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Abstract

This paper identifies and analyzes the effects of the rate of economic deprecation of capital stock on

a monopolist’s investment problem in a dynamic and uncertain market environment, where continuous

economic depreciation cannot be fully offset. We find that a higher rate of depreciation increases the

investment trigger but can have mixed effects on the scale of investment. When investment is undertaken

immediately, the monopolist has an incentive, relative to a zero-depreciation scenario, to preemptively

increase its capital stock and counter losses in productive capacity for low (positive) rates of depreciation.

For high rates, however, the reduced return on investment overtakes this incentive, leading to the firm

investing less. Furthermore, the analysis on the interplay between the rate of depreciation and the level

of uncertainty reveals that only high rates of depreciation can mitigate the impact of uncertainty on the

real option’s value, partially lifting the irreversibility constraint. The fact that the impact of economic

depreciation on the firm’s timing option and capacity decisions is level dependent demonstrates that its

consideration is not trivial.
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1 Introduction

The inevitable physical and productive deterioration of assets, due to the passage of time or recurrent use,

imposes constraints on firms’ production capabilities that cannot be overcome in real-life. These constraints

are often dismissed in the study of the optimal investment behavior, with the introduction of strong as-

sumptions, such as the possibility of continuous investment or constant maintenance. Not only are these

assumptions hard to observe for individual firms, given any financial attrition or the need to stop production

to carry on maintenance, but they also dissociate the value of the asset from its usage. We show that, in the

absence of such assumptions, economic depreciation of the capital stock (henceforth simply “depreciation”)

can play a crucial role in the investment decision, even in the absence of tax considerations.

In fact, this paper shows that the impact of depreciation on the firm’s decision considering the timing

and scale of investment is not trivial nor typically monotonic.

In the spirit of Abel and Eberly (1996), Bertola and Caballero (1994), and Bar-Ilan and Strange (1999),

this paper proposes a simple, yet effective, framework where we consider a monopolist that has an American-

style perpetual option to undertake a one-off lump-sum irreversible investment. By acquiring capital stock,

the firm can immediately start up production in a market with a downward sloping demand curve, where

the willingness-to-pay of consumers evolves stochastically over time. Capital stock is assumed to depreciate

at a constant geometric rate. By allowing the firm’s flexibility in terms of capacity size, we can show that an

increase in the depreciation rate may have two competing effects on the firm’s decisions: on the one hand,

the firm may wish to install a higher level of capital stock to account for future falls in productivity. On the

other hand, the total future aggregate revenue generated by each unit of capital stock decreases as a result

of depreciation, which makes investment relatively more expensive and makes the firm invest less. We refer

to the first effect as the buffer effect and the second effect as the relative cost effect.

While depreciation can have an ambiguous impact on the scale of investment, it also partially relaxes the

irreversibility constraint and thereby interacts with uncertainty, meriting an analysis to the net impact it

has on the firm’s timing and option value.

Our main results can be summarized as follows.

(i) If the firm decides to invest immediately, under not too strict conditions, we find that the buffer effect is

dominant for small depreciation rates, whereas the relative cost effect is dominant for higher rates. Thus,

we say that the firm overinvests for small depreciation rates, relative to a zero-depreciation benchmark,

and the firm underinvests for large depreciation rates.

It may seem surprising that depreciation can have a mixed effect on the size of investment. Intuitively,

however, economic depreciation creates a need to preemptively replace productive capacity. However,

whereas the costs of acquiring more capital scale proportionally in the investment size, the benefits from

such investment have diminishing returns on the amount of capital acquired. Therefore, the benefits of

acquiring capital stock may be typically large but are dominated by the relative costs of investing at
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sufficiently high depreciation rates, i.e. when the need for capital replenishment is greater.

(ii) Depreciation unambiguously increases the threshold for undertaking investment.

This means that if the consumers’ initial willingness-to-pay is not sufficiently high, then depreciation

leads to a later exercise of the option, in expectation. Consequently, depreciation also increases the size

of investment and decreases the present value of capital.

The increase in the scale of investment found due to a later exercise of the option is a common result in

the literature, and in line with, e.g., Manne (1961), Bar-Ilan and Strange (1999), and Dangl (1999), who

show that the scale of investment is increasing in the consumers’ willingness-to-pay. We show that our

result stands, even when the rate of depreciation is so high that the firm would typically underinvest if

it were to invest immediately.

(iii) Depreciation mitigates the impact of uncertainty on investment, thereby partially lifting the irreversibil-

ity constraint, only for sufficiently high rates of depreciation. For low rates, depreciation compounds on

the positive effect of uncertainty on the option value.

Neoclassical literature on capital investment has made widespread use of the assumption that economic

depreciation can be fully neutralized by continuous investment (see, e.g., pioneering studies like Jorgenson

(1963), Hartman (1972), and Abel (1983)), if not fully ignored for any non-tax related purposes. Such

practice overlooks that, if not for some exogenous salvage value, a productive asset’s worth is intrinsically

connected to its productive capacity, and therefore by the loss of this capacity, as well as heavily influenced

by the fluctuations of market prices for the end good produced.

The flexibility in investment size is a crucial element in our framework. Conventional dynamic investment

set-ups, starting with the seminal work by, e.g., McDonald and Siegel (1986) and Dixit and Pindyck (1994),

typically assume that the scale of the investment is fixed and exogenously determined. Dangl (1999) and

Bar-Ilan and Strange (1999) were among the firsts to study capacity choice for single firm set-ups. More

recent contributions studying capacity choice in various dynamic lumpy investment monopoly settings are

Della Seta et al. (2012), Wen et al. (2017), Azevedo et al. (2020), Sarkar (2021), and Jeon (2021) (also see

Huberts et al. (2015) for a general survey for contributions prior to 2015). The work in this paper extends

on the single firm case by including and studying economic depreciation.

Surprisingly, considering the literature on investment under uncertainty in a dynamic framework, only few

studies incorporate the effects of economic depreciation on the timing of capital investments. Those studies

that do, in turn, do not simultaneously allow for a decision on the size of investment. For some, depreciation

is present, but not studied (e.g., Abel (1983), Bertola and Caballero (1994), Bloom (2000), Gryglewicz and

Hartman-Glaser (2019), Mauer and Ott (1995), Cooper (2006), and Lyandres et al. (2018)). For others,

depreciation plays a more prominent role, but the scale of investment is, as mentioned, not considered (e.g.

Arkin and Slastnikov (2007), Jou and Lee (2011), Ruffino and Treussard (2006), and Adkins and Paxson
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(2017)).1 To the best of our knowledge, there are currently no other studies that analyze both timing

and scale of capital investments, simultaneously, under the presence of positive economic depreciation in a

dynamic and uncertain environment.

Popular alternative ways of modeling depreciation include assuming finite life-time of capital or complete

capital depreciation after production, as studied by, e.g., Gryglewicz et al. (2008), Dixit and Pindyck (1994),

and Nakamura (1999, 2002). Although some situations are very well modeled by this “light bulb” model

of depreciation, or similar approaches, we find that this choice of treatment obscures the identification

of the opposing and level-dependent effects we uncover in this paper, which are present under a more

general setting. Nakamura, in a discrete time setting without optimal timing, also considers the relationship

between uncertainty and depreciation and finds that market uncertainty has a negative impact on investment.

Femminis (2008) and Saltari and Ticchi (2005) challenge his findings: Femminis shows that the negative

relationship between investment and uncertainty fully relies on the assumption that capital fully depreciates

after production. He also shows that this is not always the case when capital depreciates at a constant

geometric rate in a model with risk-aversion. Section 4.2 discusses the implications from using this alternative

formulation.

This paper is organized as follows. First, the model is introduced in Section 2. Section 3 studies the

firm’s investment strategy and particularly focuses on the impact of depreciation on scale and timing. We

consider two alternative versions of the main model in Section 4 and Section 5 offers concluding remarks

and comments on further research extensions this paper.

2 Model

Consider a monopolist that holds an American style perpetual (real) option to undertake investment and

acquire some capital stock. Capital stock is denoted by K(t), where t ≥ 0 denotes time, and can be obtained

by a lump-sum irreversible investment. The firm is assumed to be risk-neutral, rational, financially uncon-

strained, and value-maximizing. After investment, capital stock is assumed to change over time according

to the dynamics

dK(t) = I(t)− δ ·K(t)dt, (1)

where I(t) denotes the instantaneous investment at time t and where δ > 0 denotes the depreciation rate.

Although we do not allow for zero-depreciation cases in the problem specification, we will include δ = 0 in

1In fact, Arkin and Slastnikov and Jou and Lee find that depreciation accelerates investment, which is a crucially different

finding from the work in this paper. However their results are strongly driven by financial (dis)advantages. In the duopoly

game by Ruffino and Treussard with time-to-build and technology adoption, capital depreciation is considered as a necessary

requirement for a capital-replacement option to be exercised. Adkins and Paxson explore the role of depreciation on optimal

investment, with stochastic deterioration of the salvage value and operating cost, in a capital replacement model. However,

their use of a price-taking assumption limits the application of their set-up to the study of capacity choice problems, since the

direct effect of output on prices as a part of the firm’s instantaneous profits, a crucial property in these problems, is lost.
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our analysis in order to be able to reflect on the effect of depreciation.

For our main model, we assume that the instantaneous investment takes a positive value at most once.2

Let K̄ denote the initial capital stock at the time of investment, i.e. for some time s ≥ 0, I(s) = K̄ > 0

and I(t 6= s) = 0. It then follows from (1) that the capital stock held by the firm is given by K(t) =

K̄e−δ(t−s), t ≥ s.

To finance this project, the firm has a sunk (adjustment) cost of κ > 0, proportional to I(t), which is

incurred at the moment of investment.

Output Q(t) is determined by the production function

Q(t) =
a

γ
Kγ(t), (2)

where a > 0 is the production technology parameter and γ ∈ (0, 1) denotes an output elasticity that ensures

diminishing returns to capital.3 This type of production function is in line with, e.g., Bertola (1988), Bertola

and Caballero (1994), Nakamura (2002) and Lyandres et al. (2018), where labor is assumed to be flexible.

The market the firm operates in, is characterized by the following inverse demand function:

p(t) = x(t)(1−Q(t)), (3)

so that prices clear markets. Here, x(t) captures uncertainty and noise and it follows a geometric Brownian

motion with trend µ and volatility parameter σ > 0, i.e.

dx(t) = µx(t)dt+ σx(t)dz(t). (4)

The first term on the right-hand side represents the trend of the process. The second term on the right-

hand side contains the Wiener process z(t) through which exogenous shocks are brought in. The Wiener

process has a normal distribution with expected value 0, standard deviation
√
t, and has the property that

(dz)2 = dt. Let us denote the initial value of the shock process (x(t))t≥0 by X = x(0). We will assume

2µ > σ2 to ensure finite expected hitting times. Discounting is done under rate ρ, with ρ > µ.

This type of inverse demand function follows, e.g., Pindyck (1988), He and Pindyck (1992), Aguerrevere

(2003), Wu (2007), and Huisman and Kort (2015). Firms are assumed to be committed to produce the

amount dictated by their capacity allowance. In the literature on capacity constrained firms, this so-called

capacity clearing assumption is used on a large scale (e.g. Deneckere et al. (1997), Chod and Rudi (2005),

Anand and Girotra (2007), Goyal and Netessine (2007), and Huisman and Kort (2015)). For example, Goyal

and Netessine (2007) argue that producing below capacity may be found to be difficult for firms as a result

of fixed costs associated with commitments to suppliers, labor, and production ramp-up.

2Section 4.1 considers an extension where the firm can replenish its capital stock any number of times and it confirms the

results we obtain from our main model.
3We assume that a > γe−1 to ensure a monotonic relationship between Q and γ. We want to note that our results will

still apply for other values of a, however, some of the intuitive properties of the production function are lost in this simple

formulation if a is chosen to be too small.
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The firm’s strategy comprises two decisions: the timing of investment and the size of the initial capital

stock (K̄). We base ourselves on the work of McDonald and Siegel (1986), Smets (1991), and Dixit and

Pindyck (1994) to find the firm’s optimal investment (stopping) behavior under uncertainty. To formally

write down the firm’s optimization problem, denote the filtered probability space of (x(t))t≥0 by (Ω,Fx,F,P),

so that the filtration associated with the process x(·) is denoted by F = (Fxt )t≥0, with natural filtrations

Fxt , collecting the available information at time t ≥ 0. Conditional expectation operator EX is taken with

respect to measure P, i.e. E{ · |Fx0 }, where X = x(0).

Let τ be a stopping time and letM consist of all finite Fxt -stopping times. Given production function (2)

and inverse demand (3), the firm then faces the following optimization problem, at time t = 0, over the

initial capital stock K̄ and timing τ ,

V (X) = sup
τ∈M,K̄≥0

EX
{∫ ∞

0

(p(t)Q(t)− κI(t)) e−ρtdt

}
(5)

subject to I(t) = K̄χ{t = τ}, dK(t) = I(t) − δ · K(t)dt. The function χ{v} equals 1 if v is true and 0

otherwise.4

In line with the literature, we will write the optimal stopping moment in terms of X. This means that

we will determine a threshold X∗ such that, if x(0) < X∗ the firm invests when x(t) hits the investment

threshold X∗ for the first time.5 If x(0) ≥ X∗, the firm invests immediately and investment takes place at

t = 0. It follows that the (stochastic) investment time is given by hitting time τ∗ = inf{t ≥ 0 | x(t) ≥ X∗}.

The set of all values of X such that investment takes place immediately is called the stopping region and the

complementary region is called the continuation region. For typical scenarios like ours, the stopping region

equals S = {X ∈ R+ | X ≥ X∗} and the continuation region equals C = {X ∈ R+ | X < X∗}.

The problem in (5) can then be rewritten as

V (X) = sup
τ∈M,K̄>0

EX
{∫ ∞

0

x(t)(1−Q(t))Q(t)e−ρtdt− e−ρτκK̄
}
, (6)

with

Q(t) =

0 if t < τ,

a
γ

(
K̄e−δ(t−τ)

)γ
, if t ≥ τ .

For our results we will denote by K̄∗(X) the optimal level for the initial stock if X ≥ X∗, i.e. if X ∈ S.

For X < X∗, i.e. for X ∈ C, the firm delays investment and will set, upon investment, K̄∗(X∗), which we

will denote as K̄opt. Note that these represent the level of capital stock upon investment.

4Notice that for all finite stopping times it holds that limt→∞K(t) = 0, which implies that there are no issues with the

transversality.
5The proof for this result in our set-up is based on Dixit and Pindyck (1994), who show that the state space can be divided

into two consecutive regions for standard real options problems without capacity choice, and whose results are extended by

Huberts et al. (2019) for models where capacity choice is explicitly modeled. Optimality can be shown using a verification

theorem based on, e.g., Gozzi and Russo (2006).
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Proposition 1 Let γ < β−1
β , where β is given by

β =
1

2
− µ

σ2
+

√(
1

2
− µ

σ2

)2

+
2ρ

σ2
. (7)

Then, C is empty. The firm’s capital stock in the stopping region K̄∗(X) is the solution of

X

ρ+ γδ − µ

(
1− 2

a

γ
K̄γ ρ+ γδ − µ

ρ+ 2γδ − µ

)
=
κ

a
(K̄)1−γ . (8)

Let γ ≥ β−1
β . Then C is non-empty. For X ∈ S, as in the previous case, the firm invests immediately and

acquires K̄∗(X), given by the solution of (8). For X ∈ C the firm delays investment and waits until the

process x(t) reaches the investment threshold X∗ to acquire K̄opt, given by

X∗ =

(
γ

a

β(γ − 1) + 1

β(2γ − 1) + 1

ρ+ 2δγ − µ
ρ+ δγ − µ

) 1−γ
γ β(2γ − 1) + 1

β − 1

κ

a
(ρ+ δγ − µ), (9)

K̄opt =

(
γ

a

β(γ − 1) + 1

β(2γ − 1) + 1

ρ+ 2δγ − µ
ρ+ δγ − µ

) 1
γ

, (10)

respectively. As a result, the firm’s value function is given by

V (X) =



(
X

X∗

)β
κ

β − 1
K̄opt if X < X∗,

X

ρ+ γδ − µ
a

γ
(K̄∗(X))γ

(
1− a

γ
(K̄∗(X))γ

ρ+ γδ − µ
ρ+ 2γδ − µ

)
− κK̄∗(X) if X ≥ X∗.

(11)

All proofs can be found in Appendix A. Notice that, as a result of the assumption that ρ > µ, we have

β > 1. Additionally, as it’s been shown extensively in the literature, β has the property that it is decreasing

in σ. Also note that the first case of (11) gives the option value.

Proposition 1 shows that only for γ > β−1
β we have a non-empty continuation region, i.e., there exists

a trigger as given by (9) and it is positive. Bar-Ilan and Strange (1999) also established a relationship

between the marginal productivity of capital parameter γ and the trigger. As shown by Lyandres et al.

(2018), assumptions on γ are required. In order for the value of the waiting option to exceed the value of

immediate investment, γ must be sufficiently large. From the formulation of our production function, it

follows that capital gets more productive as the output elasticity γ goes down. This means that for each

unit of output, less capital is required when γ is smaller, so that investment in each unit of output becomes

relatively cheaper, which ultimately accelerates investment. Figure 1a illustrates the regions for different γ.

We would like to note here that we distinguish two ways in which the optimal capital stock is affected

by the rate of depreciation. First, assuming the firm invests immediately, i.e. X is fixed, δ has an effect on

K̄∗(X) as can be noted from (8). We will refer to this as a direct effect.

The proof of Proposition 1 shows that ∂
∂XK

∗(X) > 0, i.e. the firm’s optimal capital stock in the stopping

region is increasing in X. Then, in case the firm delays investment, from (9), δ has a direct impact on X∗,

which in turn has an impact on K̄opt = K̄∗(X∗). We will refer to the effect of δ on the acquired capital

stock through a change in the threshold of investment as the indirect effect.
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(a) Stopping region and continuation region for differ-

ent γ with δ = 0.1.

0.0 0.2 0.4 0.6 0.8 1.0
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Xi

Xii
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Stopping Region

Continuation Region

X*

(b) Stopping region and continuation region for differ-

ent δ with γ = 0.8.

Figure 1: Stopping region and continuation region for different parametrizations.

µ = 0.02, ρ = 0.1, σ = 0.2, a = 0.6, and κ = 0.3.

3 Analysis

With our main model in place, we now address the question of how economic depreciation, which cannot be

fully offset, affects the firm’s optimal investment behavior.

Section 3.1 details how depreciation affects the investment threshold, i.e. the boundary between the

continuation region and stopping region.

The case where the monopolist remains in the stopping region when studying the effect of different rates

of δ, i.e. in the region where the timing of investment is unaffected, offers an opportunity to look at the

direct effect of depreciation on the optimal capital stock, which is analyzed in Section 3.2. Then, Section 3.3

extends the analysis to the case where the monopolist remains in the continuation region for an infinitesimal

change in δ, now considering indirect effects due to the simultaneous adjustments of size and timing of

investment, and expands on how depreciation affects, in addition, the impact of uncertainty on the firm’s

investment problem.

Section 3.4 then consolidates these findings and allows for cases where the initial state can potentially

switch regions for a change in δ.

3.1 Timing of Investment

Intuition tells us that, since a higher rate of depreciation leads to each unit of capital stock generating less

output, total revenue streams would be negatively impacted by depreciation. The firm would then have an

incentive to delay investment until the state process reaches a higher level of the consumers’ willingness-

to-pay. That way, the firm could allow for the gains from the higher prices to compensate the losses in

productivity, minimizing any expected revenue loss.

Indeed, one can check directly from equation (9) that, since ρ+2δγ−µ
ρ+δγ−µ is an increasing function of δ, so is the
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investment threshold X∗ increasing in δ. This confirms that, comparatively, depreciation delays investment

in expectation for all states X below the modified threshold.

Figure 1b illustrates the investment threshold X∗ for different values of δ and distinguishes the regions

where the firm delays investment (continuation) and where the firm invests immediately (stopping). As

illustrated, for a given parametrization, there exist initial states, like, e.g., Xi, such that they are in the

continuation region for any δ. Others, like Xii, can fall in either region depending on the range of δ values

being analyzed.

By first restricting our analysis to the range where initial states remain in the stopping region, like Xii

for δ ∈ [0, δ1), we can provide a characterization of the firm’s optimal investment scale even as the threshold

increases in δ, because it remains optimal to invest immediately.6 For our analysis on the continuation region

we, equivalently, first implicitly assume that we restrict our analysis to the range where initial states remain

in the stopping region.

3.2 Investment in the Stopping Region

Let X ∈ S, i.e. the firm undertakes immediate investment. The parameter δ appears in two terms in

equation (8), each having a different effect on capital stock K̄∗(X). Restructuring equation (8) gives

“Relative Cost Effect”

κ

a
(K̄)1−γ ρ+ γδ − µ

X︸ ︷︷ ︸
↑ as δ↑ ⇒ K̄↓

=

“Buffer Effect”(
1− 2

a

γ
K̄γ ρ+ γδ − µ

ρ+ 2γδ − µ

)
.︸ ︷︷ ︸

↑ as δ↑ ⇒ K̄↑

(12)

Depending on which of the two effects is dominant, K̄∗(X) is either pushed downwards or upwards as δ

increases. To understand why this happens, for the first effect, notice that when depreciation is stronger,

each unit of capital stock will produce less units of output in the future, which means that the marginal

revenue of capital is negatively affected by depreciation. Although the cost of investment, i.e., the cost of

acquiring capital, is unaffected by a change in δ, it becomes relatively less rewarding, or more expensive,

to invest when δ is higher. As a result, the optimal quantity goes down. We will call this the relative cost

effect.

The second effect, where depreciation pushes the quantity up, follows from anticipating the changes in

capacity that will restrict output. This gives the firm the incentive to set an initially higher output and to

therefore acquire a higher level of capital stock upon investment. We will call this the buffer effect.

To illustrate the buffer effect, consider the situation of a firm with a capital stock that does not depreciate,

represented by the solid lines in Figure 2, where Panel (a) represents the capital stock and Panel (b) represents

the instantaneous cash flows π(t) = X(t)(1−Q(t))Q(t) in expectation. If the firm now faces a scenario where

6In other words, the timing decision is the same for X > X∗ and thus plays no direct role in the choice of K̄. Nevertheless,

we don’t explicitly exclude X∗ from the analysis in the stopping region, but simply note that the sensitivity of the investment

scale will differ on this point if taken from the left and from the right of δ.
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its capital depreciates, its capital stock and the corresponding instantaneous cash-inflows will erode over time

as illustrated by the dotted curves, assuming the firm has the same capital stock at t = 0. This gives the firm

an incentive to invest in a higher initial capital stock (and move from the dotted to the dashed curve) and

thus increase the area under EXπ(t) (from dotted to dashed) to recapture some of the lost total cash-inflows,

which, in essence, is the buffer effect.

The degree to which it is optimal increase the capital stock, however, will depend on the cost associated

with acquiring additional capital stock. Note that the dashed line in Panel (b) was built from the optimal

level of capital stock, taking the cost of acquisition into consideration.

The next proposition formally shows that the buffer effect is dominant for small values of δ whereas the

relative cost effect is dominant for larger values. Figure 3a illustrates the typical shape of K̄∗(X) as a

function of depreciation parameter δ. Figure 3b illustrates how V (X) is overall affected by the depreciation

rate δ.

Proposition 2 Let δ̂(X) be the (unique) solution to

X(ρ− µ)

2(ρ+ γδ − µ)2
=
κ

a

(
γ

4a

(
ρ+ 2γδ − µ
ρ+ γδ − µ

)2
) 1−γ

γ

. (13)

Let X ∈ S.

(i) If X > (ρ− µ) 8κ
γ

(
γ
4a

) 1
γ , then δ̂(X) > 0 and

◦ for δ ∈ (0, δ̂(X)) the capital stock K̄∗(X) is increasing in δ;

◦ for δ > δ̂(X) the capital stock K̄∗(X) is decreasing in δ.

0 2 4 6 8
t

KHtL

(a) Level of capital stock as a function of t (stopping

region).

0 2 4 6 8 10 t

E pHtL

(b) Instantaneous cash-inflows (stopping region).

Figure 2: Illustration of buffer effect. Investment when δ = 0 (solid), when δ = 0.1 but setting capital stock

as if δ = 0 (dotted), and optimal investment for δ = 0.1 (dashed).

µ = 0.02, ρ = 0.1, γ = 0.8, X = 0.5, and a = 0.6.
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(a) Optimal level of K̄∗(X) as a function of δ.
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(b) Firm’s value function V (X) as a function of δ.

Figure 3: The optimal investment size K̄∗(X) and the resulting value to the firm V (X) as a function of

depreciation parameter δ.

µ = 0.02, ρ = 0.1, σ = 0.2, γ = 0.8, X = 0.5, a = 0.6, and κ = 0.3.

(ii) If X ≤ (ρ− µ) 8κ
γ

(
γ
4a

) 1
γ , then δ̂(X) ≤ 0 and

◦ for all δ > 0 the capital stock K̄∗(X) is decreasing in δ.

Section 3.4 will show that the condition in Case (ii) of Proposition 2 is not typically met, since these

values of X are often part of the continuation region.

Case (i) of Proposition 2 shows that, in the stopping region, the buffer effect dominates for low rates of

depreciation, i.e. the capital stock is increasing in δ. The firm adjusts for the erosion in future productive

capacity by overinvesting, that is acquiring a higher level of capital stock, relative to the zero-depreciation

case, and thus minimizing the loss in total revenue.7 As illustrated by Figure 3a, for higher rates of depreci-

ation, investing in each unit of capital becomes relatively too expensive, since at these rates any additional

capital translates very poorly into extra production, while remaining just as costly, and the net effect on

the size of investment reverses for some δ > δ̂(X), which we refer to as underinvestment relative to the

zero-depreciation case.

For Case (ii) of Proposition 2, consumers’ willingness-to-pay is too low for the firm to be able to invest in

a large stock and therefore the buffer effect cannot dominate for any δ. This case arises in scenarios where,

relatively, κ is high, a is small, and/or X is low relative to (ρ−µ). In other words, when each unit of capital

stock is relatively too expensive.

Since the model accommodates mixed effects of depreciation on investments, these results feed into the

wider discussion taking place in the literature on determinants of industry growth in the presence of depreci-

ation (see, e.g., Samaniego and Sun (2019)). For the cases where the initial willingness-to-pay is sufficiently

7 It is worth noting that this result is not driven by the capacity clearing constraint. In fact, relaxing this assumption will

amplify the buffer effect, and therefore the non-monotonicity observed in this case is preserved.
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high, so that the firm finds itself in the stopping region, these results illustrate the case for moderate depre-

ciation as a growth driver.

The next section studies how depreciation can influence investment in more detail, by including the

continuation region in the analysis.

The overall effect of δ on V (X) in the stopping region, as illustrated in Figure 3b, is unambiguously

negative. Depreciation leads to lower expected total cash flows which, in turn, translates into a lower value

for the firm.

Lemma 1 Let X ∈ S. Then ∂
∂δV (X) < 0.

3.3 Investment in the Continuation Region

Assume that C is nonempty and let X ∈ C, i.e. the firm always delays investment. Section 3.3.1 builds on

the stopping region case to introduce the indirect effect of δ on the scale and value of capital. Section 3.3.2

looks at the effect of uncertainty on the firm’s investment and focuses on the interplay between depreciation

and uncertainty.

3.3.1 The Effect of δ on Capital Stock

Capital stock K̄opt = K∗(X∗) is affected by δ in two ways: indirectly through X∗ as studied in Section 3.1

and directly as studied in Section 3.2. The indirect effect is positive: the scale of investment, as established

in the real options literature, increases when investment is undertaken at a higher level of the state process,

which we find as well. This follows from K̄∗(X) being an increasing function of X (see proof of Proposition 1).

The direct effect can be mixed as established in Section 3.2.

The overall effect of δ on the scale of investment K̄opt, however, is unambiguously positive as depreciation

gets stronger and thus the indirect effect always dominates any negative direct effects. Similar to what we did

to investigate the effect of depreciation on the investment trigger, one can easily verify that, since ρ+2δγ−µ
ρ+δγ−µ

is an increasing function of δ, K̄opt must also be increasing in δ, which follows directly from equation (10).

However, one must keep in mind that K̄opt represents the size of investment (at the time of investment).

An increase in the size as a result of more rapid depreciation does not necessarily mean that the value of

investment, i.e. the present value of capital investment, in expectation, at time zero is increasing as well.

In fact, as investment is delayed for higher rates of depreciation, a change in δ has opposing effects on the

present value of investment,

EX
{
e−ρτ

∗
κI(τ∗)

}
=

(
X

X∗

)β
κK̄opt

= κ

(
γ

a

β(γ − 1) + 1

β(2γ − 1) + 1

ρ+ 2δγ − µ
ρ+ δγ − µ

) 1−β(1−γ)
γ

︸ ︷︷ ︸
↑ as δ↑

(
β − 1

β(2γ − 1) + 1

a

κ

X

ρ+ δγ − µ

)β
︸ ︷︷ ︸

↓ as δ↑

, (14)
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for all X ∈ C. Notice that β(1 − γ) < 1, which follows from the condition in Proposition 1 that allows for

non-empty C.

The following lemma shows that the negative effect is always dominant for the present value of the acquired

capital stock, even when the level of capital stock upon investment is increasing in δ. Hence, the decrease

in present value of investment due to the delay outweighs the increase in the optimal level of capital stock

at the time of investment, in expectation.

Lemma 2 Let X ∈ C. Then ∂
∂δ

(
X
X∗

)β
κK̄opt < 0.

3.3.2 Uncertainty and Depreciation

In the early real options literature (see, e.g., Bertola (1988), Pindyck (1988), Dixit (1989)), for models with

fixed capacity, a direct relationship was established between the volatility of the underlying process and

the firm’s real option (also see Dixit and Pindyck (1994)).8 Uncertainty pushes the associated investment

threshold up and leads to a “late” exercise of the options so that uncertainty is bad for investments. However,

since the increased uncertainty also directly affects the distribution of the underlying stochastic process and,

therefore, the probability of reaching a higher threshold within a certain amount of time (see, e.g., Lund

(2005), Sarkar (2021)), an appropriate way to measure the effect of uncertainty on the investment option

is to look at the value of the option. For these models, the relationship is unambiguous: more uncertainty

increases the value of the option and thus uncertainty is “bad” for investment. When including capacity

choice, the same relationship can be established (see, e.g., Bar-Ilan and Strange (1999), Huberts et al.

(2015)).

However, allowing economic depreciation to take place could call into question this unambiguously positive

impact of uncertainty on the option value, since this increased value stems in part from the irreversible nature

of the investment and considering the fact that depreciation erodes such irreversibility. Intuitively, the firm

should attach less value to flexibility when depreciation is stronger and, as such, the present value of the

option should go down.

One can check directly from (9) and (10) that, also in our set-up, higher uncertainty increases the invest-

ment threshold and the scale of investment. As for the option value, the next lemma shows that uncertainty

also increases the option value unambiguously in our set-up, while depreciation decreases the option value.

Lemma 3 Let X ∈ C. Then

(i) ∂
∂σV (X) > 0, and

(ii) ∂
∂δV (X) < 0.

8See, e.g., Gryglewicz et al. (2008) and Sarkar (2021) for a more contemporary discussion on the uncertainty-investment

relationship in the theoretical and empirical literature.
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Case (ii) of Lemma 3 confirms the intuition that the option value should decrease in δ, but makes no

distinction between a loss in value due to extra flexibility and losses due to reduced expected total revenues.

To investigate the effect of δ on the value attached to flexibility, we look at how depreciation affects the

impact of uncertainty, by evaluating how ∂
∂σV (X) is affected by a change in the rate of depreciation. In

the literature, there is mixed evidence as to how an increase in uncertainty affects capital investment when

depreciation is stronger (see, e.g., Samaniego and Sun (2019) for a discussion). Thereto, the next proposition

discusses the relationship between depreciation and uncertainty by studying the sensitivity of the option to

uncertainty for changes in δ. To that end, the cross derivative is studied for both the investment trigger and

the option value.

Proposition 3 Let X ∈ C. Then

(i) ∂2

∂δ∂σX
∗ > 0, and

(ii) ∂2

∂δ∂σV (X) > 0 if and only if

Ln (X∗)− Ln (X) <

(
β − ρ− µ

ρ+ 2γ2δ − µ

)−1

. (15)

The cross-derivative in case (i) is positive: more uncertainty and stronger depreciation push the trigger

further up. In other words, higher depreciation compounds on the delay associated with more uncertainty.

It is worth noting that a higher threshold does not necessarily mean that, in expectation, more time will

pass before investment is undertaken, when this is caused by a larger σ, but indeed that the firm strictly

requires a higher willingness-to-pay before acquiring the capital stock.

As for the option value, since X∗ on the left-hand side of (15) is increasing in δ and since the right-hand

side is decreasing in δ, the inequality in (15) only holds for small values of δ. This is illustrated by Figure 4b.

This also implies that for sufficiently high δ condition (15) never holds. As a result, one can distinguish two

regions with respect to δ and σ, as illustrated by Figure 4a. For small δ or σ it holds that X∗ < X so that

for these parameter values X falls in the stopping region.

To interpret this condition, notice that (15) holds if X∗ and X are sufficiently close. Then, irreversibility

is less relevant to the firm, since in that case investment is expected to be undertaken soon. When investment

is not expected to be undertaken soon, depreciation mitigates the (positive) impact of uncertainty, which is

reflected by ∂2

∂δ∂σV (X) < 0.

Hence, depreciation can indeed mitigate the impact of uncertainty and therefore partially lifts the irre-

versibility constraint, but only if depreciation is sufficiently strong.

3.4 Optimal Investment across Regions

We now bring the analyses on the stopping and continuation regions together, allowing for cases where the

monopolist may switch between these regions for a change in δ, and identify the overall effect of depreciation
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Figure 4: Compound effect of uncertainty and depreciation.

µ = 0.02, ρ = 0.1, γ = 0.8, X = 0.2, a = 0.6, and κ = 0.3.

on the firm’s investment behavior. In order to establish how the size of capital investment is affected by the

depreciation rate for all X, let us denote the inverse of the δ̂(X) in Proposition 2 by X̂(δ), i.e.

X̂(δ) =
2(ρ+ γδ − µ)2

ρ− µ
κ

a

(
γ

4a

(
ρ+ 2γδ − µ
ρ+ γδ − µ

)2
) 1−γ

γ

. (16)

Notice that X̂(δ) is increasing in δ and, following Proposition 2, it divides the stopping region into a region

with net positive and a region with net negative direct effects of an increase in the value of δ on K̄∗(X), i.e.

for X < X̂(δ) and X ≥ X̂(δ), respectively.

Section 3.1 established thatX∗ is increasing in δ, and thatX∗ divides the space into a region where the firm

delays investment (continuation) with the indirect effect of an increase in the value of δ on K̄opt dominating

positively over all others (for X < X∗), and a region where the firm invests immediately (stopping) with the

indirect effect of δ on capital stock not playing any part (for X ≥ X∗).

In summary, we can compare both boundaries to distinguish cases where X̂ < X∗ and where X̂ > X∗,

which leads to the following two cases.

Case 1:

– For X ∈ (0, X∗) the firm delays investment until the state process hits X∗ for the first time.

The scale of investment K̄opt = K̄∗(X∗) is increasing in δ, while the present value of capital is

decreasing in δ.

– For X ∈ [X∗, X̂) the firm undertakes investment immediately and K̄∗(X) is decreasing in δ.

– For X ∈ (X̂,∞) the firm undertakes investment immediately and K̄∗(X) is increasing in δ.

Case 2:
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– For X ∈ (0, X∗) the firm delays investment until the state process hits X∗ for the first time.

The scale of investment K̄opt = K̄∗(X∗) is increasing in δ, while the present value of capital is

decreasing in δ;

– For X ∈ [X∗,∞) the firm undertakes investment immediately and K̄∗(X) is increasing in δ.

Since X∗ is increasing in σ and since X̂(δ) is not affected by σ, the condition for the stopping region to

consist only of points where K̄∗(X) is positively affected by depreciation is that σ be sufficiently large. For

lower levels on uncertainty, capital is negatively impacted by depreciation for X ∈ [X∗, X̂(δ)) and positively

otherwise.

Proposition 4 Let σ̃ be the (unique) solution to(
β(γ − 1) + 1

β(2γ − 1) + 1

)1−γ (
β(2γ − 1) + 1

β − 1

)γ
=

(8)γ

4
. (17)

(i) If σ < σ̃, then Case 1 applies, for all δ.

(ii) If σ ≥ σ̃, then Case 1 applies if and only if δ is larger than some δ̃, which is the solution of

8γ

4

(
ρ+ γδ − µ
ρ− µ

)γ (
ρ+ 2γδ − µ
ρ+ γδ − µ

)1−γ

=

(
β(γ − 1) + 1

β(2γ − 1) + 1

)1−γ (
β(2γ − 1) + 1

β − 1

)γ
. (18)

Moreover, Case 2 applies if and only if δ is smaller than some δ̃, which is the solution of (18).

The proposition is illustrated by Figure 5 where σ̃ = 0.22. Notice that (17) only depends on σ, µ, ρ, and γ.

X
` HdL X*

0.0 0.1 0.2 0.3 0.4 d

0.2

0.4

0.6

0.8

X

Kd'<0Kd'>0

(a) σ = 0.1 < 0.22 = σ̃. (b) σ = 0.5 > 0.22 = σ̃.

Figure 5: Curves corresponding to X̂ and X∗. Solid curve separates regions where K̄∗(X) is increasing and

decreasing in δ for X ∈ S and dashed line separates stopping region and continuation region (dotted area).

µ = 0.02, ρ = 0.1, γ = 0.8, a = 0.6, and κ = 0.3.
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Figure 6: The effect of σ on K̄ for σ = 0.1 (solid), σ = 0.2 (dashed), and σ = 0.3 (dotted).

µ = 0.02, ρ = 0.1, γ = 0.8, X = 0.5, a = 0.6, and κ = 0.3.

The proposition shows that, for depreciation to have an unambiguously positive effect on (the level of)

capital stock for all X, market uncertainty needs to be sufficiently high, which comes a result of the expansion

of the continuation region.

Figure 6 illustrates the optimal capital stock for different values of δ at the moment of investment (Panel

(a)) and in present terms (Panel (b)). Small values of δ correspond to X ∈ S and high values of δ correspond

to X ∈ C. A higher value of σ pushes the trigger up, so that X ∈ C for a larger range of δ values, as is

illustrated in Panel (a). Panel (b) illustrates what was shown in Section 3.3, namely that the level of capital

stock is increasing in σ and the present value of capital is decreasing in σ, for all X ∈ C.

4 Robustness

In this section the robustness of our results is tested when considering two alternative versions of the main

model. In Section 4.1 the main model is extended using a (s, S)-inspired type of (inventory investment)

model to offer the firm the possibility to replenish its capital stock.9 This section shows that our results do

not depend, qualitatively, on the assumption that the firm has a one-off opportunity to acquire capital.

In Section 4.2 an alternative way of modeling economic depreciation is considered: capital is assumed to

not depreciate at a constant geometric rate, but instead is assumed to remain fully productive whilst having

a finite life-time. This section illustrates that this formulation leads to a qualitatively different investment

strategy: some of the intuitive dynamics are lost when eliminating constant depreciation.

9This is inspired by the abundant literature on inventory problems, also known as lot sizing problems, emerged after

the seminal work by Scarf (1960). This type of models can commonly be found in the Economics literature on irreversible

investments with a stochastic state process, see, e.g., Federico et al. (2019). Federico et al. also provide an extensive summary

of this literature stream and show optimality for problems very similar to ours.
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Finally, Section 4.3 comments on alternative specifications of the inverse demand function and shows that

overinvestment and underinvestment can be found for convex or concave functional forms.

4.1 Option to Replenish

It could be argued that the effect of depreciation on the scale of investment is partially driven by the

assumption that the firm can only acquire capital once. Therefore, in this section, we introduce a simple

extension to our model where the firm, in principle, can replenish its capital stock an infinite number of

times and we will argue that, qualitatively, this assumption has no impact on what was already established

for the main model.

We do not aim to fully analyze the outcomes of this extension, but rather to illustrate that both the buffer

effect and the relative cost effect are still present, and that the investment behavior in the stopping region

is not qualitatively different from our main model.

Consider the scenario where the monopolist, after undertaking investment, can replenish its capital stock.

We assume that the firm, upon investment, will choose a K̄ and a K, with K< K̄, such that when the capital

stock reaches the level K, the firm acquires additional capital to reset its capital stock to a level equal to

K̄. Since depreciation is deterministic, this is equivalent to saying that the firm places an order every T

periods, where T follows from K = K̄e−δT . As a result, the period between replenishing is fixed, despite

the stochastic nature of the state process. This could arise from contractual reasons as, e.g., commitments

to the supplier (see, e.g., Dural-Selcuk et al. (2016) for an overview of the literature on (s, S)-type policies

with stochastic demand).

Purchasing K units of capital stock is associated with costs κ0K+κ1. This formulation introduces a fixed

cost, which was not present in our main model. This term ensures that the optimal replenishment time T is

strictly positive. When T → 0 the model collapses into a continuous investment model, which contradicts

our original assumption that this manner of investment cannot actually take place in real life.

In the stopping region, the firm then considers the following optimization problem

sup
K̄,T≥0

EX

{ ∞∑
i=0

(∫ (i+1)T

t=iT

X(t)(1−Qi(t))Qi(t)e−ρtdt− e−ρiT
[
κ0

(
K̄ − K̄e−δT

)
+ κ1

])
− κ0K̄e

−δT

}
,

(19)

where Qi(t) = a
γ (Ki(t))

γ and Ki(t) = K̄e−δ(t−iT ) are the output and capital stock, respectively, for the

(i + 1)-th cycle, for all i = 0, 1, 2, . . . , and iT ≤ t < (i + 1)T . Equation (19) contains of three terms:

two terms inside the integral and one term at the end. The first terms represents the firm’s discounted

instantaneous cash-inflows. The total discounted cost for each replenishment is captured by the second term

for i ≥ 1. The total cost involved with the initial investment is captured by the second term for i = 0,

κ0(K̄−K) + κ1, plus the final term, which can also be written as κ0K.
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The firm’s optimization problem in (19) can be rewritten as

sup
K̄,T≥0

∞∑
i=0

e−(ρ−µ)iT

[
X

ρ+ γδ − µ
a

γ
K̄γ

(
1− e−(ρ+γδ−µ)T

)
− X

ρ+ 2γδ − µ

(
a

γ
K̄γ

)2 (
1− e−(ρ+2γδ−µ)T

)]

−
∞∑
i=0

e−ρiT
[
κ0

(
K̄ − K̄e−δT

)
+ κ1

]
− κ0K̄e

−δT

= sup
K̄,T≥0

X

ρ+ γδ − µ
a

γ
K̄γ 1− e−(ρ+γδ−µ)T

1− e−(ρ−µ)T

[
1− a

γ
K̄γ ρ+ γδ − µ

ρ+ 2γδ − µ
1− e−(ρ+2γδ−µ)T

1− e−(ρ+γδ−µ)T

]
− κ0K̄

1− e−(ρ+δ)T

1− e−ρT
+

κ1

1− e−ρT
.

First order conditions give the optimal capital stock K̄∗(X) and period T ∗(X).10 The optimal capital

stock is given as the solution of

κ

a
(K̄)1−γ ρ+ γδ − µ

X

1− e−(ρ−µ)T∗(X)

1− e−(ρ+γδ−µ)T∗(X)

1− e−(ρ+δ)T∗(X)

1− e−ρT∗(X)

=

(
1− 2

a

γ
K̄γ ρ+ γδ − µ

ρ+ 2γδ − µ
1− e−(ρ+2γδ−µ)T∗(X)

1− e−(ρ+γδ−µ)T∗(X)

)
. (20)

Notice that, for sufficiently large T , equation (20) gives a (nearly) identical solution to K̄∗(X) as (12),

where the buffer effect and relative cost effect can also be observed in a model where the firm can top-up its

capital stock. In fact, for δ → 0, they are identical for any T .

Figure 7 illustrates the optimal strategy of the firm in the stopping region. Panel (a), equivalent to

Figure 3, illustrates the optimal capital stock K̄∗(X). The solid curve represents the optimal capital stock

as found for the main model. The dashed, dotted, and dash-dotted curves correspond to scenarios where the

firm is faced with fixed replenishment cost κ1 = 0.5, κ1 = 1, and κ1 = 1.5, respectively. The panel illustrates

that the curves are qualitatively equivalent and that for κ1 sufficiently large, the acquired capital stock is

nearly identical to the capital stock the firm would set when it was only allowed to invest once.

Panel (b) and Panel (c) illustrate the optimal replenishment time and the resulting replenishment trigger

K, respectively. For small values for δ, capital depreciates slowly so that the cycle can be long, i.e. T ∗(X)

is large, whilst not letting capital completely depreciate before replenishment, i.e. K> 0. For higher values

of δ it is optimal to choose a lower K.

Due to the presence of the fixed cost in this model, investment will be delayed compared to the main model.

Nonetheless, we conclude that the direct effects of depreciation on the firm’s capital stock, as described in

the main model, are preserved when the investment strategy is modeled as a (s, S)-type of policy.

4.2 Full Depreciation in Finite Time

To emphasize the relevance of the way this paper models depreciation, in contrast to some existing work

(e.g., Dixit and Pindyck (1994), Gryglewicz et al. (2008), Nakamura (2002)), this section briefly discusses

what happens if capital retains its productive capabilities, but fully depreciates after a fixed moment in time.

10The Hessian confirms that this is a local maximum. Numerical analysis shows that the maximum is global.
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Figure 7: Optimal investment strategy for the firm with different κ1. The solid curve represents the invest-

ment strategy for the main model (Section 2).

µ = 0.02, ρ = 0.1, σ = 0.2, γ = 0.8, a = 0.6, and κ0 = 0.3.

Denote by λ > 0 the lifetime of capital. The firm’s optimization problem can then be written as

V (X) = sup
τ≥0,K̄>0

EX
{∫ ∞

0

p(t)Q(t)e−ρtdt− e−ρτκK̄
}
,

with

Q(t) =

0 if t < τ or t > τ + λ,

a
γ

(
K̄
)γ
, if t ∈ [τ , τ + λ].

One can show that the optimal capital stock in the stopping region the solution of

κ

a
(K̄)1−γ ρ− µ

X
=

“Relative Cost Effect”(
1− 2

a

γ
K̄γ

)(
1− e−ρλ

)
.︸ ︷︷ ︸

↑ as λ↓ ⇒ K̄↓

(21)

With λ only appearing in the right-hand side of (21), stronger depreciation is only associated with a lower

value of K̄, meaning that we lose the buffer effect. A lower value for the lifespan of capital, λ, leads to a

smaller period over which revenues are accumulated and, as such, investment is relatively more expensive.

Figure 8 illustrates this effect.

This characterization also illustrates that the buffer effect originates from compensating for losses caused

by gradual erosion in productivity. Since this type of depreciation does not impose such losses, the firm does

not compensate by increasing the capital stock when depreciation is stronger.

The trigger is given by

X∗ =

(
γ

a

β(γ − 1) + 1

β(2γ − 1) + 1

) 1−γ
γ β(2γ − 1) + 1

β − 1

κ

a

ρ− µ
1− e−ρλ

, (22)

which is decreasing in λ, i.e. investment is delayed when λ goes down.

20



0 2 4 6 8 10
l0.0

0.1

0.2

0.3

0.4

0.5

0.6

K
*HXL

Cont
Reg

Stop
Region

Figure 8: Optimal capital stock K̄∗(X) as a function of λ.

µ = 0.02, ρ = 0.1, σ = 0.2, γ = 0.8, X = 0.5, a = 0.6, and κ = 0.3.

It is interesting to note that, in contrast to our main model, the capital stock upon investment, when

starting in the continuation region, K̄opt is not affected by λ,

K̄opt =

(
γ

a

β(γ − 1) + 1

β(2γ − 1) + 1

) 1
γ

.

This means that, in the absence of the buffer effect, we find that the effect of delaying on the scale of

investment is matched by the relative cost effect, with the firm waiting for higher prices to exactly compensate

for the loss in expected revenue.

Furthermore, for X ∈ C,

∂

∂λ
V (X) = V (X)

ρ

eρλ − 1
(β − 1) > 0 (23)

and

∂2

∂σ∂λ
V (X) < 0 if and only if Ln(X∗)− Ln(X) < 2(β − 1)−1, (24)

which are equivalent results to those found in Proposition (3).

4.3 Alternative Inverse Demand Specifications

Consider a slight generalization of our model by assuming the inverse demand to be

p(t) = x(t)(1−Qη(t)),

where η > 0. Notice that for η < 1 the inverse demand is convex and for η > 1 the inverse demand is

concave. One can verify that for this specification the result as described by Proposition 2, i.e., the buffer

effect dominates for small rates δ for sufficiently high X, still applies unless η is sufficiently close to 0.

Therefore, our results are not contingent on the linearity of the inverse demand function.

One could, however, identify some functional forms that lock in the relationship of the two effects we de-

scribed, such that the relative cost effect always dominates for all δ; incidentally, this drastic characterization

of the functional form can be achieved by imposing constant elasticity on the demand function.
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5 Conclusions

The framework introduced is admittedly simple, yet sufficiently robust to characterize the effects of eroding

productivity in the optimal investment behavior of a monopolist under uncertainty.

By not assuming away economic depreciation, and without resorting to any tax implications, we reveal

competing direct (buffer and relative cost) and indirect (investment threshold) effects on the optimal scale

and timing of investment.

We find that more depreciation increases the investment trigger, i.e. depreciation can lead to a later

exercise of the option and, upon a delayed investment, this increases the level of capital stock acquired,

while decreasing the present value of capital.

Additionally, we find that, under not too strict conditions, an increase in depreciation can lead to overin-

vestment, when comparing to the standard zero-depreciation case, but always leads to underinvestment for

sufficiently high rates.

These findings showcase how the net effect of depreciation on the size of investment cannot be simply

reduced to a positive/negative offset of the choice under no-depreciation (or under a continuous invest-

ment/maintenance assumption) and that this effect is, in fact, dependent on the level of economic deprecia-

tion.

Furthermore, we find that depreciation can either have a compounding or a mitigating effect on the impact

of uncertainty on the firm’s option value, again depending on the level of depreciation.

Our findings illustrate that the treatment of economic depreciation is not trivial when addressing a

monopolist’s investment problem in a dynamic and uncertain market environment. In fact, alternative

modeling choices, as illustrated in Section 4.2 and Section 4.3, may actively hide or dismiss the effects we

have identified and, with that, hide or dismiss delays, over- and underinvestment that would otherwise take

place.

We are able to verify that our findings are robust to set-ups with multiple sequential replenishment options

and with non-linear demand specifications.

For future research, with this framework at hand, more complex cases can be investigated, such as (i) the

decision to replace capital with the same or with superior productivity, (ii) the interplay of the tax benefits

and the productivity losses of depreciation, and (iii) optimal investment behavior on Incumbent-Entrant

games and/or other competitive setups.
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Appendix: Proofs

Proof of Proposition 1 In the stopping region, i.e. for X ∈ S, we get

V (X) = EX
{∫ ∞

0

e−ρt
a

γ
(K̄)γe−δγtx(t)

(
1− a

γ
(K̄)γe−δγt

)
dt− κK̄

}
= EX

{∫ ∞
0

a

γ
(K̄)γe−t(ρ+δγ)x(t)dt−

∫ ∞
0

(
a

γ
(K̄)γ

)2

x(t)e−t(ρ+2δγ)dt− κK̄

}

=
a

γ
(K̄)γ

(
X

ρ+ γδ − µ
− a

γ
(K̄)γ

X

ρ+ 2γδ − µ

)
− κK̄. (25)

The optimal capital stock at investment follows from the first order condition where marginal revenue (left-

hand side) is equal to marginal cost (right-hand side):

X

ρ+ γδ − µ

(
1− 2

a

γ
K̄γ ρ+ γδ − µ

ρ+ 2γδ − µ

)
=
κ

a
(K̄)1−γ . (26)

The second order condition shows that this is indeed a maximum:

∂2

∂K̄2
V (X) = − X

ρ+ γδ − µ
a(K̄)γ−2

[
(1− γ)

(
1− 2

a

γ
K̄γ ρ+ γδ − µ

ρ+ 2γδ − µ

)
+ aK̄γ ρ+ γδ − µ

ρ+ 2γδ − µ

]
< 0.

Notice that it follows directly from (26) that (26) only gives solutions where K̄ ≥ 0 so that we always have

interior solutions. In addition, we find that ∂
∂X K̄

∗(X) is always positive by applying the implicit function

theorem, which gives

∂K̄∗(X)

∂X

[
κ

a
(1− γ)(K̄∗(X))γ +

X

ρ+ δγ − µ
2a

ρ+ δγ − µ
ρ+ 2δγ − µ

]
= γ

1− 2 ρ+δγ−µ
ρ+2δγ−µ

a
γ (K̄∗(X))γ

ρ+ δγ − µ
> 0.

Following Dixit and Pindyck (1994), the value before investment (i.e. in the continuation region) is V = φ

where φ is the solution of Lφ = ρφ, where the infinitesimal generator is equal to L = µX ∂
∂X + 1

2σ
2X2 ∂2

∂X2 .

In other words,
1

2
σ2X2φ′′(X) + µXφ′(X)− ρφ(X) = 0.

They show that the unique solution to this equation is φ(X) = AXβ where β is the positive root of

1

2
σ2β(β − 1) + µβ − ρ = 0.

The value of A ∈ R as well as the investment trigger X∗ follow as a solution of the so called value matching

and smooth pasting conditions:

AXβ =
X

ρ+ γδ − µ
a

γ
(K̄)γ

(
1− a

γ
(K̄)γ

ρ+ γδ − µ
ρ+ 2γδ − µ

)
− κK̄, and (27)

AβXβ−1 =
1

ρ+ γδ − µ
a

γ
(K̄)γ

(
1− a

γ
(K̄)γ

ρ+ γδ − µ
ρ+ 2γδ − µ

)
, (28)

respectively. To find A, K̄opt, and X∗, (26), (27), and (28) are solved simultaneously,

X(β − 1)

(
1− a

γ
(K̄)γ

ρ+ γδ − µ
ρ+ 2γδ − µ

)
= βκ(ρ+ δγ − µ)

γ

a
(K̄)1−γ

= Xγβ

(
1− 2

a

γ
(K̄)γ

ρ+ γδ − µ
ρ+ 2γδ − µ

)
.
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The first equality follows from the smooth pasting and value matching conditions and the the second equality

follows from plugging in the first order condition. Rewriting leads to

a

γ
(K̄)γ =

β(γ − 1) + 1

β(2γ − 1) + 1

ρ+ 2δγ − µ
ρ+ δγ − µ

which leads to (10). The solution to (27) and (28) gives X∗ and A. �

Proof of Proposition 2 First notice that, since K̄ =
(
γ
aQ(0)

) 1
γ and ∂

∂δ K̄ = 1
a

(
γ
aQ(0)

) 1−γ
γ ∂

∂δQ(0), the

signs of ∂
∂δ K̄ and ∂

∂δQ(0) are the same. Plugging K̄ =
(
γ
aQ(0)

) 1
γ into (8) gives

X

ρ+ γδ − µ

(
1− 2Q(0)

ρ+ γδ − µ
ρ+ 2γδ − µ

)
=
κ

a

(γ
a
Q(0)

) 1−γ
γ

. (29)

Define ξ = ρ+γδ−µ
ρ+2γδ−µ . Applying the implicit function theorem to (29) leads to

∂Q(0)

∂δ

[
κ

a

1− γ
a

(γ
a
Q(0)

) 1−2γ
γ

+
2X

ρ+ 2δγ − µ

]
= −γ X

(ρ+ δγ − µ)2
(1−Q(0)(2ξ)2). (30)

Therefore ∂Q(0)
∂δ > 0 ⇔ Q(0) > 1

4ξ2
. As the left-hand side of (29) is decreasing in Q(0) and the right-hand

side is increasing in Q(0) it is sufficient to evaluate both sides at Q(0) = 1
4ξ2

to establish a condition for

∂K̄∗(X)
∂δ > 0, i.e. plugging Q(0) = 1

4ξ2
into

X

ρ+ γδ − µ

(
1− 2Q(0)

ρ+ γδ − µ
ρ+ 2γδ − µ

)
>
κ

a

(γ
a
Q(0)

) 1−γ
γ

(31)

gives a sufficient condition.

Next is to show that δ̂(X) exists and is unique. Notice that the left-hand side of (29) is a function of δ

but the right-hand side is not. Therefore, studying the left-hand side of (29) when δ changes is sufficient.

As such,
∂

∂δ

X

ρ+ γδ − µ

(
1− 2Q(0)

ρ+ γδ − µ
ρ+ 2γδ − µ

)
=

X

(ρ+ γδ − µ)2
(4ξ2Q(0)− 1),

which equals 0 for Q(0) = 1
4ξ2

. As 1
ξ2

is increasing in δ we have that there is a unique value of δ, δ̂, such

that (31) holds if and only if δ < δ̂(X).

For δ = 0 with Q(0) = 1
4ξ2

, (31) becomes

X

ρ− µ
>

2r

a

( γ
4a

) 1−γ
γ

,

which gives a unique value of X such that X
ρ−µ = 2κ

a

(
γ
4a

) 1−γ
γ .

Finally, notice that (ρ− µ) 2κ
a

(
γ
4a

) 1−γ
γ > 0, so that (ρ− µ) 2κ

a

(
γ
4a

) 1−γ
γ is part of the state space. �

Proof of Lemma 1 Notice that ∂
∂K̄

V (X) = 0 as K̄(X) is chosen to maximize V (X). Then,

d

dδ
V (X) =

∂

∂δ
V (X) +

∂

∂K̄
V (X)

∂K̄

∂δ

= − γX

(ρ+ γδ − µ)2

(
1− 2

a

γ
K̄γ(X)

(
ρ+ γδ − µ
ρ+ 2γδ − µ

)2
)

+ 0

< − γX

(ρ+ γδ − µ)2

(
1− 2

a

γ
K̄γ(X)

ρ+ γδ − µ
ρ+ 2γδ − µ

)
< 0.
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For the last inequality, we make use of the fact that the left-hand side of equation (8) is positive. �

Proof of Lemma 2 One can show that the sign of the derivative of (14) with respect to δ is equal to the

sign of

(ρ− µ)(1− β − β(1− γ))− 2βγδ < 0,

which is negative since 1− β < 0 and all other terms are negative. �

Proof of Lemma 3 Taking the derivatives gives

∂

∂σ
V (X) =

∂

∂σ

(
X

X∗

)β
κK̄opt

β − 1

=

(
X

X∗

)β
κK̄opt

β − 1

(
Ln

X

X∗
− β

X∗
∂X∗

∂β
+

1

K̄opt

∂K̄opt

∂β
− 1

β − 1

)
∂β

∂σ

=

(
X

X∗

)β
κK̄opt

β − 1
Ln

(
X

X∗

)
∂β

∂σ
> 0,

∂

∂δ
V (X) =

∂

∂δ

(
X

X∗

)β
κK̄opt

β − 1

=

(
X

X∗

)β
κK̄opt

β − 1

(
− β

X∗
∂X∗

∂δ
+

1

K̄opt

∂K̄opt

∂δ

)
= −

(
X

X∗

)β
κK̄opt

β − 1

(
β − ρ− µ

ρ+ 2γ2δ − µ

)
∂X∗

∂δ

1

X∗
< 0,

so that (i) and (ii) follow directly. �

Proof of Proposition 3 For (i), one can directly check that

∂2

∂δ∂σ
X∗ = −

(
γ

a

(ρ+ 2γδ − µ)(1− β(1− γ))

(ρ+ γδ − µ)(1 + β(1− 2γ))

) 1−γ
γ κ

a

ρ+ 2γ2δ − µ
ρ+ 2γδ − µ

β(1− γ)2 + γ(1− β(1− γ))

(β − 1)2(1− β(1− γ))

∂β

∂σ
> 0.

For (ii), one can check the following for any function h : R2 → R: if h(x, y) can be written as h(x, y) =

f(x)g(y) (l(y))
k(x)

with functions f, g, k, l : R→ R, then

∂2

∂x∂y
h(x, y) =

1

h(x, y)

∂

∂y
h(x, y)

∂

∂x
h(x, y) + h(x, y)

1

l(y)

∂l(y)

∂y

∂k(x)

∂x
.

This can be used to obtain

∂2

∂σ∂δ

(
X

X∗

)β
Kopt

β − 1
=

(
X

X∗

)−β
β − 1

Kopt︸ ︷︷ ︸
>0

∂

∂δ

(
X

X∗

)β
Kopt

β − 1︸ ︷︷ ︸
<0

∂

∂σ

(
X

X∗

)β
Kopt

β − 1︸ ︷︷ ︸
>0

−
(
X

X∗

)β
Kopt

X∗(β − 1)

∂X∗

∂δ

∂β

∂σ︸ ︷︷ ︸
<0

=

(
X

X∗

)β
K̄opt

β − 1

∂X∗

∂δ

1

X∗︸ ︷︷ ︸
>0

∂β

∂σ︸︷︷︸
<0

{(
ρ− µ

ρ+ 2γ2δ − µ
− β

)(
Ln

X

X∗

)
− 1

}
.

Rewriting the last term gives (15). �
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Proof of Proposition 4 A large part of the proof follows from the main text.

Rewriting X̂(δ) = X∗ gives (18). Since the left-hand side of (18) is (strictly) increasing in δ and the right-

hand side does not depend on δ, the intersection is unique. This can be used to show that ∂
∂δ X̂ > ∂

∂δX
∗ for

all δ. Substituting the left-hand side of (18) into X̂(δ) gives

X̃ =
(γ
a

) 1−γ
γ κ

a

(
β(γ − 1) + 1

β(2γ − 1) + 1

)2 1−γ
γ
(
β(2γ − 1) + 1

β − 1

)2

(ρ− µ)
4

1
γ

8
.

We now need to check conditions such that X̃ > (ρ − µ) 2κ
a

(
γ
4a

) 1−γ
γ where (ρ − µ) 2κ

a

(
γ
4a

) 1−γ
γ follows from

Proposition 2. Rewriting X̃ = (ρ − µ) 2κ
a

(
γ
4a

) 1−γ
γ gives (17). Uniqueness of σ̃ follows from the fact that X̃

is monotone in σ and that (ρ− µ) 2κ
a

(
γ
4a

) 1−γ
γ does not depend on σ. �
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