Finally, the firm’s risk-seeking behavior in our model is similar to the result of Henderson
and Hobson (2013) where an agent optimally chooses to participate in a risk-increasing gamble
when the risk-averse agent decides on the optimal timing of selling an indivisible asset. However,
the fundamental reason behind our result differs from that suggested by Henderson and Hobson
(2013). The risk-averse agent indeed engages in a pure gamble in Henderson and Hobson (2013):
the agent is better off by buying a gambling asset with a zero risk premium uncorrelated with the
underlying asset since it leads to a local convexity in the agent’s value function. However, the market
incompleteness in our model is not necessary for deriving the risk-seeking result as in Henderson
and Hobson (2013). Moreover, buying or selling such an asset does not generate any value or lead
to a local convexity. Thus, in terms of risk management, the firm optimally chooses never to trade
such a gambling asset (see Proposition 8). Instead, the firm’s optimal choice is to buy a correlated
asset that provides rewards when there is good news on the underlying price and damages when
there is bad news on the price, which seemingly amplifies only risk. Furthermore, the firm increases
its bet on the correlated asset as the underlying uncertainty increases and even chooses to buy an
asset with a negative risk premium. The fundamental force driving these results in our model is
that the firm’s risk management strategy is designed to optimize the risk-return trade-off. Thus, a
firm’s risk-seeking insurance strategy seems at odds, but it is in fact optimal.

The remainder of the paper is organized as follows. Section 2 describes the model. Section 3
3For example, when a dam is built, the maximum capacity for electricity generation is set.
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explains our solution analysis. We investigate the main implications in Section 4. Section 5 provides
a discussion on the case where the insurance asset has an imperfect correlation with the underlying
process. It also shows that the firm never chooses a pure gamble in our context. Finally, Section 6
presents the conclusion. All proofs are given in appendices.

2 Model

To help understanding of the model we present an example first.

Example 1 (Real Estate Development Company). Consider a real estate development company
having a parcel of vacant land and plans to build condos on the land.4 The value of the land can be
considered the value of developing the real estate (Titman (1985) and Grenadier (1996)). The firm
will consider when to build condos, as well as the number of condos to build and variety of luxuries
to add to a condo unit. If the firm has a tight budget at the investment time, it can build only a
two-story building with simple facilities (e.g., four units of condos). If its budget is sufficiently large,
it can build a five-story building with luxury options (e.g., ten units of condos). The fundamental
uncertainty originates from the condo price; thus, the price is the underlying variable. However, the
firm’s total payoff is not the price but the condo price multiplied by the total number of condos built
at the exercise time. Additionally, the unit price increases if the firm attaches luxury options into
each condo by investing more. Therefore, as soon as the firm creates the condo-building project, it
naturally must engage in self-financing risk management to maximize its profits. More precisely, the
firm decides the building time, as well as optimally accumulates capital to invest by continuously
buying or selling the proper insurance contracts to hedge the condo price risk or allocating capital
between insurance assets and risk-free assets.

Now we introduce the baseline model.
The Firm’s Production Technology and Real Option: Time is continuous. Consider a firm
holding the following real investment option. Let Kt be the dollar amount of capital firm holds at
time t with initial capital K0 = k. If the firm exercises the real option at τ by investing Kτ−, the
firm will obtain output f(Kτ−) , where f is an increasing and concave production function. The
exercise payoff is f(Kτ )Xτ , where the underlying process Xt is the firm’s productivity or the price
of the output (netting out the cost) at time t. Considering the condo-building example, Xt can
be interpreted as the net profit from selling a unit of condo (i.e., the price of a condo minus the
building cost per unit), and f(K) can be interpreted as the number of condo units that the firm
builds by investing K or the multiplier effect in the price by attaching more luxuries. For simplicity,
we assume that f(K) = K without loss of generality.5

4This example is an extension of the example suggested by Miao and Wang (2007).
5The main result will not change if we assume f(K) = CkK

δ with Ck > 0 and δ ∈ (0, 1].
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The underlying process Xt follows a geometric Brownian motion (GBM):

dXt = αxXtdt+ σxXtdBt, X0 = x > 0, (1)

where αx and σx are positive constants, and Bt is a standard Brownian motion (BM) on a standard
probability space (Ω,F ,P). Note that in general, Bt represents the idiosyncratic risk instead of the
systemic risk.

Risk Management: We start with the assumption that the market is complete in the sense
that there exists a risky asset St that can fully replicate the risk in Xt. In our model, the risky asset
St is not the market index nor an asset in the efficient frontier. Instead, St is any asset that can
be used for the firm’s risk management for hedging the risk in the underlying process Xt, such as
a derivative or an insurance asset (e.g., the housing futures contracts). Assume that St follows a
GBM as follows:

dSt/St = µsdt+ σsdBt, (2)

where µs ∈ R and σs 6= 0. We assume σx > 0 without loss of generality; however, there is no
restriction on the sign of σs. We call the case where µs = r the baseline case, where r > 0 is the
risk-free rate. It means that the baseline case refers to the case where the firm can freely buy and
sell futures contracts on Xt provided by a financial intermediary. If insurance companies offer no
such contracts, the problem the firm faces is the incomplete market problem. First, we focus on
the perfectly correlated case for simplicity of exposition. The extension to the general imperfectly
correlated case is not difficult once we understand the solutions to the perfect correlation and the
other extreme case of zero-correlation. Note that the zero-correlation case is interpreted as that of
pure gambling (Henderson and Hobson, 2013). The pure gambling and the general case with an
imperfect correlation are considered in Section 5.

The firm’s output increases with the capital that the firm holds at the investment time. At the
same time, the firm can hedge the risk in the underlying process using the insurance contract St.
Therefore, the firm is engaged with risk management over time. Then, the firm needs to allocate its
capital between the insurance asset and risk-free savings account over time. Let πt be the proportion
of the firm’s capital invested in St at time t ∈ [0, τ). Then, the dynamics of the firm’s capital before
the exercise of the real option is given by

dKt = r(1− πt)Ktdt+ πtKt
dSt
St

= (r + (µs − r)πt)Ktdt+ σsπtKtdBt, K0 = k > 0. (3)

Optimization Problem: The optimization problem before the exercise of the real option is as
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follows:

J(k, x) = sup
πt,τ

E
[
e−(r+λ)τV (KτXτ )|K0 = k,X0 = x

]
, (4)

subject to (1) and (3). Here, V (·) is the utility function of the entrepreneur or the CEO of the firm.
That is, the firm is private and our problem is a real exercise problem of a firm’s key decision-maker,
such as Carpenter (2000), Chen et al. (2010), Choi et al. (2017), Henderson (2007), and Miao and
Wang (2007). The agent’s subject discount rate is given as r + λ, where λ is the excess rate relative
to the risk-free rate. We assume that the agent’s discount rate is greater than or equal to the
risk-free rate, i.e., λ > 0. To obtain an explicit solution, we assume a constant absolute risk aversion
(CARA) setup, i.e.,

V (k) = 1− e−γk. (5)

Our basic setup is a private firm’s problem for simplicity (i.e., V (·) is the utility function of the
firm’s decision-maker). However, the problem can also be interpreted as a problem of a public firm
if V (·) is the firm value after the exercise of the real option (see Example 2). When we interpret the
problem as a public firm’s problem, λ = 0.

Example 2. Consider the case where the firm only distributes the payoff to the shareholders as a
dividend after harvesting the exercise payoff. Here, we define V (·) by the firm’s value function from
distributing the dividend. The firm chooses dividend rate dt to maximize the value of the dividend
net the cost incurred by the dividend payment as follows:

V (k) = sup
dt

E
[∫ ∞

0
e−rt(dt − C(dt))dt

∣∣∣K0 = k

]
, (6)

where Kt follows dKt = (rKt − dt)dt, and C(·) is the cost of providing the dividend C(d) = γ
2d

2,

where γ > 0. All results are the same under this specification (see Appendix B).

However, we are only interested in the real option exercise decision and not in the firm’s activities
after it. On the modeling choice of V (·), i.e., the value function of a firm after exercising the real
option, the key for deriving the main results is to introduce the concavity of V (·). Moreover, V (·)
only affects the boundary conditions, not the risk-return trade-off that will be discussed in later
sections if V (·) is increasing and concave. It means the entire results and intuitions are preserved as
long as V (·) is concave.

To obtain the concavity, the example presented in Example 2 assumes the existence of the
dividend distribution cost. However, concavity can also be achieved by different types of market
frictions. To obtain the concavity, one can introduce alternative assumptions, such as the existence
of the liquidation cost, cost of providing the fund’s liquidity, and bankruptcy cost, with a proper
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setup for the firm’s operating revenue generated by the real option exercise (see, for example, Bolton
et al. (2013), Décamps et al. (2011), Leland (1998), and Della Seta et al. (2020)). Additionally,
V (w) in Example 2 turns out to be quadratic (see Lemma 3 in the Appendix); thus, it can also be
interpreted as the case when the decision-maker of a firm has a quadratic utility function.

3 Solution Analysis

We have two state variables in our setup. Problem (4) can be reduced as a one-dimensional problem
by introducing Wt = KtXt. Wt is the endogenous payoff process since Wτ = KτXτ is the exercise
payoff at τ . Wt satisfies the following dynamics:

dWt = Wt

[
{r + αx + σs(θ + σx)πt}dt+ (σx + σsπt)dBt

]
, (7)

where θ , (µs − r)/σs. We redefine the value function as J(w) = J(k, x) with a slight abuse of
notation. We will use both J(w) and J(k, x) interchangeably later in our analysis since there is
little confusion. Then, the value function can be rewritten as follows:

J(w) = sup
πt,τ

E
[
e−(r+λ)τV (Wτ )|W0 = w = kx

]
, (8)

subject to (7) and W0 = w = K0X0 = kx.
There are two remarks on Problem (8). First, at first sight, the redefined problem looks similar

to a standard portfolio choice problem of maximizing utility from terminal wealth. However, the
stopping time dimension generates implications different from those of a standard portfolio choice
problem, as will be explained in the next sections. Second and conceptually more important, the
drift term of dWt/Wt is r+αx +πt(µs +σxσx− r), which is greater than αx, the drift of the original
underlying process Xt even when πt = 0. This is because the total value gains derive from the
combination of capital gains and price appreciation. Moreover, the expected return associated with
investments in St is µs + σxσs, not µs. This implies that the total payoff W is effectively convex in
X when πt > 0. However, risk in the volatility part of dWt/Wt also arises if πt > 0. This risk-return
trade-off in the total payoff process Wt is essential for understanding the main results explained in
the following sections.

Before the real option exercise, the Hamilton-Jacobi-Bellman (HJB) equation for the value
function J(w) in (8) is given by

(r + λ)J = max
π

[
{αx + r + σs(θ + σx)π}wJ ′ + 1

2(σx + σsπ)2w2J ′′
]
. (9)
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From the first-order condition

π∗ = −σx
σs
− (θ + σx)J ′

σswJ ′′
, (10)

we can obtain the following ordinary differential equation (ODE):

(r + λ)J = (αx + r − θσx − σ2
x)wJ ′ − 1

2
(θ + σx)2(J ′)2

J ′′
. (11)

Based on the ODE in (11), we prove the Proposition 1 that the value function J(w) satisfies the
following Variational Inequality 1, where the optimal exercise timing of the real option is

τ∗ = inf{t > 0 | Wt > w̄}, (12)

with the free boundary w̄ of Variational Inequality 1 as the optimal exercise threshold.

Variational Inequality 1. Find a function J(w) ∈ C1(R+) ∩ C2(R+\{w̄}) and the free boundary
values w̄ > 0 satisfying

LJ(w) = 0, if 0 < w < w̄, (13)

LJ(w) 6 0, if w > w̄, (14)

J(w) > V (w), if 0 < w < w̄, (15)

J(w) = V (w), if w > w̄, (16)

where

LJ(w) = (αx + r − θσx − σ2
x)wJ ′(w)− 1

2
(θ + σx)2J ′(w)2

J ′′(w) − (r + λ)J(w) (17)

with V (·)in (5).

The solutions to the value function J(w) satisfying Variational Inequality 1 and the optimal
strategies π∗ and τ∗ are presented in Proposition 1. Before that, we assume the following and
introduce Lemma 1 used for the proof of Proposition 1.

Assumption 1.

θ > −σx, and (18)

αx > λ. (19)
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Lemma 1. There exists a unique ξ ∈ (0, 1) that satisfies the following equation:

(αx + r − θσx − σ2
x)ξ − 1

2(θ + σx)2 ξ

ξ − 1 − (r + λ) = 0. (20)

Assumption 1 is directly used for proving Lemma 1. Regarding Condition (18) in Assumption 1,
note that a weaker condition, such as θ 6= −σx, guarantees the existence of a unique solution. We
assume a stronger condition (18) to simplify the exposition and analysis. Since we assume σx > 0,
(18) is automatically satisfied for θ = 0, the baseline case, where St is the futures contracts on Xt.
However, even if θ < 0, the solution exists provided (18) is satisfied. This implies that even when
the financial intermediary offers a contract more disadvantageous to the firm than a simple futures
contract, the firm is willing to make the contract for risk management purposes.

Condition (19) in Assumption 1 is required only for an incomplete market case. The solution
exists without (19) if the market is complete. In an incomplete market, if the inequality in (19) is
reversed, the optimal exercise timing is τ∗ = 0, for any K0 and X0, making the problem trivial. As
λ increases, the firm (or the agent) further discount future cash flows. Here, Condition (19) implies
that the productivity or price grows sufficiently on average, compensating for the opportunity cost
from waiting. If λ is very high (i.e., the agent is fairly impatient) so that (19) fails, there is no value
of waiting.

To better understand the characteristic equation (20), we rearrange the terms in (20) as follows:

ξ

2(ξ − 1)(θ + σxξ)2 = 1
2σ

2
xξ(ξ − 1) + (αx + r)ξ − (r + λ). (21)

Note that the right-hand side of (21) is the quadratic equation that often appears in standard real
option problems when the underlying asset is Xt without scale-dependency. That is, the left-hand
side is generated by the risk management effect.

Proposition 1. Let ξ ∈ (0, 1) be the root of the equation (20). Then, the solution to the value
function (8) is given as follows:

J(w) =

Aw
ξ, if 0 6 w < w̄,

V (w), if w > w̄,
(22)

where w̄ is the unique positive root of the following equation

w̄ = ξ

γ
(eγw̄ − 1), (23)
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and A is given by

A = 1− e−γw̄

w̄ξ
. (24)

Moreover, the optimal hedging π∗ is given by

π∗ = 1
σs(1− ξ)

(θ + σxξ), (25)

and the optimal exercise timing of the real option τ∗ is (12) with w̄ satisfying (23).

We will investigate the implications of the optimal risk management strategy (25) and optimal
exercise strategy (12) in the next section.

Remark 1. The value function in Example 2 has the same form with (22), where w̄ and A are
given by (71) and (72). See Appendix B for the detail.

Remark 2. Note that ξ ∈ (0, 1) in our model while the solution to a characteristic equation is
usually greater than 1 in standard real option models. This difference results from the concavity of
V (·).

4 Implications

4.1 Risk Management Effect

It is necessary to consider the following two properties to understand the risk management effects.
First, the optimal risk management strategy π∗ in (25) turns out to be positive even if θ = 0 and
σx and σs have the same sign. This result is in contrast to the result from the standard portfolio
selection or risk management theory, i.e., the optimal demand of the hedge asset with zero risk
premium is negative when the asset positively correlates with the underlying risky asset (or the
market) since the agent is risk averse (or the agent’s utility function is concave). However, in our
model, the optimal insurance portfolio is positive even if the objective function (value function after
exercising the option) is concave. This enhanced risk-taking or speculative behavior is fundamentally
driven since the payoff is endogenously determined as it is scale-dependent.

Second and more importantly, if σx and σs have the same sign (positive correlation), a decrease
in αx increases the optimal risk management portfolio and an increase in σx increases the optimal
risk management portfolio, as in Proposition 2.

Proposition 2. σsπ∗ decreases with αx and increases with σx, i.e., we have

∂(σsπ∗)
∂αx

< 0 and ∂(σsπ∗)
∂σx

> 0.
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To further investigate how payoff dynamics are related to the optimal exercise timing, let us
compute the drift and volatility part of the optimal payoff process Wt = KtXt with πt = π∗:

drift part of dWt

Wt
= (r + αx) + (θ + σx)(θ + σxξ)

1− ξ︸ ︷︷ ︸
risk management effect

(26)

volatility part of dWt

Wt
= σx + θ + σxξ

1− ξ︸ ︷︷ ︸
risk management effect

= θ + σx
1− ξ . (27)

The first component in (26) and (27) are from the risk-free rate and the underlying process
exogenously given. However, the second components are endogenously generated by the optimal
choice of risk management. We will call the effect from the second term the risk management
effect on the expected return and volatility of the optimal payoff process. Note that the second
components (risk management effect) in drift (26) and volatility (27) of KtXt have the same sign
with σsπ

∗. Since σsπ∗ > 0, provided θ + σxξ > 0, including the case θ = 0, risk management
increases both the expected return and risk of the payoff even if θ = 0.

In most cases, the risk management effect increases with σx, as in Proposition 3.

Proposition 3. The following are true:

(i) An increase in σx increases the volatility of the payoff process KtXt.

(ii) If θ > 0 or θ is not too small when θ < 0, an increase in σx increases the drift of the payoff
process KtXt.

An increase in the volatility of the underlying process increases the volatility of the payoff and
the expected return of the payoff process under reasonable conditions. However, the size of each
increase is not the same, and it depends on the fundamental parameters. In the next section, we
will investigate how much the return increases relative to the volatility of the payoff process. Thus,
the intuition underlying the main result of the study will be explained.

4.2 Impact of σx on the Optimal Exercise Strategy

In standard real option models, when the market is complete, the exercise threshold increases with
the risk of the underlying process. This is driven by the convexity or irreversible nature of the
real option exercise. However, in our case, it is not always true. The real option exercise can be
hastened or delayed depending on the market (or insurance asset) and the nature of the underlying
process. Proposition 4 provides the general and exact condition for each case.
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Proposition 4. The threshold level w̄ decreases as σx increases, i.e., ∂w̄
∂σx

< 0 if and only if

1
2θ

2 +
{1

2σx −
1
σx

(r + λ)
}
θ + (r + αx)− 2(r + λ) > 0. (28)

Investment is hastened as the volatility of the underlying process increases if and only if (28) is
satisfied. To understand the intuition behind the result, we need the following lemma.

Lemma 2. The following are satisfied:

(i) θ+σx
1−ξ increases with σx, i.e.,

∂
(
θ+σx
1−ξ

)
∂σx

> 0.

(ii) σxξ increases with σx, i.e., ∂(σxξ)
∂σx

> 0.

Let us define ᾱ by
ᾱ , r + 2λ− 1

2θ
2 −

{1
2σx −

1
σx

(r + λ)
}
θ.

Then, (28) is equivalent to αx > ᾱ. We divide the parameter set into two cases: (i) αx < ᾱ, and
(ii) αx > ᾱ. In Case (i), the firm delays the exercise as σx increases. However, if αx is sufficiently
high (Case (ii)), investment is hastened as volatility increases. Why does the size of αx matter? To
understand this, let us define SR, the Sharpe ratio of the optimal payoff process KtXt, as follows:

SR ,
αx + (θ+σx)(θ+σxξ)

1−ξ
θ+σx
1−ξ

= αx

( 1− ξ
θ + σx

)
+ (θ + σxξ), (29)

using (26) and (27). By Lemma 2,
(

1−ξ
θ+σx

)
in the first term of (29) decreases with σx. However,

the second term (θ + σxξ) in (29) increases with σx. Therefore, an increase in σx can increase or
decrease the Sharpe ratio depending on the size of αx. If αx is sufficiently small (or close to zero),
the second term dominates the first term in (29); thus, the Sharpe ratio of the payoff increases with
σx. In other words, the extra return added by risk management is relatively high since the original
expected return (αx) is small; thus, increasing Sharpe ratio. Therefore, the firm will have more
incentives to delay investment as σx increases when αx is low.

However, the threshold decreases with σx when αx is sufficiently high since the Sharpe ratio
also decreases with σx. Here, the additional return is small relative to the size of the risk added due
to the risk management when the value of the exogenously given αx is high.

4.3 Impact of Other Parameters on the Optimal Exercise Strategy

Proposition 5. The impacts of αx, λ, and r on the exercise threshold w̄ are as follows:

∂w̄

∂αx
> 0, ∂w̄

∂λ
< 0, and ∂w̄

∂r
< 0.
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It is intuitive that an increase in αx increases the threshold: if the output’s productivity or
price grows more quickly, the firm has more incentive to wait. This result is true for our model and
universally true for any real option model. However, an increase in the interest rate and subject
discounting decrease the value of waiting; thus, decrease the threshold level.

4.4 Incomplete Market

What if there is no insurance asset or contract available? If we solve the problem without having
such an asset, it turns out that the solution is the same as the case where π∗t = 0. Specifically, if we
choose θ so that the optimal choice of π∗t is zero for all t > 0, it covers the case of the incomplete
market. In this case, it is equivalent to introducing a fictitious asset in solving portfolio selection
problems in an incomplete market, as shown by Karatzas et al. (1991) and Cvitanić and Karatzas
(1992). Therefore, we do not have to re-analyze the incomplete market case independently. This
result is summarized in Corollary 1.

Corollary 1 (When π∗ = 0). Consider θ that satisfies θ + σxξ = 0, where ξ is the solution to (20)
for given θ. Here, we have π∗ = 0. Moreover, the following inequality holds

1
2θ

2 +
{1

2σx −
1
σx

(r + λ)
}
θ + (r + αx)− 2(r + λ) > 0,

so that we always have ∂w̄
∂σx

< 0.

There is no such case in the incomplete market, where the firm delays investment as volatility
increases. There are two cases: Case (i), where the firm exercises the option immediately, regardless
of the current productivity level; Case (ii), where the firm will wait, but an increase in volatility
decreases the threshold. Specifically, Case (i) is the one where the inequality is reversed in condition
(19) in Assumption 1, i.e., if αx is sufficiently small or λ is sufficiently high, then there is no value of
waiting. If condition (19) in Assumption 1 is satisfied, the firm will wait until KtXt > w̄. However,
neither the expected return nor the risk of the exercise payoff changes by the risk management since
π∗ = 0. Here, only the concavity of the value function matters so that the threshold level decreases
with risk.

4.5 Volatility of J(KtXt)

Here, we consider the impact of the fundamental parameters on the volatility of the firm value
J(KtXt).

Proposition 6. Let Jt = J(KtXt). Then, we have

dJt/Jt = (r + λ)dt+ ΣdBt,
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where

Σ = ξ

1− ξ (θ + σx), (30)

where ξ is the root of the equation (20). Moreover, for a given θ, the following hold

∂Σ
∂σx

> 0, ∂Σ
∂λ

> 0, ∂Σ
∂r

> 0, and ∂Σ
∂αx

< 0. (31)

The expected growth rate of the firm value process is not affected by the underlying process (αx
and σx) or risk management. However, the expected growth rate and volatility of the underlying
process, as well as the risk-free rate and subjective discounting, impact the volatility of the firm
value process. First, an increase in the volatility of the underlying process increases the volatility of
the firm value. Second, an increase in r and λ increase the volatility. Finally, an increase in the
growth rate of the underlying process decreases the firm value volatility.

4.6 Risk of Derivatives Users versus Non-users

In this section, we investigate the impact of risk management on risk in detail. More precisely, we
compare the return volatilities between firms using derivatives and non-users. The return volatility
of a user is given by (30) with θ = 0 since the risk premium of financial derivatives is zero. To
characterize the volatility of a non-user, we need to consider the case when there is no insurance
asset available or the firm does not use derivatives by any reason. Then, other things being equal, a
non-user’s volatility is given by

Σno hedge = σxξno hedge, (32)

where ξno hedge is the positive root of the following quadratic equation:

q(ξ) = 1
2σ

2
xξ

2 + (r + αx −
1
2σ

2
x)ξ − (r + λ) = 0. (33)

The following proposition provides the comparison between the two volatilities when θ = 0.

Proposition 7. Let θ = 0. Other things being equal, the volatility of the firm value of the derivatives
user is greater than that of the non-user, i.e.,

Σ > Σno hedge.

First, although we only consider the case when θ = 0 in Proposition 7 for the simplicity of
exposition, the result is true for more general cases when θ is non-zero (see Appendix C).

Second and more importantly, this result can help design a more detailed empirical study
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regarding the usage of derivatives by firms. Recall that the optimal risk management strategy π∗

is positive even if the hedge asset does not provide an excess return (θ = 0). In line with this,
Proposition 7 shows that derivatives users with scale-dependent investment opportunities have a
more volatile firm value than non-users. However, it is worth noting that the relationship should be
the opposite among firms whose investment opportunities have little scale-dependency: among firms
with little scale-dependency, derivatives users have lower return volatility than non-users, other
things being equal.

5 Pure Gambling and Imperfect Correlation

The optimal insurance strategy (25) is risk-seeking. So far, we have assumed, for simplicity, that
the asset has a perfect correlation with the underlying price or productivity process. Any asset that
correlates with the firm’s underlying process can be used for risk management. In this section, we
first consider the case with no correlation. Then, we consider a general case.

Let us first consider an extreme case where there is no insurance contract, such as (2) provided
by the financial intermediary. Instead, there is a contract or an asset such that

dGt/Gt = µgdt+ σgdB
G
t , (34)

where BG
t is the BM independent of Bt. Then, does the firm still buy or sell Gt? The answer is yes

if µg > r or µg < r. The firm can take advantage of the non-zero risk premium of Gt. In this case,
the firm trades Gt for the investment motive, not for the risk management. However, if µg = r and
σg 6= 0, the firm never trades such an asset. This result is summarized in Proposition 8.

Proposition 8 (Pure Gambling). Suppose St in (2) is not available, but the firm is allowed to buy
and sell Gt in (34) over time. If µg = r, the optimal portfolio choice πG of asset Gt is zero.

Note that when the asset does not correlate with the underlying process and its risk premium is
zero, buying such a zero-risk premium asset is equivalent to a pure gamble. Proposition 8 implies
that the firm does not engage in a pure gamble. However, it happens in Henderson and Hobson
(2013) since the risk-averse agent is better off by doing. In our case, the firm trades the correlated
assets to optimize the risk-return trade-off in the payoff process. Trading a gambling asset only
increases the risk, which decreases the Sharpe ratio of the payoff process. As mentioned in our
introduction, this is the key difference between the motivation for the risk-seeking behavior suggested
by Henderson and Hobson (2013) and that for the risk-seeking insurance strategy in our model.

With the above result, we consider the case where the underlying process Xt and the insurance
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asset St are imperfectly correlated as follows:

dXt = αxXtdt+ σxXt

(
ρdBt +

√
1− ρ2dB̃t

)
, (35)

where St still follows (2). In (35), ρ ∈ (−1, 1) and Wt is a standard BM independent of Bt. Let πI
be the portfolio choice for this case with θ = 0 (or µs = r). Then, from the proof of Proposition 8,
it can be easily inferred that the optimal portfolio choice πI is

πI = ρπ∗, (36)

where π∗ is in (25) with θ = 0. That is, it follows from Proposition 8 that there is no additional
demand on the insurance asset regarding the risk factor B̃t, and the demand on the insurance
asset only comes from the risk factor Bt. Since the volatility associated with Bt of the imperfect
correlation case in (35) is ρ times the one with a perfect correlation, the corresponding optimal
portfolio choice πI is also ρ times the optimal portfolio choice for the perfectly correlated case π∗.

6 Concluding Remarks

We investigated the firm’s real option exercise problem when the payoff is scale-dependent; thus, it
is endogenously determined by the firm’s capital investment at the exercise time. The firm not only
selects the optimal exercise time of real option, but also efficiently manages the risk and accumulates
capital for investment. We obtained the explicit solution and investigated the implications of risk
management. We found that the firm’s risk management strategy exhibits speculative (seemingly
risk-seeking), not hedging since the speculative risk management optimizes the risk-return trade-off
of the payoff process. We also showed that, due to the risk management strategy, an increase in the
risk in the underlying price could increase or decrease the optimal exercise threshold depending
on the economic environment. We hope that our setup can shed light on understanding different
aspects of the role of risk management when a firm faces irreversible investment decisions.
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Appendix
A Proofs

A.1 Proof of Lemma 1

Proof. First, consider the case in which θ + σxξ = 0, or equivalently ξ = − θ
σx

. This happens only
when θ satisfies

1
2θ

2 +
(1

2σx −
r + αx
σx

)
θ − (r + λ) = 0, (37)

which can be obtained by substituting ξ = − θ
σx

into equation (20). Since r + λ > 0 and inequality
(19) is imposed, it is guaranteed that θ satisfying (37) is in between −σx and 0. Thus, ξ = − θ

σx
for

this case is in between 0 and 1.6

Now, we consider the remaining case such that θ + σxξ 6= 0. Let us define two functions of a
dummy variable u ∈ [0, 1) as follows:

L(u) , (r + λ)− (r + αx)u, R(u) , −1
2(θ + σx)2 u

u− 1 − (θσx + σ2
x)u.

Then, it is straightforward that equation (20) is equivalent to L(ξ) = R(ξ).
Note that R(0) = 0 and limu→1−R(u) = ∞ when θ 6= −σx, which is guaranteed by the

assumption (18). Moreover, we can show that R(u) is a strictly increasing function on [0, 1) when
θ > σx, or R(u) is decreasing in u for 0 6 u 6 u∗, and increasing in u for u∗ < u < 1, where
u∗ , 1 −

√
(1− 1

2(1− θ
σx

)) ∈ [0, 1) when −σx < θ 6 σx. In either case, there exists a unique
ξ ∈ (0, 1) such that L(ξ) = R(ξ) because the graph of L(u) is a straight line with positive y-intercept
and negative slope.

A.2 Proof of Proposition 1

Proof. We can easily obtain π∗ in (25) by substituting the form of J(w) in (22) into the first-order
condition (10), and τ∗ is already given in (12). Thus, we focus on showing that J(w) in (22) satisfies
Variational Inequality 1.

It is obvious that J(w) ∈ C2(R+\{w̄}). In order to satisfy J(w) ∈ C1(R+), we need the following
value matching and smooth-pasting conditions at w = w̄:

J(w̄) = V (w̄) and J ′(w̄) = V ′(w̄),

6Note that, for this case, assumption (18) is not utilized but induced by applying assumption (19) to equation (37).
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which are equivalent to

Aw̄ξ = 1− e−γw̄, (38)

Aξw̄ξ−1 = γe−γw̄. (39)

Combining (38) and (39), we derive A in (24) and equation (23) for w̄. Here, we have to show that
w̄ is the unique positive root of equation (23), which is equivalent to showing that w̄ is the unique
positive root of g(w) = 0 in which the function g(w) is defined as

g(w) , ξ

γ
(eγw − 1)− w. (40)

Since g′(w) = ξeγw−1, it follows that g′(w) > 0 (g(w) is strictly increasing) for w > ŵ and g′(w) < 0
(g(w) is strictly decreasing) for 0 6 w < ŵ, where ŵ , 1

γ ln(1
ξ ) is the unique root of g′(w) = 0. Note

that 0 < ξ < 1 (by Lemma 1) guarantees that ŵ > 0. Since g(0) = 0 and g(w) is strictly decreasing
for 0 6 w < ŵ, it is obvious that g(w) < 0 for 0 < w 6 ŵ. In addition, since limw→∞ g(w) = ∞
and g(w) is strictly increasing for w > ŵ and g(w) is continuous, there exists a unique root w̄ of
g(w) = 0 such that ŵ < w̄ (thus w̄ > 0), and

g(w) < 0 for 0 < w < w̄, whereas g(w) > 0 for w > w̄. (41)

Moreover, since ŵ < w̄, it follows that g′(w̄) > 0, i.e.,

ξeγw̄ > 1, (42)

which is useful in the remaining part of the proof.
Now we verify the equations and inequalities (13)–(16) of Variational inequality 1. In (22),

J(w) = V (w) for w > w̄. Moreover, the equation (20) satisfied by ξ guarantees that

LJ(w) =
[
(αx + r − θσx − σ2

x)ξ − 1
2(θ + σx)2 ξ

ξ − 1 − (r + λ)
]
J(w) = 0

for 0 < w < w̄. Thus, two equations (13) and (16) hold with J(w) in (22).
We are left to show that two inequalities (14) and (15) hold. To show (14), by substituting V (w)

in (5) into (17) we have

LV (w) =
[
(αx + r − θσx − σ2

x)γw + 1
2(θ + σx)2 + (r + λ)

]
e−γw − (r + λ). (43)
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By using equation (23) satisfied by w̄, it can be verified that

LV (w̄) = −1
2(θ + σx)2 1

1− ξ (ξ − e−γw̄) < 0, (44)

where the inequality (44) comes from ξ ∈ (0, 1) and ξ − e−γw̄ > 0 by (42). Note that

dLV (w)
dw

= l(w)γe−γw, (45)

where the function l(w) is defined as

l(w) , (αx + r − θσx − σ2
x)(1− γw)− 1

2(θ + σx)2 − (r + λ). (46)

Thus, l(w) and dLV (w)
dw always have same sign.

• (Case I) If αx + r − θσx − σ2
x > 0, using (20) and (23), we can show that

l(w̄) = (αx + r − θσx − σ2
x)(1− ξeγw̄)− 1

2(θ + σx)2 1
1− ξ < 0, (47)

where inequality (47) holds since ξ ∈ (0, 1) and 1 − ξeγw̄ < 0 by (42). Moreover, l(w) is
decreasing in w. Thus, l(w) 6 l(w̄) < 0 for w > w̄, i.e., LV ′(w) < 0 (LV (w) is decreasing in
w) for w > w̄. Since LV (w̄) < 0 in (44), we can conclude that LV (w) < 0 for w > w̄.

• (Case II) If αx+ r− θσx−σ2
x < 0, l(w) is an increasing function of w. More precisely, l(w) < 0

(or LV (w) is decreasing) in w for 0 < w < w̃, where w̃ ,
(αx+r−θσx−σ2

x)− 1
2 (θ+σx)2−(r+λ)

γ(αx+r−θσx−σ2
x) > 0 is

the unique root of l(w) = 0. On the other hand, l(w) > 0 for w > w̃, i.e., LV (w) is increasing
in w for w > w̃. Then, regardless of the relationship between w̃ and w̄, we can deduce that

LV (w) 6 max
(
LV (w̄), lim

w→∞
LV (w)

)
for w > w̄. Note that LV (w̄) < 0 in (44) and limw→∞ LV (w) = −(r+λ) < 0. Thus, it follows
that LV (w) < 0 for w > w̄.

In summary, regardless of the sign of αx + r − θσx − σ2
x, we can show that LV (w) < 0 for w > w̄.

In order to show that inequality (15) holds, let us define a function

h(w) , 1− e−γw

wξ
.

Then, it follows from the form of A in (24) that

J(w) = 1− e−γw̄

w̄ξ
wξ > V (w) = 1− e−γw
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is equivalent to h(w̄) > h(w) for 0 < w < w̄. Thus, it is enough to show that h(w) is increasing for
0 < w < w̄ to verify inequality (15). Direct computations gives us

h′(w) = −γe−γwe−ξ−1g(w) (48)

with g(w) in (40). From (41), it follows that h′(w) > 0 for 0 < w < w̄ as desired.

A.3 Proof of Proposition 2

Proof. From (25), we have σsπ∗ = θ+σxξ
1−ξ , and it follows that

∂(σsπ∗)
∂αx

= θ + σx
(1− ξ)2 ·

∂ξ

∂αx
, (49)

∂(σsπ∗)
∂σx

= θ + σx
(1− ξ)2 ·

∂ξ

∂σx
+ ξ

1− ξ . (50)

Since 0 < ξ < 1, the sign of ∂(σsπ∗)
∂αx

coincides with that of ∂ξ
∂αx

. Since ξ 6= 1, we can obtain

Q(ξ) = 0,

which is equivalent to equation (20), where

Q(u) =
[
σ2
x + σxθ − (r + αx)

]
u2 +

[
−1

2σ
2
x + 1

2θ
2 + (r + λ) + (r + αx)

]
u− (r + λ), (51)

by multiplying (1−ξ) to the both sides of equation (20) and rearranging the terms. By differentiating
both sides of Q(ξ) = 0 with respect to αx, we have

∂ξ

∂αx
= −ξ(1− ξ)

Q′(ξ) .

Note that Q(0) = −(r + λ) < 0 and Q(1) = 1
2(σx + θ)2 > 0. Since Q(u) is a quadratic function

and ξ is the root of Q(u) between 0 and 1, it follows that Q′(ξ) > 0. Moreover, we have 0 < ξ < 1.
Therefore, we have

∂ξ

∂αx
< 0

and consequently,
∂(σsπ∗)
∂αx

< 0.
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By differentiating both sides of Q(ξ) = 0 with respect to σx, we have

∂ξ

∂σx
= −(2σx + θ)ξ + σx

Q′(ξ) ξ. (52)

Substituting (52) into (50),

∂(σsπ∗)
∂σx

= H(ξ)
(1− ξ)2Q′(ξ) , (53)

where

H(ξ) =
[
−2σ2

x − 2σxθ + 2(r + αx)
]
ξ3 +

[1
2σ

2
x − σxθ −

3
2θ

2 − (r + λ)− 3(r + αx)
]
ξ2

+
[1

2σ
2
x + σxθ + 1

2θ
2 + (r + λ) + (r + αx)

]
ξ.

Since Q(ξ) = 0, we can show that

H(ξ) = H(ξ) + 2ξQ(ξ) = ξ(1− ξ)
[1

2(σx + θ)2 + (r + αx)− (r + λ)
]
> 0,

where the inequality comes from 0 < ξ < 1 and Condition (19) in Assumption 1. Since H(ξ) > 0,
ξ 6= 1, and Q′(ξ) in (53), we have

∂(σsπ∗)
∂σx

> 0.

A.4 Proof of Proposition 3

Proof. Note that the volatility of KtXt is

σx + θ + σxξ

1− ξ = σx + σsπ
∗.

Since it is shown that ∂(σsπ∗)
∂σx

> 0 in Proposition 2, it is obvious that

∂

∂σx

(
σx + σsπ

∗
)

= 1 + ∂(σsπ∗)
∂σx

> 0.

Note that the drift of KtXt is

(r + αx) + (θ + σx)(θ + σxξ)
1− ξ = (r + αx) + (θ + σx)σsπ∗.
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By differentiating with respect to σx, we have

∂

∂σx
[(r + αx) + (θ + σx)σsπ∗] = σsπ

∗ + (θ + σx)∂(σsπ∗)
∂σx

= θ + σxξ

1− ξ + (θ + σx)∂(σsπ∗)
∂σx

Thus, if θ satisfies the following condition

θ > −σxξ − (1− ξ)(θ + σx)∂(σsπ∗)
∂σx︸ ︷︷ ︸

<0

(54)

we have
∂

∂σx
[(r + αx) + (θ + σx)σsπ∗] > 0.

Although the right-hand side of (54) varies depending on θ, it is guaranteed that it is negative
because σx > 0, 0 < ξ < 1, (θ + σx) > 0 by Condition (18) in Assumption 1, and ∂(σsπ∗)

∂σx
> 0 by

Proposition 2. In the cases with θ > 0, condition (54) is satisfied and the drift of KtXt increases as
σx increases.

A.5 Proof of Proposition 4

Proof. Recall that ∂ξ
∂σx

is given as (52) and it is shown that Q′(ξ) > 0 in the proof of Proposition 2.
Since ξ > 0, we can deduce that ∂ξ

∂σx
and −(2σx + θ)ξ + σx have same sign. Moreover, from (23) we

can show that
∂w̄

∂σx
= − eγw̄ − 1

γ(ξeγw̄ − 1) ·
∂ξ

∂σx
,

and thus ∂w̄
∂σx

and ∂ξ
∂σx

have the opposite signs because eγw̄ − 1 > 0 and ξeγw̄ − 1 > 0 as shown by
(42) in the proof of Proposition 1. Hence, we can deduce that

∂w̄

∂σx
< 0 if ξ <

1
2 + θ

σx

,

∂w̄

∂σx
> 0 if ξ >

1
2 + θ

σx

.

By assumption (18), we have 0 < 1
2+ θ

σx

< 1. Thus, ξ < 1
2+ θ

σx

is equivalent to Q( 1
2+ θ

σx

) > 0. Note
that

Q( 1
2 + θ

σx

) =
(1 + θ

σx
)

(2 + θ
σx

)2

[1
2θ

2 +
{1

2σx −
1
σx

(r + λ)
}
θ + (r + αx)− 2(r + λ)

]
(55)
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and (1+ θ
σx

)
(2+ θ

σx
)2 > 0 provided (18). Thus, we can conclude that

∂w̄

∂σx
< 0 if 1

2θ
2 +

{1
2σx −

1
σx

(r + λ)
}
θ + (r + αx)− 2(r + λ) > 0,

∂w̄

∂σx
> 0 if 1

2θ
2 +

{1
2σx −

1
σx

(r + λ)
}
θ + (r + αx)− 2(r + λ) < 0,

which completes the proof.

A.6 Proof of Lemma 2

Proof. Since σsπ∗ = θ+σxξ
1−ξ , we have

θ + σx
1− ξ = σx + σsπ

∗.

We have already shown in Proposition 2 that ∂(σsπ∗)
∂σx

> 0. Thus, it is straightforward to see

∂
(
θ+σx
1−ξ

)
∂σx

= 1 + ∂(σsπ∗)
∂σx

> 0.

Using (52), we have

∂ (σxξ)
∂σx

= ξ + σx
∂ξ

∂σx
= ξ + σx

−(2σx + θ)ξ + σx
Q′(ξ) ξ

= ξ

Q′(ξ)
[
Q′(ξ)− (2σ2

x + σxθ)ξ + σ2
x

]
.

Since
Q′(ξ) =

[
2σ2

x + 2σxθ − 2(r + αx)
]
ξ +

[
−1

2σ
2
x + 1

2θ
2 + (r + λ) + (r + αx)

]
,

we have

∂ (σxξ)
∂σx

= ξ

Q′(ξ)

[
(r + αx)(1− ξ) + (r + λ)− (r + αx)ξ + 1

2σ
2
x + 1

2θ
2 + σxθξ

]
. (56)

Note that L(ξ) = R(ξ) in the proof of Lemma 1 is

(r + λ)− (r + αx)ξ = 1
2σ

2
x

[
ξ(ξ − 1)− ξ

2(ξ − 1)(θ + σxξ)2
]

= 1
2σ

2
x

2ξ2 − ξ
1− ξ + 1

2θ
2
(

ξ

1− ξ

)
+ σxθ

(
ξ2

1− ξ

)
. (57)
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By substituting (57) into (56),

∂ (σxξ)
∂σx

= ξ

Q′(ξ)

[
(r + αx)(1− ξ) + 1

2σ
2
x

(
ξ2 + (1− ξ)2

1− ξ

)
+ 1

2θ
2
( 1

1− ξ

)
+ σxθ

(
ξ

1− ξ

)]

= ξ

Q′(ξ)

[
(r + αx)(1− ξ) + 1

2σ
2
x(1− ξ) + 1

2(1− ξ) (θ + σxξ)2
]
> 0, (58)

where the last inequality comes from Q′(ξ) > 0 (shown in the proof of Proposition 2) and 0 < ξ <

1.

A.7 Proof of Proposition 5

Proof. Recall that equation (20) is equivalent to Q(ξ) = 0, where Q(·) is given as (51). Moreover, it
is shown in the proof of Proposition 2 that ∂ξ

∂αx
< 0. Thus, it follow that

∂w̄

∂αx
= − eγw̄ − 1

γ(ξeγw̄ − 1) ·
∂ξ

∂αx
> 0.

By differentiating equation Q(ξ) = 0 with respect to λ or r, we have

∂ξ

∂λ
= (1− ξ)

Q′(ξ) > 0, ∂ξ

∂r
= (1− ξ)

Q′(ξ) > 0,

where the inequalities come from 0 < ξ < 1 and Q′(ξ) > 0. Then, it follows that

∂w̄

∂λ
= − eγw̄ − 1

γ(ξeγw̄ − 1) ·
∂ξ

∂λ
< 0, (59)

∂w̄

∂r
= − eγw̄ − 1

γ(ξeγw̄ − 1) ·
∂ξ

∂r
< 0. (60)

A.8 Proof of Corollary 1

Proof. If θ satisfies θ + σxξ = 0, where ξ is the solution to (20) for given θ, it is obvious that
corresponding π∗ is

π∗ = 1
σx(1− ξ)(θ + σxξ) = 0.
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Note that, as mentioned in the proof of Lemma 1, such θ satisfies equation (37). By using equation
(37), we have

1
2θ

2 +
{1

2σx −
1
σx

(r + λ)
}
θ + (r + αx)− 2(r + λ)

=
[1

2θ
2 +

{1
2σx −

1
σx

(r + λ)
}
θ + (r + αx)− 2(r + λ)

]
−
[1

2θ
2 +

(1
2σx −

r + αx
σx

)
θ − (r + λ)

]
︸ ︷︷ ︸

=0

= (1 + θ

σx
)(αx − λ) > 0.

where the last inequality comes from the assumption (19) (see the proof of Lemma 1 and footnote 6
for more details). By applying Proposition 4, we always have ∂w̄

∂σx
< 0 for this case.

A.9 Proof of Proposition 6

Proof. By applying Itô’s formula to Jt = J(KtXt) = A(KtXt)ξ with the optimal π∗ in (25) and
using (20), we can show that

dJt/Jt = (r + λ)dt+ ΣdBt,

where
Σ = ξ

[
θ + σxξ

1− ξ + σx

]
= ξ

1− ξ (θ + σx).

Note that Σ = σsπ
∗ − θ. From Proposition 2, it follow that

∂Σ
∂σx

> 0, ∂Σ
∂αx

< 0.

For given θ, by differentiating Σ with respect to r or λ, we have

∂Σ
∂r

= (θ + σx)
(1− ξ)2 ·

∂ξ

∂r
,

∂Σ
∂λ

= (θ + σx)
(1− ξ)2 ·

∂ξ

∂λ

By Condition (18) in Assumption 1, it is obvious that (θ+σx)
(1−ξ)2 > 0. Thus the signs of ∂Σ

∂r and ∂Σ
∂λ

coincide with ∂ξ
∂r and ∂ξ

∂λ , respectively. Since it is shown in the proof of Proposition 5 that ∂ξ
∂r > 0

and ∂ξ
∂λ > 0, it follows that

∂Σ
∂r

> 0, ∂Σ
∂λ

> 0.
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A.10 Proof of Proposition 7

Proof. Since ξ satisfying (20) and Σ the volatility of the firm value are dependent on θ, we use
notations ξ(θ) and Σ(θ) in this proof if necessary to indicate that ξ and Σ are functions of θ.

When θ = 0, Q(u) in (51) can be rewritten as

Q(u) = −u2Q̂( 1
u

),

where

Q̂(x) , (r + λ)x2 −
[
−1

2σ
2
x + (r + λ) + (r + αx)

]
x−

[
σ2
x − (r + αx)

]
, (61)

and ξ(0) satisfies Q̂( 1
ξ(0)) = 0. Note that

Σ(0) = σx
1

1
ξ(0) − 1

, Σno hedge = σx
1
1

ξno hedge
. (62)

Thus, we have the following equivalences:

Σ(0) > Σno hedge ⇐⇒ 1
ξ(0) < 1 + 1

ξno hedge
⇐⇒ Q̂(1 + 1

ξno hedge
) > 0. (63)

Indeed, it can be verified that

Q̂(1 + 1
ξno hedge

) = − 1
ξ2
no hedge

q(ξno hedge)︸ ︷︷ ︸
=0

−(r + λ)ξno hedge

 (64)

= (r + λ)
ξno hedge

> 0, (65)

where q(ξ) is given in (33). Consequently, we can conclude that Σ(0) > Σno hedge.

A.11 Proof of Proposition 8

Proof. If we replace (2) by (34), the corresponding HJB equation becomes

(r + λ)J = max
πG

[
{r + αx + σgθgπG}wJ ′ +

1
2(σ2

x + σ2
gπG

2)w2J ′′
]
. (66)

Then, we can show that the optimal portfolio in this case becomes

πG = − θgJ
′

σgwJ ′′
,
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and πG = 0 because θg = (µg − r)/σg = 0 when µg = r.

B Analysis of Example 2

We first summarize V (k) and the optimal dividend policy after the exercise of the real option in
Example 2 as in the following lemma:

Lemma 3. The value function after the real option exercise in Example 2 is

V (k) =

k −
γr
2 k

2, if 0 6 k < 1
γr ,

1
2γr , if k > 1

γr ,
(67)

and the optimal dividend policy d∗(k) is

d∗(k) =

rk, if 0 6 k < 1
γr ,

1
γ , if k > 1

γr .
(68)

Proof. The HJB equation that corresponds to V (k) is

rV (k) = max
d

[
d− γ

2d
2 + (rk − d)V ′(k)

]
. (69)

In the definition of V (k) in (6), d−C(d) is maximized when d = 1
γ if C(d) is given as (2). Note

that the minimum capital required to keep the dividend rate d = 1
γ permanently is 1

γr . Thus, if
k > 1

γr , the optimal dividend policy is d∗ = 1
γ and the corresponding value function is

V (k) =
∫ ∞

0
e−rt

[
1
γ
− γ

2

(1
γ

)2
]
dt = 1

2γr .

If k < 1
γr , from HJB equation (69) for V (k), the candidate for the optimal dividend is d = 1−V ′(k)

γ ,
and the corresponding ordinary differential equation (ODE) for V (k) is

rV (k) = rkV ′(k) + (1− V ′(k))2

2γ , (70)

with
V (0) = 0 and lim

k↑ 1
γr

V (k) = 1
2γr .

Then the solution is V (k) = k− γr
2 k

2 and the corresponding optimal dividend policy is d∗(k) = rk.

It is notable that, even if we consider quadratic V (·) in Example 2 instead of exponential utility
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in (5), the solution in Proposition 1 does not change except the explicit forms of A and w̄, and the
solution to A and w̄ for Example 2 are as follows:

A = γr

2(1− ξ) w̄
2−ξ, (71)

w̄ = 1− ξ
γr(1− ξ

2)
. (72)

Moreover, all of the results and implications in Sections 4 and 5 still hold with quadratic V (·). Only
the proofs of propositions about the exercise threshold w̄ require slight modification.

C Relationship between Σ and Σno hedge for Non-zero θ

Proposition 7 provides the size comparison between Σ and Σno hedge for the case where θ = 0. We
can obtain more general result on the relationship between Σ and Σno hedge as in the following
proposition:

Proposition 9. There exist θ̄ and θ (θ < 0 < θ̄) such that

Σ(θ) > Σno hedge for θ < θ < θ̄,

and Σ(θ) is maximized at θ̃ , −σx +
√

2(αx − λ) ∈ (θ, θ̄), and Σ(θ) = Σ(θ̄) = Σno hedge.

Proof. Consider θ satisfying θ + σxξ(θ) = 0, then θ < 0 because ξ(θ) > 0 by Lemma 1 and σx > 0
and π∗t = 0 for this case. As explained in Section 4.4, the solution to the case without trading the
insurance asset is identical to the solution when π∗t = 0. In line with this, we can show that

Σ(θ) = Σno hedge.

By differentiating Σ(θ) with respect to θ, we have

∂Σ
∂θ

= ξG(ξ)
(1− ξ)2Q′(ξ) , (73)

where
G(ξ) = (1− ξ)Q′(ξ)− (θ + σx)(θ + σxξ).

Using Q(ξ) = 0, we have

G(ξ) = G(ξ) + 2Q(ξ) =
[
(αx − λ)− 1

2(σx + θ)2
]

(1− ξ).

Since ξ ∈ (0, 1) and Q′(ξ) > 0 (see the proof of Proposition 4), ∂Σ
∂θ and

[
(αx − λ)− 1

2(σx + θ)2
]
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have same sign. Note that
[
(αx − λ)− 1

2(σx + θ)2
]
> 0 is equivalent to

−σx −
√

2(αx − λ) < θ < −σx +
√

2(αx − λ) , θ̃.

Since −σx −
√

2(αx − λ) < −σx < θ̃, we can conclude that

• ∂Σ
∂θ > 0 (Σ(θ) is strictly increasing in θ) for θ ∈ (−σx, θ̃)

• ∂Σ
∂θ < 0 (Σ(θ) is strictly decreasing in θ) for θ > θ̃.

It is obvious that θ = −σxξ(θ) ∈ (−σx, 0) because ξ(θ) ∈ (0, 1). Indeed, we can compute θ
satisfying (37) as follows

θ = −
[
σx
2 −

(r + αx)
σx

]
−

√[
σx
2 −

(r + αx)
σx

]2
+ 2(r + λ)

= −
[
σx
2 −

(r + αx)
σx

]
−

√[
σx
2 + (r + αx)

σx

]2
− 2(αx − λ),

and direct computation gives us

θ − θ̃ = B1 −B2 −
√
B2

1 −B2
2 , (74)

where
B1 ,

σx
2 + (r + αx)

σx
> 0, B2 ,

√
2(αx − λ) > 0.

Since B2
1 −B2

2 > 0, we have B1 > B2 > 0, and it follows that

(B1 −B2)2 − (B2
1 −B2

2) = 2B2(B2 −B1) < 0,

or equivalently,
θ − θ̃ = (B1 −B2)−

√
B2

1 −B2
2 < 0.

In summary, we have −σx < θ < θ̃, and Σ(θ) is strictly increasing in θ for θ 6 θ < θ̃. This implies
that

Σ(θ) > Σno hedge for θ < θ 6 θ̃

because Σ(θ) = Σno hedge.
Moreover, since we have

lim
θ→∞

Σ(θ) = lim
θ→∞

1
− 1
ξ2
∂ξ
∂θ

= 0, (75)

there exists θ̄ > θ̃ such that Σ(θ̄) = Σno hedge because Σ(θ) is continuous in θ, Σ(θ) is strictly
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decreasing in θ for θ > θ̃, and Σ(θ̃) > Σno hedge. Therefore, we have

Σ(θ) > Σno hedge for θ ∈ (θ, θ̄)

and Σ(θ) is maximized when θ = θ̃. Moreover, since it is proven in Proposition 7 that Σ(0) >
Σno hedge, we have θ̄ > 0, which completes the proof.
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