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1 Overview

This study examines a firm’s capital expansion and reduction problem when the demand of
output and the degree of irreversibility are stochastic. The firm controls the level of capital
stock according to the demand of output, which is assumed to be governed by a geometric
Brownian motion. When the firm expands the capital, it incurs capital purchase costs. In
contrast, when the firm reduces the capital, the firm can sell the capital at a price lower than
the purchase price. These prices are termed as the proportional cost in this study. The difference
between these prices presents the irreversibility of capital investment. In this study, we consider
the degree of irreversibility is governed by a Jacobi diffusion so that the degree moves between
0 and 1. Furthermore, we assume that changing the level of capital requires a fixed cost as well.
The fixed cost represents the cost associated with investment decision-making, such as research
costs. Thus, changing the level of capital requires the fixed and proportional costs. Therefore,
the firm’s problem is to decide when and how much to change the level of capital under output
demand and irreversibility risk. To solve the problem, we formulate it as a stochastic impulse
control problem.

2 Methods

2.1 Firm’s Problem

The firm’s operating profit π̂ is specified as π̂(Kt, Xt) = Kα
t X

1−α
t , where Kt is the capital stock,

Xt is the output demand, and α ∈ (0, 1). The firm controls the level of capital according to
the output demand, which is governed by the geometric Brownian motion: dXx

t = µXXx
t dt +

σXXx
t dW

X
t , Xx

0− = x > 0. Let ζi ∈ R be the ith amount of change in capital at time τi, i ≥ 0.
The process of the capital stock is governed by the following differential equation:

dKk
t = −δKk

t dt, τi ≤ t < τi+1,

Kk
τi = Kk

τ−i
+ ζi > 0,

K0− = k > 0,

(2.1)

where δ ∈ (0, 1) is a constant depreciation rate. At time τi, the firm can purchase capital at a
constant unit price p > 0 or sell it at a price (1 − Λτi)p > 0, where Λτi represents the degree
of irreversibility of capital investment. If Λt becomes 1, the investment cost is completely sunk,
while if Λt becomes 0, the firm can sell the capital at the same price as the purchase price.
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Following this economic background, we assume that Λt is governed by the Jacobi diffusion:

dΛλ
t = η(µΛ−Λλ

t )dt+σΛ

√
Λλ
t (1− Λλ

t )dW
Λ
t , Λλ

0− = λ ∈ (0, 1). We assume that dWX
t dWΛ

t = ρdt,

where ρ ∈ (−1, 1). In addition to the purchase/sell price, which is proportional cost, there is a
cost associated with decision making when the firm changes the level of capital stock. It refers
to as the fixed cost ĉ > 0. Thus, the capital expansion and reduction costs are given by

Ĉ(ζi,Λτi) =


ĉ+ pζi, ζi > 0,

ĉ, ζi = 0,

ĉ+ (1− Λτi)pζi, ζi < 0.

(2.2)

The firm’s expected discounted net profit Ĵ(k, x; v̂) is given by Ĵ(k, x, λ; v̂) = E[
∫∞
0 e−rtπ̂(Kk,v̂

t ,

Xx,v̂
t )dt −

∑∞
i=1 e

−rτiĈ(ζi,Λ
λ,v̂
τi )1{τi<∞}], where v̂ := {(τi, ζi)}i≥0 is the capital expansion and

reduction policy.
Henceforth, we use the change variables as Yt := Kt/Xt for simplicity. Then, π̂, ζi, ĉ, and

Ĵ(k, x, λ; v̂) can be rewritten as follows: π̂(k, x) = kαx1−α = yαx = π(y)x; ζi/x =: ξi; ĉ/x =: c;
Ĵ(k, x, λ) = xĴ

(
k
x , 1, λ

)
= xJ(y, λ). Then, the firm’s expected discounted net profit is rewritten

as follows:

J(y, λ; v) = E

[∫ ∞

0
e−rtπ(Y y,v

t )dt−
∞∑
i=1

e−rτiC(ξi,Λ
v
τi)1{τi<∞}

]
, (2.3)

where v := {(τi, ξi)}i≥0. J is well defined and finite under certain conditions (Cadenillas and
Zapatero, 1999).

Therefore, the firm’s problem is to choose the capital expansion and reduction policy v over a
set of admissible capital expansion and reduction policy V to maximize the expected discounted
net profit:

V (y, λ) = sup
v∈V

J(y, λ; v) = J(y, λ; v∗). (2.4)

The firm’s problem (2.4) is formulated as a stochastic impulse control problem.

2.2 Quasi-variational Inequalities and Viscosity Solutions

We introduce the quasi-variational inequalities (QVI) to solve the firm’s problem (2.4):

max{LV (y, λ) + π(y),MV (y, λ)− V (y, λ)} = 0, (2.5)

where L is the degenerate elliptic differential operator: LV (y, λ) := −(δ + µX)yVY + [η(µΛ −
λ)+ρσXσΛ

√
λ(1− λ)]VΛ+

1
2σ

2
Xy2VY Y −ρσXσΛ

√
λ(1− λ)yVY Λ+

1
2σ

2
Λλ(1−λ)VΛΛ− (r−µX)V ,

and M is the capital expansion and reduction operator defined by MV (y, λ) = supξ{V (y +
ξ, λ)− C(ξ, λ); ξ ∈ R, y + ξ ∈ R++}.

The definition of the QVI implies three regions: the continuation region H, capital expansion
region E , and capital reduction regionR. For a certain λ, they are respectively defined as follows:

H := {y ∈ (0,∞);V (y, λ) > MV (y, λ) and LV (y, λ) + π(y) = 0}; (2.6)

E := {y ∈ (0,∞);V (y, λ) = MV (y, λ) and LV (y, λ) + π(y) < 0, ξ > 0}; (2.7)

R := {y ∈ (0,∞);V (y, λ) = MV (y, λ) and LV (y, λ) + π(y) < 0, ξ < 0}. (2.8)

The QVI drives the following capital expansion and reduction policy.
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Definition 2.1 (QVI policy). Let ϕ be a solution to QVI (2.5). Then, the following capital
expansion and reduction policy ṽ = {τ̃i, ξ̃i}i≥0 would be the QVI policy:

(τ̃0, ξ̃0) = (0, 0); (2.9)

τ̃i = inf{t ≥ τ̃i−1;Y
y,ṽ
t /∈ H}; (2.10)

ξ̃i = argmax
ξ

{
ϕ
(
Y y,ṽ

τ̃−i
+ ξi, λ

)
− C(ξi, λ); ξi ∈ R, Y y,ṽ

τ̃−i
+ ξi ∈ R++

}
. (2.11)

The QVI policy means that once ϕ and Mϕ coincide, the firm expands/reduces the capital
by using a QVI policy. We verify that the QVI policy is the optimal capital expansion and
reduction policy.

Theorem 2.1. (I) For given λ, there is supposed to exist 0 < y(λ) < y(λ) < ∞ such that
ϕ is linear in y ∈ (0, y(λ)] ∪ [y(λ),∞). Suppose that ϕ is in C1,1(R++ × (0, 1)) and

C2,2(R++ × (0, 1)\N ), where N ⊂ R++. We assume that the family {ϕ(Y y,v
τ ,Λλ,v

τ )}τ<∞
is uniformly integrable for all (y, λ) ∈ R++ × (0, 1) and v ∈ V. If a solution ϕ of the QVI
to the firm’s problem (2.4) exists, then, for all (y, λ) ∈ R++ × (0, 1), we obtain

ϕ(y, λ) ≥ V (y, λ). (2.12)

(II) If the QVI policy corresponding to ϕ is admissible, ṽ ∈ V, then, for all y ∈ R++, ϕ is the
value function

ϕ(y, λ) = V (y, λ), (2.13)

and ṽ is optimal.

Theorem 2.1 mentions if there exists an enough regular function satisfying the QVI, the
function is the value function of the firm’s problem (2.4). We shall show that the function
satisfies the QVI in a weak sense. The value function is called a viscosity solution of the QVI in
this case. We first define a viscosity solution of the QVI.

Definition 2.2 (Viscosity solution). The function ϕ ∈ C(R++× (0, 1)) is referred as a viscosity
solution of the QVI if the following hold.

(i) ϕ is a viscosity subsolution to the QVI if for every φ ∈ C2,2(R++ × (0, 1)) and every
(y0, λ0) ∈ R++ × (0, 1) such that ϕ − φ has a local maximum at (y0, λ0) and ϕ(y0, λ0) =
φ(y0, λ0), then we have

max{Lφ(y0, λ0) + π(y0)),Mϕ(y0, λ0)− ϕ(y0, λ0)} ≥ 0. (2.14)

(ii) ϕ is a viscosity supersolution to the QVI if for every φ ∈ C2,2(R++ × (0, 1)) and every
(y0, λ0) ∈ R++ × (0, 1) such that ϕ − φ has a local minimum at (y0, λ0) and ϕ(y0, λ0) =
φ(y0, λ0), then we have

max{Lφ(y0, λ0) + π(y0)),Mϕ(y0, λ0)− ϕ(y0, λ0)} ≤ 0. (2.15)

We show that the value function of the firm’s problem (2.4) is a viscosity solution, as proposed
by Øksendal and Sulem (2002, 2019). See also Ishii (1993, 1995) which discussed the viscosity
solutions to an impulse control problem.

Theorem 2.2. The value function V of the firm’s problem (2.4) is the viscosity solution of the
QVI.
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2.3 Solution of the Quasi-variational Inequalities of the Firm’s Problem

We assume that an optimal capital expansion and reduction policy v∗ ∈ V is specified by four
thresholds: yE(λ), ye(λ), yr(λ), and yR(λ) with 0 < yE(λ) < ye(λ) < yr(λ) < yR(λ) < ∞ for a
certain λ. For notational simplicity, the thresholds are respectively expressed as: yλE := yE(λ),
yλe := ye(λ), y

λ
r := yr(λ), and yλR := yR(λ). Once Y reaches the threshold yλE (resp., yλR), the

firm purchases (resp., sells) the capital, and Y spontaneously increases (resp., decreases) to yλe
(resp., yλr ). Consequently, the level of Y changes by yλe − yλE or yλr − yλR at each time τi.

Based on the assumption above, we can define the optimal capital expansion and reduction
policy v∗ = (τ∗, ξ∗) ∈ V such that

τ∗i := inf
{
t > τ∗i−1;Yt− /∈

(
yλE , y

λ
R

)}
; (2.16)

ξ∗i := Yτi − Yτ−i
=

{
yλe − yλE , Yτ−i

= yλE ,

yλr − yλR, Yτ−i
= yλR.

(2.17)

The thresholds yλE , y
λ
e , y

λ
r , y

λ
R are numerically derived through the simultaneous equations:

ϕ(yλE , λ) = ϕ(yλe , λ)− (c+ p(yλe − yλE)), (2.18)

ϕ(yλR, λ) = ϕ(yλr , λ)− (c+ (1− λ)p(yλr − yλR)), (2.19)

ϕY (y
λ
E , λ) = p, (2.20)

ϕY (y
λ
R, λ) = (1− λ)p, (2.21)

ϕY (y
λ
e , λ) = p, (2.22)

ϕY (y
λ
r , λ) = (1− λ)p, (2.23)

where ϕ is the solution of the partial differential equation, Lϕ(y, λ) + π(y) = 0, for y ∈ H.

2.4 Numerical Analysis

Results of numerical analysis will be presented at the conference.
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