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Abstract 

We propose solutions for a multi-factor real option duopoly game model which determine the optimal 
time to divest in an incumbent technology or to switch to a new smaller-scale and lower operating 
cost technology, with an uncertain output price, and declining output. We use two formulations, one 
in which the options to divest and switch are treated separately (separate formulation), and another in 
which these two options are mutually-exclusive (joint formulation). For the technology switch, there 
is a temporary second-mover revenue market share advantage, whereas for the divestment there is a 
first-mover salvage value advantage. The joint formulation assumes that the current market revenue 
is suddenly between the switch and the divest thresholds of the two firms obtained by the separate 
formulation, as might occur with a pandemic or industry turmoil. Then, we find that the decision 
thresholds using the joint formulation are quite different from those obtained by the separate 
formulation: the first-mover divests earlier under the separate formulation, and switches much earlier, 
and the second-mover also switches earlier. Additionally, the region of inaction (or hysteresis) is 
greater under the separate formulation. Finally, the sensitivities of the thresholds to changes in the 
price volatility and in market shares are often of opposite signs for the joint versus separate. Thus, in 
deciding to get out (divest) or get down (switch to lower operating costs), not only watch the 
competition but also consider the action options jointly. 
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1. Introduction 

In markets where output prices are uncertain and output demand is declining, firms often consider 

simultaneously the option to switch to a new smaller-scale technology, benefitting thereafter from 

lower operating costs, and the option to divest. In addition, it is assumed that at the moment the firm 

evaluates the switch/divest problem, the random state variable (e.g., revenue) is above the switch 

threshold, otherwise it would trigger an immediate switch. However, Décamps et al. (2006) asked a 

very interesting question: how should firms behave if suddenly, at the beginning of the investment 

analysis, the state variable is between the divest and switch thresholds? They show that if the switch 

and the divest thresholds are derived separately, the former threshold is lower than the latter and if 

(by chance) when the investment analysis is first performed the state variable is in this region, both 

the option to switch and the option to divest must coexist. Although this scenario is less likely than 

that in which the state variable is above the switch threshold, it is still possible specially when a 

pandemic or industry turmoil occurs. In this scenario, if the state variable increases sufficiently, it 

will trigger the switch, whereas if it decreases enough, it will trigger the divest.  

Dias (2004) first raised the mutually exclusive option problem, and provided solutions using finite 

differences. Décamps et al. (2006) show that in this particular (idle) region, firms hold simultaneously 

the option to switch and the option to divest. Siddiqui and Fleten (2010) implement the Décamps et 

al. (2006) model for mutually exclusive projects with an unusual solution. Adkins and Paxson (2019) 

study this problem, and propose analytical and numerical solutions for a monopoly market. We extend 

the above literature to a duopoly facing an output declining market. We assume that there is a duopoly 

market with two active and ex-ante symmetric firms, where there is a first-mover divestment 

advantage (higher salvage value) and second-mover temporary switch advantage (higher market 

share), which may involve client inertia.  
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We note that downscaling during pandemics, change in fashion or technology, or conventional usage 

patterns, may well inspire first movers to switch technology. But who wants to be first, adapting to 

temporary client inertia regarding lower-cost operations (online vs on-campus education)? Other 

contexts are firms, industry or countries facing stagnation or revenue decline, due to natural factors 

such as in petroleum production, and economic or structural factors, where possible new alternative 

technologies may validate delaying exit-abandonment, or switching to lower cost production. Due to 

both pollution concerns and competition from natural gas, coal almost everywhere is being shut down, 

possibly awaiting cheaper emission control. Book shops and shopping malls in the US (Borders and 

Barnes & Noble) are being closed, or converted to alternative uses (cafes and reading rooms, rather 

than book selling). Ceramics and textiles in developed countries faced closure or downsizing. Taxis, 

accommodation, and universities are experiencing competition from mobile-digital technologies.  

Décamps et al. (2006) study irreversible investments in alternative projects and show that when firms 

hold the option to switch from a smaller scale to a larger scale project, a hysteresis region between 

the investment region can persist even if the uncertainty of the output price increases. Bobtcheff and 

Villeneuve (2010) examine investments in two mutually exclusive projects with two sources of 

uncertainty, and conclude that when these uncertainties hold simultaneously, the project payoffs are 

not sufficient criteria for deciding on the investment timing. Kwon (2010) looks at a declining profit 

stream following an arithmetic Brownian motion process, so the exit threshold decreases as volatility 

increases. Adkins and Paxson (2011) investigate optimal capital replacement and abandonment 

decisions considering that both revenues and costs are uncertain and their value declines over time. 

Chronopoulos and Siddiqui (2015) study the timing of the replacement of an incumbent technology, 

assuming that there is technological uncertainty, and the ex-post revenues which the adoption of the 

new technology generate are uncertain. This investment analysis is examined under three different 

strategies, compulsive, laggard, and leapfrog. Their results reveal that, under the compulsive strategy, 

technological uncertainty has a non-monotonic impact on the optimal investment decision.  
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Hagspiel et al. (2016) look at investment decisions in a new technology under uncertainty in profit 

declining markets, where firms hold the option to invest in a new technology with which they produce 

a new product, holding the option to exit the market and considering that the firms also decide on the 

capacity size. Among other findings, they show that a higher potential profitability of the new product 

market accelerates the investment timing, but the capacity choice can alter this result, reversing the 

above intuitive result, if the choice of the investment capacity is smaller.  

Støre et al. (2018) study an irreversible switch from oil to gas production, with both oil and gas 

production declining over time. They provide analytical solutions for the switching threshold and the 

real option value of the switching opportunity. Huberts et al. (2019) show that entry may be deterred, 

possibly in a war of attrition or pre-emption, following interesting strategies. Adkins and Paxson 

(2019) study the appropriate rescaling for a monopoly from an incumbent large-scale technology 

assuming that market revenue is declining. They also consider the case of abandonment and treat the 

two investments both separately and jointly, showing different implications for government policies. 

Several authors focus on the uncertainty of new technologies, which should provide interesting 

extension of our current approach.  Farzin et al. (1998) assume both the speed of arrival and degree 

of improvement of future technologies are uncertain. Doraszelski (2004) allows for future 

technologies with improvements. Hagspiel et al. (2015) also consider changing arrival rates for new 

technologies.   

We have set up a context where the first-mover advantage is small, dependent on only obtaining full 

salvage value, so some of the option values and thresholds are very sensitive to small changes in the 

ex-post “market share”. These market sharing assumptions constitute quasi-pre-emptive games, 

where the second-mover is not immediately motivated to adopt the cost reduction technology in the 

second stage (or perhaps not motivated because of the alternative temporary larger market share, 

maybe a management delusion). Eventually, the second-mover is allowed to adopt the new 



 5 

technology (but with an equal market share). Lieberman and Montgomery (1988) focus on 

technological leadership (which we adopt), pre-emption of scarce assets, and customer switching 

costs. Joaquin and Butler (2000) consider the first mover advantage of lower operating costs. 

Tsekrekos (2003) suggests both temporary and pre-emptive permanent market share advantages for 

the leader in a sequential investment pattern. Paxson and Pinto (2003) model a leader with an initial 

market share advantage, which then evolves as new customers arrive (birth) and existing customers 

depart (death). Paxson and Melmane (2009) provide a two-factor model where the leader starts with 

a larger market share, applied to show that (by foresight) Google was likely to be undervalued 

compared to Yahoo at the Google IPO. Bobtcheff and Mariotti (2010) consider a pre-emptive game 

of two innovative competitors, whose existence may be revealed only by first mover investment. 

The rest of the paper is organized as follows. Section 2 presents both the divestment and the switching 

models for a separate formulation and their respective sensitivity analyses. Section 3 derives the 

divestment and the switching models for a joint formulation, and presents their respective sensitivity 

analyses. Section 4 concludes the work and provides some suggestions for further research.  

2. Base Model 

Let us consider a duopoly market with two active and ex-ante symmetric firms operating with an 

incumbent high-cost technology (policy X), where there is output price (!(#)) uncertainty and the 

output quantity (%(#)) is declining over time. Each firm holds the option of either continuing 

operations with policy X or abandoning production and receiving a salvage value. A parameter 

&	(	(0,1) ensures that there is a first-mover divestment advantage, where , is the divestment value of 

the first-mover and &, the divestment value of the second-mover. Moreover, there is an alternative 

lower-cost technology (policy Y) available, so the two firms can also consider switching from policy 

X to policy Y. The operating costs associated with policies X and Y are given by  -!, with .({0, 1}. -" 

and -# are the operating costs for policies X and Y, respectively. 
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A motivation for exiting the market first (apart from the higher divestment value) is because there is 

output price uncertainty and the output is declining over time, so the high-cost business can become 

unprofitable soon. Furthermore, the two firms are assumed to be ex-ante symmetric, so they face the 

same periodic operating costs, which vary with the size of their market share. 

This section studies the optimal time to divest in policy X, or to switch to policy Y, relying on two 

distinct model formulations. One formulation, named “separate” in which the option to divest in 

policy X and the option to switch to policy Y are treated independently and, another, named “joint” in 

which these two options co-exist. The joint formulation follows that of Décamps et al. (2006) and 

Adkins and Paxson (2019) derived for a monopoly market. We show the differences between the 

duopoly investment thresholds for these two model formulations.  

The output price follows a geometric Brownian motion (GBM) process given by:  

4! = 6$!4# + 8$!49     (1) 

where, 6$ is the instantaneous conditional expected percentage changes in ! per unit of time, 8%  is 

the instantaneous conditional standard deviation of ! per unit of time, and 4: is the increment of a 

standard Wiener process. For convergence of the solution ; − 6$ > 0, where r is the riskless interest 

rate. For simplicity of notation, we assume that the asset or convenience yield is given by >% = ; −

6$. The output quantity flow q declines over time according to: 

4% = −?%4#              (2) 

where ? > 0 denotes a known constant depletion rate.  

Therefore, firm i’s revenue flow, if operating with policy k, is given by: 

!(#)%(#). @!!!"                         (3) 
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where @!!!" is a deterministic competition factor that represents the percentage of the firm i’s market 

revenue share for a given scenario, with A, B = {C, D}, where L means “first-mover” and F “second-

mover” and . = {0, E, F}, where “0” indicates inactive, “X” indicates policy X, and “Y” indicates 

policy Y.2  

For the first-mover and the second-mover, inequalities (4a) and (4b) hold for the divestment, whereas 

inequalities (4c) and (4d) hold for the switching: 

@&#&$ > @'#&$                                             (4a) 

@&$'# > @&$&#                   (4b) 

!!!!" = !"!" > !"!!"                     (4c) 

!!""! > @(%(& = !"""!                                      (4d) 

Specifically, for the divestment, if D)''( = 1.0 and D)')( = D*'*( = 0.5, it means that the second-

mover gets 100 percent of the market share when alone in the market with policy X, and each firm 

gets 50% of the market share when they are active either with policy X or with policy Y, respectively. 

For the switching, in our base case scenario, we assume that D*()' = 0.4 and @)()' = D*(*' = 0.5, 

which means that, when the first-mover switches to policy Y (with the second-mover still operating 

 
2 As an illustration about how these competition factors work: for the divest scenario, !!"#! represents the 

second-mover’s market share when it operates with policy X alone (after the first-mover has left the market) 

and !!"!!represents the second-mover’s market share for when both firms operate with policy X. A similar 

rationale applies to the competition factors of the switch scenario. For instance, !"!"" represents the first-

mover’s market share when both firms operate with policy Y, whereas !"!!" represents the first-mover’s market 

share when the first-mover is active with policy Y and the second-mover is active with policy X. Notice that 

!$"$! +!$!$" = 1, the full market. Also, we can express the first-mover’s competition factors as a function of 

the second-mover’s (and vice-versa), that is: !$!$" = 1 − !$"$!.  
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with policy X), its market share drops (from 50% to 40%), although it will get back to 50% again as 

soon as the second-mover also switches to policy Y.3  

Using a risk-neutral framework and Ito’s Lemma, we find that the value of an active second-mover 

with the option to divest and operating costs -! satisfies the following differential equation: 

+
,
8,J, -

).*
!,"

-%)
+ (; − >)J -.*

!,"

-%
− ?% -.*

!,"

-/
+ J%@&$&# − -! − ;D!0,2 = 0      (5) 

where !!",$ denotes the option value of firms i and j when they are active with policy k.  

Based on the American perpetuity solution, the value function	#!",$(%, ') satisfying the 

differential equation (5) takes the form:4 

-!0,2(J, %) = K+0,2J3,%4, + K,0,2J3)%4) +
%/5,$,#
678*

− 9*
:

           (6) 

where K+	and K,	are two non-negative coefficients to be determined, with L+ and L,, and M+ and M, 

related through the following characteristic equation: 

N(L! , M!) = +
,
8,L!(L! − 1) + (; − >)L! − ?M! − ; = 0     (7) 

By examining the respective smooth-pasting conditions, we conclude that the principle of similarity 

can be applied, which implies that M+! = L+! and  M,! = L,!  (see, Paxson and Pinto, 2005). 

Therefore, 

 
3 Competition is embedded in our model through two factors. One is the firms’ market share (!$#$$) that is 

governed by the inequalities 4a, 4b, 4c, and 4d, and another is the second-mover’s (first-mover’s) divestment 

disadvantage (advantage), since the divestment value of the second-mover is only a percentage λ of that of the 

first-mover. 

4 See Adkins and Paxson (2011) and Adkins and Paxson (2017). 
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L+(,)! = O+
,
− :=6=8*

>)
P + (−)QO+

,
− :=6=8*

>)
P, + ,:

>)
             (8) 

where L+! > 1 and L,! < 0. 5  

We note that L+! and L,! vary with the depletion rates ?!, which we assume are the same for the two 

policies, so ?! = ?. Additionally, because the similarity principle holds, the analysis can be framed 

in terms of a single variable, using the following variable change: S = J. %. Therefore, Equation (6) 

becomes: 

-!0,2(S) = K+0,2S3,* + K,0,2S3)* +
?5*$*#
678

− 9*
:

                      (9) 

2. Separate Formulation 

A key assumption underlying the separate formulation is that the options to switch and divest are 

exclusive options, that is, if the firm exercises one of these options it will not exercise the other. In 

addition, for simplicity, we assume that, if firms switch from policy X to policy Y, they will operate 

with policy Y forever, and that the investment game ends after the firms has divested. For a duopoly 

game, there are two additional implicit assumptions: i) the first-mover switches and divests before 

the second-mover, and ii) at the beginning of the game, the state variable S is above Ŝ@@A  for the 

switching and above Ŝ@5A  for the divesting. Finally, the second-mover gets 100% of the market 

revenue after the first-mover has divested but (we assume) only a percentage & of the first-mover’s 

divestment value (,).  

2.1 Divesting 

2.1.1 Second-mover 

 
5 Henceforth, when no confusion is possible, we drop the subscript “k” from the solution of the quadratic 

characteristic equation (7): (%(')$. 
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The value function is given by:  

-&.(S)U)(0) > Ŝ@5A 	

⎩
⎪
⎨
⎪
⎧		?5-$-#

678
− 5-$-#9-

:
+ K,5. 	S3) + 	?C./

# D5-$0#=5-$-#E
678

Z ?
?C./
# [

3) 	A-	S > Ŝ@5A
	?5-$0#
678

− 5-$0#9-
:

+ K,5. 	S3) 																																													A-		S	(	[Ŝ@5A , Ŝ@5. )
	

	&,																																																																																																						A-		S ≤ Ŝ@5.

     (10) 

The economic interpretation for (10) is the following: in the first row, the first two terms represent 

the present value of the revenue stream less the operating costs for the region where both firms are 

active with policy X, the third term represents the option value to divest, and the fourth term is the 

second-mover’s expected gain due to the fact that the first-mover divests first and, when it divests (S 

reaches Ŝ@5A ), the market share of the second-mover increases from @&$&# to @&$'#; in the second 

row, the first two terms represent the present value of the revenue stream less the operating costs for 

the region where the second-mover is alone in the original market, and the third term is the option 

value to divest; the term in the third row is the second-mover’s divestment value which is a proportion 

(&) of the divestment value of the first-mover. 

The option coefficient K,5.  and divestment threshold Ŝ@5.  are obtained from the value-matching and 

smooth-pasting conditions, evaluated at Ŝ@5. , given by Equations (11) and (12), respectively: 

	?C./
$ 5-$0#
678

− 5-$0#9-
:

+ K,5. 	Ŝ@5. 3) = &,                             (11) 

5-$0#
678

+ L,K,5. 	Ŝ5.(3)=+) = 0                                  (12) 

Using Equations (11) and (12), we determine the constant K,5.  and the divestment threshold S@5. : 

K,5. = =5-$0#
(678)3)?C/-

$ (2)3,)                                   (13) 

Ŝ@5. = D5-$0#9-7:FGE3)(678)
5-$0#:(3)=+)

                    (14) 
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2.1.2 First-mover  

The value function is given by:  

-&A(S)U)(0) > Ŝ@5A 	 = ^
	?5-#-$
678

− 5-#-$9-
:

+ K,5A 	S3) 													A-	S > Ŝ@5A
,																																																					A-		S	(	[Ŝ@5A , Ŝ@5. )
,																																																													A-			S ≤ Ŝ@5.

                     (15) 

The economic interpretation of (15) is the following: the first two terms in the first row represent the 

revenue stream less the operating costs for the region where the two firms operate with policy X, and 

the third term is the option value to divest; the term in the last two rows represents the divestment 

value.  

The option coefficient K,5A  and divestment threshold Ŝ@5A  are obtained from the value-matching and 

smooth-pasting conditions, evaluated at Ŝ@5A , given by Equations (16) and (17), respectively: 

	?C/
#5-#-$
678

− 5-#-$9-
:

+ K,5A 	Ŝ@5A 3) = ,                        (16) 

5-#-$
678

+ L,K,5A Ŝ@5A (3)=+) = 0                                  (17) 

Using Equations (16) and (17), we determine the constant K,5A  and the divestment threshold Ŝ@5A  that 

are given by: 

K,5A = =5-#-$
(678)3)?C/

# (2)3,)                                   (18) 

Ŝ@5A = D5-#-$9-7:GE3)(678)
:5-#-$(3)=+)

                       (19) 

2.2 Switching  
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This section evaluates a policy switching problem where the two firms have the option to switch from 

policy X to policy Y for which they have to invest .. Policy X is based on a large-scale technology 

whereas policy Y is based on a small-scale technology. Therefore, the switching to policy Y enables 

firms to reduce operating cost from -& to -H . The operating costs are a function of the firm’s market 

share, so these are multiplied by @!!!". For the sake of simplicity, the option to divest in policy Y is 

neglected. Notice that because the incumbent technology is large-scale whereas the new technology 

is small-scale, so there is a temporary second-mover’s market share advantage during the period when 

the first-mover operates with policy Y and the second-mover operates with policy X. This market 

share advantage disappears when the second-mover also switches to policy Y, after which each firm 

gets 50 percent of the market.6 As for the above section, the first-mover benefits from a higher salvage 

value.  

The value functions for the two firms are based on these supposed advantages/disadvantages, the 

economics of the incumbent versus downsized state, and the explicit options held by, and serendipity 

options granted by, the first and second movers. The option values are based on the value-matching 

and smooth-pasting conditions at the thresholds which justify first and second mover actions 

(permanent single transitions from one state to another), which result in analytical solutions.7 

2.2.1 Second-Mover 

The value function is given by:  

 
6 Although we neglect ex-post first-mover’s advantages, they often exist in sequential investment games, when 

there is a learning advantage to be the first to adopt a new technology-related policy.  
7 Multiple switching among several states is covered in Paxson (2005), with simultaneous solution of several 

value matching and smooth pasting equations.  
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-H.(S)U)(0) > Ŝ@@A 	 =

⎩
⎪
⎨
⎪⎧
	?5-$-#
678

− 5-$-#9-
:

+ K,@. S3) +
	?C..
# D5-$5#=5-$-#E

678
Z ?
?C..
# [

3) 				A-	S > Ŝ@@A
	?5-$5#
678

− 5-$5#9-
:

+ K,@. S3) 																																															A-		S	(	[Ŝ@@A , Ŝ@@. )
	?55$5#
678

− 55$5#95
:

− (. − &,)																																																						A-		S ≤ Ŝ@@.
   (20) 

The economic interpretation for (20) is the following: in the first row, the first two terms represent 

the present value of the revenue stream less the operating costs for the region where both firms are 

active with policy X, the third term represents the option value to switch, and the fourth term is the 

second-mover’s expected gain due to the fact that the first-mover switches first and, when it switches 

(S reaches Ŝ@@A ), the market share of the second-mover increases from @&$&# to @&$H#; in the second 

row, the first two terms represent the present value of the revenue stream less the operating costs for 

the region where the second-mover operates with policy X and the first-mover operates with policy 

Y, and the third term is the option value to switch; in the third row, the first two terms represent the 

present value of the revenue stream less the operating costs for the region where both firms are active 

with policy Y, and the third term is the switching investment cost less the salvage value related to 

policy X which is a proportion (&) of that of the first-mover. 

The option coefficients K,@.  and the switching threshold Ŝ@@.  are obtained through the boundary 

conditions: the value-matching condition which is obtained by equalizing the second and the third 

rows of (20), evaluated at S = Ŝ@@. , and the smooth-pasting condition which is the first derivative of 

the value matching condition. These equations are given by:   

?C..
$ 5-$5#
678

− 5-$5#9-
:

+ K,@. Ŝ@@. 3) − 	?C..
$ 55$5#
678

+ 55$5#95
:

+ (. − &,) = 0     (21) 

	5-$5#
678

+ L,K,@. Ŝ@@. (3)=+) − 	55$5#
678

= 0                      (22) 

From (21) and (22), we obtain: 
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K,@. = D55$5#=5-$5#E?C..
$ (,32))

3)(678)
                                   (23) 

Ŝ@@. = 3)(678)D:(!=FG)755$5#95=5-$5#9-E
:(3)=+)D55$5#=5-$5#E

                (24) 

2.2.2 First-Mover  

The value function is given by:  

-HA(S)U)(0) > Ŝ@@A 	 =

⎩
⎪
⎨
⎪
⎧ 	?5-#-$ 	

678
− 5-#-$9-

:
+ K,@A 	S3) +

	?C..
$ D55#5$=55#-$E

678
Z ?
?C..
$ [

3) 			A-		S > Ŝ@@A

	?55#-$ 	
678

− 55#-$95
:

− (. − ,)																																															A-		S	(	[Ŝ@@A , Ŝ@@. )
	

?55#5$ 	
678

− 55#5$95
:

																																																																															A-	S ≤ Ŝ@@.

  

(25) 

The economic interpretation for (25) is the following: in the first row, the first two terms represent 

the present value of the revenue stream less the operating costs for the region where both firms are 

active with policy X, the third term represents the option value to switch, and the fourth term is the 

first-mover’s expected gain due to the fact that the second-mover will eventually switch after the first-

mover, and when it switches (S reaches Ŝ@@. ) the market share of the first-mover increases from @H#&$ 

to @H#H$; in the second row, the first two terms represent the present value of the revenue stream less 

the operating costs for the region where the first-mover operates with policy Y and the second-mover 

operates with policy X, the third term is the switching cost less the salvage value related to policy X; 

the terms in the third row represent the present value of the revenue stream less the operating costs 

for the region where both firms are operating with policy Y. 

The option coefficient K,@A  and the switching threshold Ŝ@@A  are determined from the value-matching 

condition obtained by equalizing the first and the second rows of (25) and the associated smooth-

pasting condition, both evaluated at S = Ŝ@@A :   
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?C..
# 5-#-$ 	
678

− 5-#-$9-
:

+ K,@A 	Ŝ@@A 3) + 	?C..
$ D55#5$=55#-#E

678
Z?C..

#

?C..
$ [

3)
− ?C..

# 55#-$ 	
678

+ 55#-$95
:

+ (. − ,) = 0

     (26) 

5-#-$ 	
678

+ L,K,@A 	Ŝ@@A 3)=+ + 	3)D55#5$=55#-#E?C..
$ (,32))?C..

# (2)3,)

(678)
− 55#-$ 	

678
= 0           (27) 

From Equation (27), we obtain K,@A : 

K,@A = (55#-$=5-#-$)=	3)D55#5$=55#-#E?C..
$ (,32))?C..

# (2)3,)

3)(678)?C..
# (2)3,)                                 (28) 

There is no closed-form solution for Ŝ@@A , but it can be obtained numerically using Equation (26). 

The absolute advantage of being the leader, given the parameter values, is the present value of the 

leader at each stage plus the option to switch at the first stage (both firms with policy X) and the value 

enhancement that results from an increase of its market share at the moment the second-mover also 

switches. 

2.3 Results 

This section shows a sensitivity analysis for the effect of changes in the (divest and switch) model 

parameters on the investment thresholds of the first-mover and the second-mover. We show a 

sensitivity analysis of the effect of the first-mover’s market share when it operates with policy Y and 

the second-mover operates with policy X on the option coefficients of both firms, starting with the 

base case model parameter values provided in Table 1. 
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Table 1: Base case model parameter values 

Notation Definition Value 
! Output price 1.00 
" Output quantity 10.00 
# Revenue value 10.00 
r Risk-free rate 0.10 
$ Convenience yield 0.03 
% Depletion rate for both policy X and policy Y  0.04 
& Output price volatility 0.30 
' % drop in divestment value for the second-mover 0.40 
(6 Periodic operating costs for policy X 10.00 
(7 Periodic operating costs for policy Y 1.00 
) First-mover’s divestment value 25.00 
* Switching investment cost to policy Y 32.00 

Competition Factors 
DIVEST 

!!"!! SM’s market share if active with the FM, both firms with policy X 0.50 
!!"#!  SM’s market share if active alone with policy X, after the leader divests 1.00 

 

SWITCH 
!!!!" FM’s market share if active with the SM, both firms with policy X (FIRST-STAGE) 0.50 
!!""!  SM’s market share if active with policy X and FM is active with policy Y (SECOND-STAGE) 0.60 
!"!!"  FM’s market share if active with policy Y and SM is active with policy X (SECOND-STAGE) 0.40 
!"""!  SM’s market share if active with the FM, both firms with policy Y (THIRD-STAGE) 0.50 
!"!""  FM’s market share if active with the SM, both firms under policy Y (THIRD-STAGE) 0.50 

Note: FM stands for “first-mover” and SM stands for “second-mover”. In the sensitivity analysis, for the output price 
volatility (&8) and the output price drift (+8), we drop the subscript “P”. In the second-stage, there is a technology-symmetry 
between the FM and the SM and we assume that SM’s market share increases from 0.50 to 0.60 because policy Y is based 
on a small-scale technology. 

2.3.1 Sensitivity analysis  

In Figure 1, we provide a sensitivity analysis which shows the effect of changing in some of model 

key parameter values on the first-mover and second-mover divestment thresholds.  
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Figure 1: Sensitivity of the divestment thresholds to changes in the model parameters.  
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accelerates the divestment of the second-mover and has no effect on the divestment threshold of the 

first-mover (figure 1f).  

In Table 2, we show the option coefficients and divestment thresholds for the first and the second 

movers. Notice that the state variable approaches the thresholds from above, so the first-mover divest 

before the second-mover as it is expected. The lag time between the divesting of the two firms 

decrease however with the output uncertainty and second-mover’s salvage value disadvantage, and 

increase with the convenience yield, output declining rate, divestment value, or fixed operating costs. 

Table 2: Base case scenario - option coefficients and thresholds for the Separate-Divest Formulation 

Coefficient and Divestment 

Thresholds 

Value 

,')*  339.90 

,')+  350.45 

)̂,)+  6.00 

)̂,)*  4.40 

In Figure 2, we provide a sensitivity analysis which shows the effect of changing some parameter 

values on the switching thresholds of the first-mover and the second-mover. 

Figure 2 - this figure shows the sensitivity of the switching thresholds of the two firms to changes in 

some of the model parameter values. VFSS and VLSS are the switching thresholds of the second-

mover and the first-mover, respectively, for the SEPARATE formulation. 
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     (c)                             (d) 
 

 
             (e)                                  (f) 

Our results above show that a higher output price uncertainty or second-mover advantage delays the 
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Table 3: Base case - thresholds and option coefficients for Separate-Switch Formulation 

Coefficient and Switching 

Thresholds 

Value 

,',*  441,29 

,',+  63,20 

)̂,,+  15,60 

)̂,,*  13,20 

3. Joint Formulation 

A key assumption underlying the duopoly joint formulation (à la Décamps et al., 2006) is that, at the 

beginning of the investment game, the state variable S (revenue) is between the threshold to divest 

and switch (ŜM5A  and (ŜM@A ) that are determined independently using a separate formulation. Hence, the 

two firms have two simultaneous options: the option to divest and the option to switch. We assume 

that, after the divestment from policy X the game is over (i.e., firms are not allowed to re-enter the 

market after the exit) and after the firms have switched from policy X to policy Y they will operate 

with policy Y forever.  

Figure 3 illustrates the threshold sequence of the decision game - notice that at the beginning of the 

game the state variable )(0)	0	()̂-,* , )̂-)* ). 

 
 
 
 
 

 
 

 

Our derivation formulation is grounded on the continuity of the firm’s value function, over the domain 

of revenue (S) values, and its differentiability at the decision thresholds. 

3.1 Second-Mover 

0 
∞ 

ŜM5.  ŜM5A  ŜM@A  ŜM@.
−− 

Figure 3: ν is randomly declining: Décamps et al. (2006), at the beginning of the decision 

game,	ν(0)	ϵ	(ν4./0 , ν4.10 ) for the first-mover and ν(0)	ϵ	(ν4./2 , ν4.12 ) for the second-mover 
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The value function is given by (S  is randomly declining): 

-&,H. (S)US(0)	(	(ŜM5. , ŜM@. )

⎩
⎪⎪
⎪
⎨
⎪⎪
⎪
⎧

	
	?55$5#
678

− 55$5#95
:

− (. − &,)																																				A-	S ≥ ŜM@.
	?5-$5#
678

− 5-$5#9-
:

+ K@.S3, + K5.S3) 															A-		S	((ŜM@. , ŜM@A ]
	?5-$-#
678

− 5-$-#9-
:

+ a,++S3, + a,,,S3) 								A-		S	((ŜM@A , ŜM5A )
	?5-$0#
678

− 5-$0#9-
:

+ K@.S3, + K5.S3) 													A-		S	(	bŜM5A , ŜM5. c
&,																																																																																			A-		S ≤ ŜM5.

           (29) 

The economic interpretation for (29) is the following: in the first row, the first two terms represent 

the present value of the revenue stream less the operating costs for the region where both firms are 

active with policy Y, the third term is the switching cost less the salvage value related to policy X, 

which for the second-mover is a percentage (&) of the salvage value of the first-mover; in the second 

row, the first two terms represent the present value of the revenue stream less the operating costs for 

the region where the first-mover operates with policy Y and the second-mover operates with policy 

X, the third term represents the value of the option to switch to policy Y, and the fourth term represent 

the value of the option to divest; in the third row, the first two terms represent the present value of 

the revenue stream less the operating costs for the region where both firms operate with policy X, the 

third term comprises the value of the option to switch to policy Y plus the second-mover’s expected 

gain because the first-mover will switch first and, when it switches (S reaches ŜM@A ), the market share 

of the second-mover increases from @&$&# to @&$H#, the fourth term comprises the value of the option 

to divest plus the second-mover’s expected gain because the first-mover will divest first and, when it 

divest (S reaches ŜM5A ), the market share of the second-mover increases from @&$&# to @&$'#; in the 

fourth row, the first two terms represent the present value of the revenue stream less the operating 

costs for the region where the second-mover is alone in the original market, and the third and the 

fourth terms are the options to switch and divest, respectively (the former option is exercised if S 

increases reaching ŜM@.  and, the latter, is exercised if S decreases reaching ŜM5.  ); the term in the fifth 

row is the divestment value that is a percentage (&) of the divestment value of the first-mover. 
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From expression (29), we can obtain four value-matching conditions that ensure the continuity of the 

second-mover’s value function over the domain of revenue (S) values and two smooth-pasting 

conditions that ensure the differentiability of the value function at the decision thresholds (ŜM5.  and 

ŜM@. ). Therefore, we obtain an equation system with six equations and eight unknown variables 

(K@. 	,	K5. , a,++, a,,,, ŜM@. , ŜM5. , ŜM@A , ŜM5A ).  

The value-matching conditions are given by: 

	?C9.
$ 55$5#
678

− 55$5#95
:

− (. − &,) − 	?C9.
$ 5-$5#
678

+ 5-$5#9-
:

− K@.ŜM@. 3, − K5. ŜM@. 3) = 0           (30)  

	?C9.
# 5-$5#
678

− 5-$5#9-
:

+ K@.ŜM@A 3, + K5. ŜM@A 3) −
	?C9.
# 5-$-#
678

+ 5-$-#9-
:

− a,++ŜM@A 3, − a,,,ŜM@A 3) = 0  

(31) 

	?C9/
# 5-$-#
678

− 5-$-#9-
:

+ a,++ŜM5A 3, + a,,,ŜM5A 3) − 	?C9/
# 5-$0#
678

+ 5-$0#9-
:

− K@.ŜM5A 3, − K5. ŜM5A 3) = 0 

(32) 

	?C9/
$ 5-$0#
678

− 5-$0#9-
:

+ K@.ŜM5. 3, + K5. ŜM5. 3) − &, = 0           (33) 

The smooth-pasting conditions are the first derivatives of the value-matching conditions that include 

the second-mover’s thresholds ŜM@.  and ŜM5.  – Equations (30) and (33). 

	55$5#
678

− 5-$5#
678

− L+K@.ŜM@. 3,=+ − L,K5. ŜM@. 3)=+ = 0                             (34)  

5-$0#
678

+ L+K@.ŜM5. 3,=+ + L,K5. ŜM5. 3)=+ = 0                  (35) 

3.2 First-Mover  

The value function is given by (S  is declining):  
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-&,HA (S)US(0)	(	(ŜM5A , ŜM@A ) =
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⎪⎪
⎨
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⎧
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678

− 55#5$95
:
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678

− 55#-$9:
:

− (d − ,) + a++,S3, 								A-		S	((ŜM@. , ŜM@A ]
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678
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+ K@AS3, + K5A S3) 											A-		S	(	eŜM@A , ŜM5A 	c
,																																																																																						A-		S ≤ ŜM5A

        (36) 

The economic interpretation for (36) is the following: in the first row, the first two terms represent 

the present value of the revenue stream less the operating costs for the region where both firms operate 

with policy Y; in the second row, the first two terms represent the present value of the revenue stream 

less the operating costs for the region where the first-mover operates with policy Y and the second-

mover operates with policy X, the third term is the switching cost less the salvage value related to the 

divestment in policy X, the fourth term represents the first-mover’s expected value due to the fact that 

the second-mover switches after the first-mover and, when it switches (if S reaches ŜM@. ), the market 

share of the first-mover increases from @H#&$ to @H#H$; in the third row, the first two terms represent 

the present value of the revenue stream less the operating costs for the region where both firms operate 

with policy X, the third term is the option value to switch to policy Y, and the fourth term is the option 

value to divest; the term in the fourth row is the salvage value. 

From expression (36), we can obtain three value-matching conditions that ensure the continuity of 

the first-mover’s value function over the domain of revenue (S) values and two smooth-pasting 

conditions that ensure the differentiability of the value function at the first-mover’s thresholds (ŜM5A  

and  ŜM@A ). Therefore, we obtain an equation system with 5 equations and 8 unknown variables 

(a++,, K@A , K5A , ŜM5. , ŜM@. , ŜM5A , ŜM@A ).  

The value-matching conditions are given by: 

	?C9.
$ 55#5$
678

− 55#5$95
:

− 	?C9.
$ 55#-$
678

+ 55#-$9:
:

− a++,ŜM@. 3, = 0                     (37) 
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	?C9.
# 55#-$
678

− 55#-$9:
:

− (d − ,) + a++,ŜM@A 3, −
	?C9.
# 5-#-$
678

+ 5-#-$9-
:

− K@AŜM@A 3, − K5A ŜM@A 3) = 0    (38) 

	?C9/
# 5-#-$
678

− 5-#-$9-
:

+ K@AŜM5A 3, + K5A ŜM5A 3) − , = 0                 (39) 

The smooth-pasting conditions are: 

	55#-$
678

+ L+a++,ŜM@A 3,=+ −
	5-#-$
678

− L+K@AŜM@A 3,=+ − L,K5A ŜM@A 3)=+ = 0          (40) 

	5-#-$
678

+ L+K@AŜM5A 3,=+ + L,K5A ŜM5A 3)=+ = 0          (41) 

Combining Equations (30) to (35) and (37) to (41), we obtain an equation system with 11 equations 

and 11 unknown variables, from which we can obtain numerically the solutions for the unknown 

variables.  

3.3 Results  

This section reports our main findings and a sensitivity analysis on the effect of changes in the key 

model parameters on the decision thresholds and the option coefficients. Our results show that the 

thresholds of the two firms for both switch and divest obey  the sequence time condition described in 

Figure 3. The base case model inputs are those provided in Table 1. 

3.4 Sensitivity Analysis  

Figure 4a shows that the “idle” region (the region where the state variable is between the switch and 

the divest thresholds) increase with the uncertainty for both firms - that is, the switching thresholds 

of the two firms increase whereas the divesting thresholds decrease. Figure 4b shows that the idle 

region decreases as & increases. Figure 4c shows the effect of the second-mover’s market share 

advantage on the decision thresholds. Notice that, YLXF=0.35 means that when the first-mover 

switches to policy Y the second-mover will get a temporarily market share advantage (the first-mover 
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gets 35% of the market whereas the second-mover gets 65%). Therefore, we conclude that, an 

increase in YLXF delays significantly the switching of the second-mover and accelerates slightly the 

switching of the first mover. It also delays very slightly the divestment of both firms. Figure 4d shows 

that the idle region decreases for both firms as the operating costs associated with the incumbent 

policy increase, and that both firms divest or switch earlier as if the operating costs increase. 

Figure 4: this figure shows the sensitivity of the decision thresholds (switch and divest) of the first 

and the second movers to changes in some of the key variables of the Joint Formulation. VLJS and 

VFJS are the switching thresholds of the first-mover and the second-mover for the JOINT formulation, 

whereas VLJD and VFJD are the divesting thresholds of the first-mover and the second-mover for the 

JOINT formulation. 
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For the joint formulation, there are three important option coefficients which are new to the literature 

and, therefore, deserve our careful attention (a,++, a,,,, and a++,).  

Figure 5 shows the effect of changes in our model parameters on each of these option coefficients. 

Since the size of a++, and a,++ is significantly lower than that of a,,,, we show the sensitivity of the 

former two option coefficient in figures 5a to 5d and sensitivity of the latter option coefficient in 

figures 5e to 5h. Notice that, the coefficient a,++ comprises both the value of option to switch of the 

second-mover plus the second-mover’s expected gain due to the fact that the first-mover switches 

first to a small-scale policy and, when it switches (that is, S reaches ŜM@A ), the market share of the 

second-mover increases from @&$&#=0.5 to @&$H# = 0.6.  

The coefficient a++, comprises the value of the coefficient of the option to switch plus the first-

mover’s expected gain due to the fact that the second-mover will also eventually switch (after the 

first-mover) and, when it switches (if S reaches ŜM@. ), the market share of the first-mover increases 

from @H#&$ (40 percent) to @H#H$ (50 percent).  

Figure 5a shows that both of the above option coefficients increase with  uncertainty, which is in line 

with our expectations, and similar results are shown in figure 5b for the association of each of these 

coefficients with the second-mover’s salvage value disadvantage (&) and with the operating costs of 

the incumbent policy X, although the sensitivity of a,++ is significantly higher than that of a++,. The 

effects of the first-mover’s market share when it operates with policy Y and the second-mover 

operates with policy X (@H#&$) on the a++, and a,++ are, however, quite distinct. While the former 

coefficient decreases significantly with @H#&$, the latter increases significantly. Finally, figures 5e 

and 5f, and 5g and 5h, respectively, show that a,,, decreases significantly with the uncertainty and 

the first-mover’s market share (@H#&$), and increase in an almost linear way with both a decrease in 

the second-mover’s salvage value disadvantage (notice that & = 1 means that the salvage value 
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related to the divestment in policy X is the same for both firms) and an increase in the operating costs 

associated with policy X. 

Figure 5: this figure shows the sensitivity of the options coefficients (5'%%, 5''', and 5%%') of the first 

and the second movers to changes in some of the key variables of the Joint Formulation. Because the 

size of 5%%' and 5'%% is significantly lower than the size of 5''', we show the sensitivity of the former 

two option coefficient in figures (a) to (d), and the sensitivity of the latter in figures (e) to (h).  
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   (e)      (f) 

 
             (g)                (h) 

Figure A1 in the Appendix relies on the base case parameter values and compares the decision 

thresholds of the separate and the joint formulations and these thresholds with those we obtain from 

a separate and a joint formation when applied to a monopoly market. In Tables A1, Panels A, B, and 

C, we show a comparative sensitivity analysis between the two formulations.  Panel C also shows the 

base case option coefficients and thresholds using the joint formulation.  

4. Conclusion 

Is a joint formation model feasible, with a solution using joint option coefficients, which should be 

consider in mutually-exclusive option contexts? Are the results using a joint formulation model 
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significant in capital budgeting, that is are the thresholds justifying immediate action (divestment, or 

switching in our case) different from using the separate formulation? Can the joint formulation be 

extended to a duopoly with first mover advantages? What is the role of the serendipity options used 

herein? What are the implied partial derivatives of thresholds with respect to market shares at each 

stage? 

Relying on the above described theoretical findings, we conclude that: i) the joint formulation with 

option coefficients and thresholds is feasible and perhaps should be considered in many other 

contexts; ii) the action thresholds for capital budgeting for mutually-exclusive opportunities are 1/2 

or 3/4 of those determined using conventional real option theory; iii) extending the joint formulation 

to a duopoly is feasible and interesting, and introduces market share deltas for both option coefficients 

and thresholds; iv) the serendipity options are a novel concept with interesting implications; and v) 

market share derivatives are a new consideration, offering new perspectives on capital budgeting and 

management. 

A key contribution of this paper is the relevance and specification of the joint model, with proposed 

implementation, adding new coefficients in the value functions of the two firms (a++, and a,++ and 

a,,,) and to the appropriate value matching conditions. This was not shown in Décamps et al (2006), 

or other applications of the joint model such as Bobtcheff and Villeneuve (2010). Moreover, the 

thresholds are significantly different for the separate and joint formulation, as shown in our sensitivity 

analysis. Suppose capital budgeting using net present value (NPV) is 100 percent wrong as noted by 

Pindyck (1993). Using real options jointly the thresholds are 1/2 for switching of the separate Dixit 

(1993), and 3/4 for divestment for these parameter values. Therefore, the joint formulation makes a 

difference! The serendipity option values, and the other conventional option values, for both the 

separate and joint versions, are innovations.  
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The limitations of the model are that the joint formulation is hard to solve using some numerical 

techniques. The sensitivities to changes in a full range of parameter values has not yet been calculated 

for the joint formulation. There are extensions for the partial derivatives of all of the separate 

formulation thresholds and option coefficients, with plausible illustrations (and indicated hedging 

opportunities). Can this joint formulation approach be used for many other mutually-exclusive option 

contexts? The treatment of the serendipity options seems to us as a fertile area for future research. 
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Appendix  
 

Table A1: this table shows a sensitivity analysis on the effect of changes in our model parameters on the leader’s and the follower’s option coefficients and 
switching and divesting thresholds for the Separate formulation (Panel A) and the Joint formulation (Panel B). In the third row of Panel A, second row of Panel B, 
and third row of Panel C are our results for the base case, whereas in the rows after these rows are our results for the cases where ewe increase the model base case 
parameters values by 10%. 

SEPARATE 

FORMULATION  

(Panel A) 

 First-Mover Second-Mover 

Divest !!"#  !̂!"#  !!"$  !̂!"$  

Base case 350.45 6.00 339.90 4.40 

Notation Increase by 10% 

r 0.110 412.22 5.93 356.74 4.25 

! 0.033 351.30 6.20 343.83 4.54 

" 0.044 351.34 6.26 344.90 4.59 

# 0.333 253.43 4.12 260.25 5.61 

$ 0.440 350.44 6.00 347.16 4.44 

%! 11.000 407.40 6.40 416.41 4.80 

Z 27.500 378.31 6.20 347.16 4.44 

Panel B 
Switch !!%#  !̂!!#  !!%$  !̂!!$  

Base case 63.20 15.60 441.20 13.20 
Notation Increase by 10% 

r 0.110 101.01 14.66 461.70 11.79 

! 0.033 71.49 16.11 432.18 13.63 

" 0.044 81.28 16.78 418.90 14.20 

# 0.330 82.00 15.08 273.21 12.76 

$ 0.440 31.35 16.11 462.96 14.05 

%! 11.000 10.37 16.11 635.08 18.18 

%" 1.100 76.06 15.95 417.25 13.43 

Z 27.500 129.10 17.15 462.96 14.05 

& 35.200 75.83 14.79 341.67 12.31 

"&$'# 0.660 -92.30 10.23 344.07 10.07 
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JOINT 

FORMULATION  

(Panel C) 

 First-Mover Second-Mover 

Divest '#$  '%$ (&&' )̂(#$  )̂(%$  '#)  '%) ('&& (''' )̂(#)  )̂(%)  

Base case 258.0164 0.6628 0.2828 4.5238 6.9480 334.1445 0.0693 0.6101 151.7397 4.3283 10.2062 

Notation Increase by 10% 

                   r 0.110 289.0554 0.7378 0.3310 4.4734 6.7766  350.3832 0.0704  0.5539   168.4225 4.1857   9.4503 

! 0.033 264.1679 0.5517  0.2392  4.7194  7.3061  339.0275 0.0517 0.5133   156.1793 4.4814  10.7963 

" 0.044 266.0167 0.5178 0.2260  4.7847  7.4270 340.3979 0.0467 0.4842 
   

157.5551 
4.5317 10.9984 

# 0.333 196.8939 0.6456 0.3133 4.3696  7.3652 
  

253.7841 
0.0129 0.6121 120.5774 4.0799 11.6929 

$ 0.440 257.6464 0.6667 0.2856 4.5182  6.9401 339.9555 0.0848 0.6272 157.5162 4.3515 10.0366 

%! 11.000 284.1741 0.7858  0.2847 4.6003  6.7439 402.7385 0.1298    0.8558 162.6596 4.6488 10.0938 

%" 1.100 260.6983 0.6342  0.2776 4.5656  7.0737  335.0458 0.0582  0.5727 154.3828 4.3395 10.4033 

Z 27.500 270.8408 0.7266 0.2856 4.5600 6.8335  339.9555 0.0848  0.6586 153.7530 4.3515 10.0366 

& 35.200 276.1909 0.4835 0.2613 4.8080  7.9661  339.4706 0.0051 
  

0.3829 
170.4168 4.3946   11.6472 

+!)*$ 0.666 256.3181 
 

0.6813 
0.22962 4.4973 

 

6.9105 
 339.5045 0.0047   0.5481 157.3687 4.3950   9.4356 
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Figure A1: this figure shows our model divest and switch thresholds of the first-mover and second-mover for the separate and joint formulations (the two figures 
at the right-hand side), and the divesting and the switching thresholds for a monopoly, relying on the Dixit (1993) separate formulation and the Décamp et. al. (2006) 
joint formulation (the two figures at the left-hand side). For the separate formulation, #̂%"#  and #̂%"$  are, respectively, the first-mover and the second-mover divesting 
thresholds, and #̂%%#  and #̂%%$  are, respectively, the first-mover and the second-mover switching thresholds. #̂SX and #̂SD, and #̂SSX and #̂SSX are the decision thresholds 
for the divest and switch of the Separate formulation of Dixit (1993) and the Joint formulation of Décamps et al. (2006). 
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