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Abstract

We consider a model where the risk premium is varying. The risk pre-
mium is driven by a continuous time Markov chain, representing the state
in the economy, and the stochastic process generating the cash flows is a
Markov-modulated geometric Brownian motion. An existing firm is facing
the possibility of competitors entering the market, and due to this, cash
flows are limited at levels which are dependent on the state of the econ-
omy. This results in a regulated Markov-modulated geometric Brownian
motion, and the resulting accumulated supply can have jumps, something
that is not possible in a model with only one regime.
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1 Introduction

In many valuation problems it is assumed that the underlying value follows a
geometric Brownian motion. In this paper we revisit a problem considered in
Chapter 8 in Dixit & Pindyck [3] and in Grenadier [6] regarding the value of an
investment in the presence of competitors, generalizing it from the geometric
Brownian motion model used there, to a model where an observable Markov
chain determines the state of the economy. These ’regime-switching’ or ’Markov-
modulated’ models have been used to extend the irreversible investment problem
of McDonald & Siegel [15]; see e.g. Driffill et al [4], Guo [8], Guo & Zhang [9] and
Jobert & Rogers [13]. An early example of regime-switching models is given in
Hamilton [10]. In our models, we consider a regime-dependent, i.e. time-varying,
risk premium.

The fact that we introduce competitors in our model means that as the un-
derlying cash flow increases, at a given level it will be profitable for competitors
to enter the market. This results in two things: That the rent level is reflected
and that there is added supply. Mathematically, the cumulative supply curve is
a continuous increasing function. One simulated example of the reflected rent
level and the cumulative supply is given in Figure 1

Figure 1: Cash flows reflected in the level 100 (top trajectory) and the cumula-
tive supply created by firms entering the market when the cash flow level reaches
100 (lower trajectory). The unit on the y-axis refers to the cash flow value. This
decribes the case as in Chaper 8 of Dixit & Pindyck [3] and in Grenadier [6].

When there are regime shifts present, there will, in general, be different levels at
which it is profitable for firms to enter the market. There will still be reflection
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in the barriers, resulting in a continuously increasing cumulative supply, but as
the regimes shift, there could also be a jump in the supply (in contrast to the
one regime case, where there is only continuous increase in supply). Our regime-
switching models can be seen as a simplified and tractable way of modelling the
typically continous variation over time in risk premia. A common example of a
real life application of our model is the boom-and-bust cycles observed in many
commercial real estate markets. One example of simulated trajectories is given
in Figure 2.

The geometric Brownian motion model with one upper barrier, i.e. where
there is no switching, is studied in Bentolila & Bertola [1], and the mathematical
problem of a reflected Markov-modulated Brownian motion with (in general
state-dependent drift and diffusion) is studied in D’Auria & Kella [2].

Figure 2: The two-regime case (see Section 4 for details). In this simulation,
the cash flow processes are started at the same value, but the red one is only
reflected in the upper barrier with value 100, while the trajectory in blue shows
a process reflected in state-dependent levels; values 50 and 100 respectively. The
two lower trajectories represents the cumulative supply in the two cases (again,
the unit on the y-axis refers to the cash flow value).

The cash flow process is not assumed to be the price of a traded asset, which
means that we have two stochastic processes (the cash flow process and the
process marking the state of the economy), none of which is traded. The type
of models we consider are, in the laguage of mathematical finance, in general
incomplete. This means that there exists more than one equivalent martingale,
or pricing, measure. In order to choose which pricing measure to use, there
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are several principles available. In Elliott et al [5] Esscher transforms are used,
and in Siu [16] a general martingale representation is the starting point. In
both these approaches, the resulting measure is the minimal entropy martingale
measure (MEMM). In Siu & Yang [17] an Esscher transformation technique
which does not result in the MEMM is used. Our approach is to assume that
the dynamics of the process marking the state of the world is not changed, and
change the drift of the cash flow process using a state-dependent market price
of risk which is not determined within the model.

2 The model

2.1 General theory

We consider a complete filtered probability space (Ω,F, (Ft),P), where the fil-
tration is assumed to satisfy the usual assumptions of right-continuity and F0

containing all null sets of F. The pricing measure, or martingale measure, Q
is the equivalent measure we use when valuing cash flows. The expected value
under Q is denoted EQ. We assume the existence of a bank account with
constant interest rate r > 0, and we value cash flows by discounting them us-
ing r as discount rate and taking expectations under Q. We use the notation
EQx [·] = EQ [·|X0 = x].

The cash flows per time unit (e.g. the rent a building is generating) is given
by Pt, and the inverse demand function is

Pt = YtD(Qt),

where D(·) is a decreasing continuous function of accumulated supply Q and
(Yt) is a random shock. This modelling setup is used in e.g. Grenadier [6],
[7] and Chapter 8 of Dixit & Pindyck, and we refer to these and to references
therein for further aspects of this type of model. We assume that

Yt = eXt ,

where X is a continuous strong Markov process to be defined below. It follows
that

lnPt = lnYt + lnD(Qt) = Xt + lnD(Qt).

Defining
Zt = lnPt and Ut = − lnD(Qt)

we can write
Zt = Xt − Ut.

In Grenadier [6] the stochastic process (Xt) is assumed to be a Brownian motion
(so (Yt) is a geometric Brownian motion), and D(x) = x−1/γ for some γ > 0.

Let us first consider a model where D is a constant (thus independent of ac-
cumulated supply). This can be seen as the model above with γ =∞. Without
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loss of generality we set D = 1. In this case, the value of the incumbent firm is

v0(x) = EQx

[∫ ∞
0

e−rsYsds

]
= EQx

[∫ ∞
0

e−rseXsds

]
.

In the general case with a non-constant function D, the value of a producing
firm is

v(x) = EQx

[∫ ∞
0

e−rsPsds

]
= EQx

[∫ ∞
0

e−rseZsds

]
.

For a firm not in the market, the cost of entering the market is I > 0. Firms will
enter the market if it is profitable, and since there are infinitely many potential
entrants, the value of an incumbent firm will always satisfy v(x) ≤ I.

For any b ∈ R we set

Tb = inf{t ≥ 0 |Xt ≥ b},

and to shorten the notation we introduce

L(x; b) = EQx
[
e−rTb

]
.

In Grenadier [6], [7] these type of values are calculated by solving differential
equations, but we will use probabilistic methods. The first example of this
technique is in the proof of the following proposition. See also Harrison [11].

Proposition 2.1 With notation as above, assume that there exists a unique
level b0 such that

v0(b0)− v′0(b0)

L′(b0; b0)
= I. (1)

Then the value v(x) when (Xt) is starting at x ≤ b0 and is reflected in the upper
level b0 satisfies is given by

v(x) = v0(x)− (v0(b0)− I)L(x; b0), (2)

and satisfies
v(b0) = I. (3)

The level P̄ = eb0 is the level at which firms outside the market will enter the
market and the effect will be that the rent will never rise above the level P̄ .
Here is the proof of the proposition.

Proof. We recall the following version of Dynkin’s formula: For a strong time-
homogenous Markov process X such that

Ex

[∫ ∞
0

e−rs|f(Xs)|ds
]
<∞

define

u(x) = Ex

[∫ ∞
0

e−rsf(Xs)ds

]
.
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For any stopping time τ it holds that

u(x) = Ex

[∫ τ

0

e−rsf(Xs)ds

]
+ Ex

[
e−rτu(Xτ )1(τ <∞)

]
(4)

(see e.g Karlin & Taylor [14] p. 297 ff.). Using this version of Dynkin’s formula
with the stopping time Tb together with the facts that X = Z on [0, Tb] and
XTb = ZTb = 0 on {Tb <∞} yields

v(x) = v0(x) + (v(b)− v0(b))EQx
[
e−rTb

]
= v0(x) + (v(b)− v0(b))L(x; b).

With b = b0 we get

v(x) = v0(x) + (v(b0)− v0(b0))L(x; b0).

Differenting this and setting x = b0 yields

v′(b0) = v′0(b0) + (v(b0)− v0(b0))L′(b0; b0),

and this relation leads to

v(b0)− v′(b0)

L′(b0; b0)
= v0(b0)− v′0(b0)

L′(b0; b0)
= I

Since (Zt) is reflected at the level b0 we have

v′(b0) = 0,

from which it follows that
v(b0) = I,

and from this
v(x) = v0(x)− (v0(b0)− I)L(x; b0).

2

The strength with this approach is that we only need v0(x) and L(x; b) in order
to determine the value v of the firm facing competition: Find b0 by solving
Equation (1) and then insert this in Equation (2) to get v.

Remark 2.2 It follows from general diffusion theory that when

dXt = µ(Xt)dt+ σ(Xt)dWt,

then we can write

L(x; b) =
ψr(x)

ψr(b)
,

where ψr solves
σ2(x)

2
ψ′′r (x) + µ(x)ψ′r(r) = rψr(x).

From this we get

L′(b0; b0) =
ψ′r(b0)

ψr(b0)
.
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Example 2.3 Let us look at the case considered in Grenadier [6], where it is
derived using PDE’s (see also Chapter 8 in Dixit & Pindyck.). In Grenadier [6]
the cost is assumed to vary accoding to a geometric Brownian motion, but here
we only consider the solution when the cost is constant (it is possible to extend
the approach used here to the case with stochastic cost). Let

dXt = (µ− σ2/2)dt+ σdWt.

Then Yt = eXt satisfies
dYt = µYtdt+ σYtdWt.

In this case

v0(x) =
ex

r − µ
and

L(x; b0) = ea(x−b0),

where

a =
1

2
− µ

σ2
+

√(
1

2
− µ

σ2

)2

+
2r

σ2
> 1.

It follows that
L′(x; b0) = aea(x−b0) ⇒ L′(b0; b0) = a.

We want to find the rent level b0 that satisfies Equation (1), which in this case
can be written

eb0

r − µ
−

eb0

r−µ

a
= I ⇒ b0 = ln

(
a(r − µ)

a− 1
I

)
.

Finally, using Equation (2), we get

v(x) =
ex

r − µ
− I

a− 1

(
a− 1

a(r − µ)I

)a
eax.

2

2.2 Markov-modulated models

We now describe the Markov-modulated model we will use. Let (Jt) be a
continuous-time Markov chain with state space J = {1, 2, . . . , n} and constant
intensity matrix Π. Further let (Wt) be a Brownian motion independent of (Jt).
The dynamics of the underlying stochastic process is given by

dXt = µ(Xt, Jt)dt+ σ(Xt, Jt)dWt; X0 = x and J0 = j.

Given that the functions µ(x, j) and σ(x, j) satisfy some growth and continuity
conditions, the two-dimensional process (Xt, Jt) is a strong time-homogeneous
Markov process (see Chapter 2 in Yin & Zhu [18] for details). The generator A
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of (Xt, Jt) acting on a function f : R × J → R such that f(·, j) ∈ C2 for every
j ∈ J is given by

Af(x, j) = µ(x, j)
df(x, j)

dx
+

1

2
σ2(x, j)

d2f(x, j)

dx2
+ [Πf ](x, j),

where

[Πf ](x, j) =

n∑
i=1

Πjif(x, i)

(again, see Chapter 2 in Yin & Zhu [18]).
We assume that the dynamics of the Markov chain (Jt) is the same under

P and Q, i.e. the intensity matrix is the same under P and Q, and that the
measure change will change the dynamics of (Xt) according to

dXt = (µ(Xt, Jt)− λ(Xt, Jt)σ(Xt, Jt))dt+ σ(Xt, Jt)dW
Q
t ,

where WQ is a Q-Brownian motion and the Girsanov kernel λ : R × J → R
represents the market price of risk with respect to the risk in the Wiener process.

2.3 A Markov-modulated Brownian motion model

The specific model we use is

dXt = µP dt+ σdWt,

where µP ∈ R and σ > 0 are two constants; i.e. (Xt) is a Brownian motion with
drift under P. We further use a market price of risk λ that only depends on Jt:

dXt = (µP − λ(Jt)σ)dt+ σdWQ
t =: µ(Jt)dt+ σdWQ

t . (5)

This means that the market price of risk is constant in each state j, and does
not depend on any other quantity than the state. The ‘geometric’ version of
(Xt) is Yt = eXt , with explicit expression

Yt = Y0e
∫ t
0

(
µ(Js)−σ

2

2

)
ds+σWQ

t .

This represents the cash flows generated by an investment. We define the
stochastic process

V0(t) = EQx,j

[∫ ∞
t

e−r(s−t)Ysds

∣∣∣∣Ft] ,
representing the value at time t ≥ 0 of the stream of cash flows (Yt), and the
function

v0(x, j) = EQx,j

[∫ ∞
0

e−rsYsds

]
.

Here
EQx,j [·] = EQx,j [·|X0 = x, J0 = j] .
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Time-homogeneity and the Markov property implies that

V0(t) = v0(Xt, Jt).

The function v0 is in this case given by

v0(x, j) =

∫ ∞
0

e−rsEQx,j [Ys] ds

=

∫ ∞
0

e−rsEQx,j

[
e
x+
∫ s
0

(
µ(Ju)−σ

2

2

)
du+σWQ

s

]
ds

= ex
∫ ∞
0

e−rsEQx,j

[
e
∫ s
0
µ(Ju)du

]
ds

= exEQx,j

[∫ ∞
0

e−rse
∫ s
0
µ(Ju)duds

]
= ex

[(
rI −Π−D(µ)

)−1
1
]
j

= exh(j),

where
D(µ) = diag(µ(1), . . . , µ(n))

and
h(j) =

[(
rI −Π−D(µ)

)−1
1
]
j
.

Remark 2.4 The same formula will hold if we replace the constant σ with a
function σ(t, Jt) if the function σ(·, ·) is nice enough and under the assumption
that (Jt) and (Xt) are independent.

To calculate (rI − Π − D(µ))−1 we can use the fact that for a matrix A such
that (sI −A)−1 is well defined we have

(sI −A)−1 =
N1s

n−1 +N2s
n−2 + · · ·+Nn

sn + a1sn−1 + · · ·+ an
(6)

(see Hou [12] for a discussion and a simple proof of this result). The denominator
is the characteristic polynomial of A evaluated at s, and the matrices as well as
the constants can be determined by the recursions

N1 = I a1 = −trA
N2 = A+ a1I a2 = − 1

2 trAN2

...
...

Nn = ANn−1 + an−1I an = − 1
n trANn.

Example 2.5 Let us consider the function v0(x, j) = exh(j) when n = 2. With

Π =

[
−ν1 ν1
ν2 −ν2

]
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we let

A = Π +D(µ) =

[
µ1 − ν1 ν1
ν2 µ2 − ν2

]
.

Introducing

N1 = I a1 = ν1 − µ1 + ν2 − µ2

N2 =

[
ν2 − µ2 ν1
ν2 ν1 − µ1

]
a2 = µ1µ2 − µ1ν2 − µ2ν1,

(rI −A)−1 can be calculated using Equation (6), and this yields[
h(1)
h(2)

]
= (rI −Π−D(µ))

−1
1 =

1

r2 + a1r + a2

[
r + ν1 + ν2 − µ2

r + ν1 + ν2 − µ1

]
=

1

r2 + (ν1 − µ1 + ν2 − µ2)r + µ1µ2 − µ1ν2 − µ2ν1

[
r + ν1 + ν2 − µ2

r + ν1 + ν2 − µ1

]
.

Straightforward calculations yields

h(1) =
1

r − µ1 + ν1(µ1−µ2)
r+ν1+ν2−µ2

and

h(2) =
1

r − µ2 + ν2(µ2−µ1)
r+ν1+ν2−µ1

respectively. With

µ̃1 = µ1 +
ν1(µ2 − µ1)

r + ν1 + ν2 − µ2
= µ1 · α1 + µ2(1− α1),

where

α1 =
r + ν2 − µ2

r + ν1 + ν2 − µ2
∈ (0, 1],

we can write

h(1) =
1

r − µ̃1
=

1

(r − µ1)α1 + (r − µ2) · (1− α1)
,

and equivalently for h(2). Hence, the state dependent discount factors h(i) =
1/(r − µ̃i) are weighted harmonic means of the discount factors 1/(r − µ1) and
1/(r − µ2). 2

Now consider the case of a firm which operates in an environment where there is
a possibility of other firms to enter the market. The level at which entry happens
is dependent of the underlying state j = 1, . . . , n. For each j = 1, . . . , n we let
b(j) denote the level at which entry occurs if the state is j.1 The states are
ordered in the way so that

b(1) ≤ b(2) ≤ . . . ≤ b(n).

1The case n = 1 was considered above; there b0 = b(1).
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The stochastic process (Zt) regulated at the state-dependent barrier b(Jt) rep-
resents the cash flows to a firm acting in a market where there is entry of
competing firms when the price level reaches b(Jt).

The value of a firm in the market is given by

V (t) = EQx,j

[∫ ∞
t

e−r(s−t)Psds

∣∣∣∣Ft] .
Introducing the function

v(x, j) = EQx,j

[∫ ∞
0

e−rsPsds

]
we have,(again using the strong Markov property and time-homogeneity – see
Harrison [11] for details)

V (t) = u(Zt, Jt).

Now let (Xt) be the Markov-modulated process defined in Equation (5), and
define the cash flows generated by a firm when there are no potential competitors
by

Yt = eXt .

Futhermore let Z denote the regulated version of X, and let P denote the cash
flows for an incumbent firm when it faces the possibility of market entry from
competitors:

Pt = eZt .

Generalizing the version of Dynkin’s formula given in Equation (4) yields that
for any stopping time τ it holds that

v0(x, j) = EQx,j

[∫ τ

0

e−rseXsds

]
+ EQx,j

[
e−rτv0(Xτ , Jτ )1(τ <∞)

]
and

v(x, j) = EQx,j

[∫ τ

0

e−rseZsds

]
+ EQx,j

[
e−rτv(Zτ , Jτ )1(τ <∞)

]
.

Now let, with a slight abuse of previous notation,

Tb = inf{t ≥ 0|Xt ≥ b(Jt)} = inf{t ≥ 0|Zt = b(Jt)}.

Since X = Z on [0, Tb) we get

v(x, j) = v0(x, j)+EQx,j
[
e−rTbv(ZTb , JTb)1(Tb <∞)

]
−EQx,j

[
e−rTbv0(XTb , JTb)1(Tb <∞)

]
.

From Pt = eZt we get
0 ≤ Pt ≤ emaxj b(j),

so

0 ≤ v(x, j) ≤ emaxj b(j)

r
,
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from which it follows that

e−rTbv(ZTb , JTb) = 0 on {Tb =∞}.

We further assume that X is such that

e−rtv0(Xt, Jt)→ 0 as t→∞.

(It follows from Equation (6) that a sufficient condition for this is that µ(j) < r
for every j = 1, . . . , n.) Hence, we can write

v(x, j) = v0(x, j) + EQx,j
[
e−rTbv(ZTb , JTb)

]
− EQx,j

[
e−rTbv0(XTb , JTb)

]
.

The expected values can be written

EQx,j
[
e−rTbv(ZTb , JTb)

]
=

n∑
i=1

EQx,j
[
e−rTbv(ZTb , JTb)1(JTb = i)

]
=

n∑
i=1

v(b(i), i)EQx,j
[
e−rTb1(JTb = i)

]
and

EQx,j
[
e−rTbv0(XTb , JTb)

]
=

n∑
i=1

EQx,j
[
e−rTbv0(XTb , JTb)1(JTb = i)

]
=

n∑
i=1

EQx,j
[
e−rTbv0(XTb , i)1(JTb = i)

]
respectively. We know that when X is modelled according to Equation (5), then

v0(x, j) = exh(j),

so

EQx,j
[
e−rTbv0(XTb , JTb)

]
=

n∑
i=1

h(i)EQx,j
[
e−rTbeXTb1(JTb = i)

]
in this case. Letting

Li(x, j) = EQx,j
[
e−rTb1(JTb = i)

]
Hi(x, j) = EQx,j

[
e−rTbeXTb1(JTb = i)

]
we can write

v(x, j) = exh(j) +

n∑
i=1

v(b(i), i)Li(x, j)−
n∑
i=1

h(i)Hi(x, j).

We have the boundary conditions

v(b(j), j) = Ij and v′(b(j), j) = 0 for j = 1, . . . , n.
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It follows from the first set of boundary conditions that

v(x, j) = exh(j) +

n∑
i=1

IiLi(x, j)−
n∑
i=1

h(i)Hi(x, j) for j = 1, . . . , n.

This, in turn, leads to, using the second set of boundary conditions,

0 = eb(j)h(j) +

n∑
i=1

IiL
′
i(b(j), j)−

n∑
i=1

h(i)H ′i(b(j), j) for j = 1, . . . , n. (7)

In order to be able to find the value function v(x, j), we need to find the levels
b(1), . . . , b(n), and the functions L1(x, j), . . . Ln(x, j) and H1(x, j), . . . ,Hn(x, j).
The idea is to find general expressions for Li and Hi as functions of the levels
b(1), . . . , b(n), and then use the n boundary conditions (7) to find the levels.

Later on, we will consider the model under the following assumptions.

Assumption 2.6

• The number of states is two: n = 2.

• The cost of the investment is the same in both states: I1 = I2 = I.

Under these assumptions,

v(x, 1) = exh(1) + IL(x, 1)− h(1)H1(x, 1)− h(2)H2(x, 1)

v(x, 2) = exh(2) + IL(x, 2)− h(1)H1(x, 2)− h(2)H2(x, 2),

where for j = 1, 2

L(x, j) = L1(x, j) + L2(x, j) = EQx,j
[
e−rTb

]
.

The boundary conditions in Equation (7) simplifies to

0 = eb(1)h(1) + IL′(b(1), 1)− h(1)H ′1(b(1), 1)− h(2)H ′2(b(1), 1)

0 = eb(2)h(2) + IL′(b(2), 2)− h(1)H ′1(b(2), 2)− h(2)H ′2(b(2), 2),

3 Solving some hitting problems

3.1 General theory

The following result will be used to find the functions Li and Hi introduced
above. The proof is a straightforward generalization of the proof of Proposition
2 in Jobert & Rogers [13].
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Proposition 3.1 Let f = (f(·, 1), . . . , f(·, n)) be a bounded solution to the sys-
tem of ODE’s

σ2(x, j)

2

d2f(x, j)

dx2
+ µ(x, j)

df(x, j)

dx
− r(j)f(x, j) +

n∑
k=1

Πjkf(x, k) = 0 when x ≤ b(j)

f(x, j) = ψj(x) when x ≥ b(j).

Then

f(x, j) = Ex,j

[
e−
∫ τ
0
r(Ju)du

n∑
k=1

ψk(Xτ )1(Jτ = k)

]
, (8)

where
dXt = µ(Xt, Jt)dt+ σ(Xt, Jt)dWt

with (Wt) being a Brownian motion, (Jt) is a continuous time Markov chain
with generator Π = (Πij), i, j = 1, . . . , n independent of (Wt) and

τ = inf{t ≥ 0|X(t) ≥ b(J(t))}.

Proof. Let n ∈ Z+, An application of Ito’s formula yields

e−
∫ n∧τ
0

r(Ju)duf(Xn∧τ , Jn∧τ ) = f(x, j)

+

∫ n∧τ

0

(
Af(Xu, Ju)− r(Ju)f(Xu, Ju)

)
du

+Mn∧τ .

Since f solves the systems of ODE’s above, Af(Xu, Ju) = r(Ju)f(Xu, Ju) on
[0, n ∧ τ ], so

e−
∫ n∧τ
0

r(Ju)duf(Xn∧τ , Jn∧τ ) = f(x, j) +Mn∧τ .

Taking Ex,j [· · · ] of this equation, letting n→∞ and using bounded convergence
results in Equation (8). 2

3.2 Two states with a Brownian motion with drift

We now consider Proposition 3.1 when n = 2 and

r(1) = r(2) = r > 0.

We also let

Π =

[
−ν1 ν1
ν2 −ν2

]
,

and assume that X is a Brownian motion with drift, i.e.

µ(x, j) = µ(j) and σ(x, j) = σ(j) for j = 1, 2.

The same technique we use below has been used in e.g. Guo [8]. We have to
consider the three intervals (−∞, b(1)], [b(1), b(2)] and [b(2),∞).
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3.2.1 When x ∈ [b(2),∞)

On this interval
f(x, j) = ψj(x)

for j = 1, 2.

3.2.2 When x ∈ [b(1), b(2)]

Now
f(x, 1) = ψ1(x)

and

1

2
σ2(2)f ′′(x, 2) + µ(2)f ′(x, 2)− rf(x, 2) + ν2ψ1(x)− ν2f(x, 2) = 0.

The solution to this ODE is

f(x, 2) = A1e
γ1x +A2e

γ2x + g(x),

where g is the particular solution, γ1 < 0 < γ2 are solutions to the quadratic
equation

1

2
σ2(2)γ2 + µ(2)γ − r − ν2 = 0

and A1, A2 ∈ R.

3.2.3 When x ∈ (−∞, b(1)]

In this case

1

2
σ2(1)f ′′(x, 1) + µ(1)f ′(x, 1)− rf(x, 1)− ν1f(x, 1) + ν1f(x, 2) = 0

1

2
σ2(2)f ′′(x, 2) + µ(2)f ′(x, 2)− rf(x, 2) + ν2f(x, 1)− ν2f(x, 2) = 0.

It is known, see e.g. Remark 2.1 in Guo [8], that if the interest rate, the intensities
and the volatility are all strictly positive, then there exists constants β1 < β2 <
0 < β3 < β4 solving the quadratic equation(

1

2
σ(1)2β2 + µ(1)β − (r + ν1)

)(
1

2
σ(2)2β2 + µ(2)β − (r + ν2)

)
= ν1ν2,

and such that the general solution to the system of ODE’s can be written

f(x, j) =

4∑
k=1

Bjke
βkx

for Bjk ∈ R. In our cases, for j = 1, 2 the functions f(·, j) must be bounded as
x→ −∞, so

Bj1 = Bj2 = 0
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for every j = 1, 2, which leads to

f(x, j) = Bj3e
β3x +Bj4e

β4x.

Furthermore, we always have the relation

B2k = `kB1k

for known constants `k, k = 1, . . . , 4. We are only interested in the values `3
and `4:

`3 = −σ(1)2β2
3/2 + µ(1)β3 − (r + ν1)

ν1
and

`4 = −σ(1)2β2
4/2 + µ(1)β4 − (r + ν1)

ν1
.

( Hence, we can write

f(x, 1) = B13e
β3x +B14e

β4x

f(x, 2) = `3B13e
β3x + `4B14e

β4x.

3.2.4 The complete solution

To determine the constants A1, A2, B13 and B14 we use continuity of f(·, 2) at
b(2):

A1e
γ1b(2) +A2e

γ2b(2) + g(b(2)) = ψ2(b(2)),

continuity of f(·, j), j = 1, 2, at b(1):

B13e
β3b(1) +B14e

β4b(1) = ψ1(b(1))

and
`3B13e

β3b(1) + `4B14e
β4b(1) = A1e

γ1b(1) +A2e
γ2b(1) + g(b(1)),

and finally smoothness at b(1) for f(·, 2):

`3B13β3e
β3b(2) + `4B14β4e

β4b(2) = A1γ1e
γ1b(1) +A2γ2e

γ2b(1) + g′(b(1)).

Summarizing these relations we get the following system of equations:

A1e
γ1b(2) +A2e

γ2b(2) + g(b(2)) = ψ2(b(2))

B13e
β3b(1) +B14e

β4b(1) = ψ1(b(1))

B13`3e
β3b(1) +B14`4e

β4b(1) = A1e
γ1b(1) +A2e

γ2b(1) + g(b(1))

B13`3β3e
β3b(1) +B14`4β4e

β4b(1) = A1γ1e
γ1b(1) +A2γ2e

γ2b(1) + g′(b(1))

For given b(1) and b(2), this is a linear system of equations in A1, A2, B13 and
B14:

eγ1b(2) eγ2b(2) 0 0
0 0 eβ3b(1) eβ4b(1)

−eγ1b(1) −eγ2b(1) `3e
β3b(1) `4e

β4b(1)

−λ3eγ1b(1) −γ2eγ2b(1) `3β3e
β3b(1) `4β4e

β4b(1)




A1

A2

B13

B14

 =


ψ2(b(2))− g(b(2))

ψ1(b(1))
g(b(1))
g′(b(1))


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Remark 3.2 An important special case is when

ψj(x) = ϕ(x)δij for i, j = 1, 2.

With
fi(x, j) = Ex,j

[
e−rτϕ(Xτ )1(Jτ = i)

]
,

we get the following. When i = 1:

I f1(x, 1) = ϕ(x) f1(x, 2) = 0
II f1(x, 1) = ϕ(x) f1(x, 2) = A1e

γ1x +A2e
γ2x + g1(x)

III f1(x, 1) = B13e
β3x +B14e

β4x f1(x, 2) = B13`1e
β3x +B14`2e

β4x.

When i = 2:

I f2(x, 1) = 0 f2(x, 2) = ϕ(x)
II f2(x, 1) = 0 f2(x, 2) = C1e

γ1x + C2e
γ2x + g2(x)

III f2(x, 1) = D13e
β3x +D14e

β4x f2(x, 2) = D13`1e
β3x +D14`2e

β4x.

In order to calculate the optimal boundary values b(1) and b(2) we need the
following derivatives.

When i = 1:

I
II f ′1(x, 2) = A1γ1e

γ1x +A2γ2e
γ2x + g′1(x)

III f ′1(x, 1) = B13β3e
β3x +B14β4e

β4x

When i = 2:

I
II f ′2(x, 2) = C1γ1e

γ1x + C2γ2e
γ2x + g′2(x)

III f ′2(x, 1) = D13β3e
β3x +D14β4e

β4x

4 The value of the investment

4.1 The solution to the investment problem

We now want to find the value of an existing firm that faces the possibility of
other firms entering the market. We have

r(1) = r(2) = r, σ(x, 1) = σ(x, 2) = σ > 0 and µ(x, j) = µP − λ(j)σ,

and need to find the three functions L, H1 and H2 and the two constants b(1)
and b(2). The two cases we have to consider are

• ψj(x) = 1 for j = 1, 2.

• ψj(x) = exδij for i, j = 1, 2.
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We use the following parameter names:

Function ϕ(x) Parameters for i = 1 Parameters for i = 2
when x ∈ [b(1), b(2)] when x ∈ [b(2),∞)

1 A1, A2, B13, B14 A1, A2, B13, B14

ex Â1, Â2, B̂13, B̂14 Ĉ1, Ĉ2, D̂13, D̂14

We introduce the three parts I to III of R according to

I x ∈ [b(2),∞)
II x ∈ [b(1), b(2)]
III x ∈ (−∞, b(1)]

To solve for the unknown parameters we go through the following four steps:

1) The particular solution when ψ1(x) = ψ2(x) = 1 is

g(x) =
ν2

r + ν2
.

Hence, when x ∈ [b(1), b(2)] we have

L(x, 2) = A1e
γ1x +A2e

γ2x +
ν2

r + ν2
.

This gives

I L(x, 1) = 1 L(x, 2) = 1
II L(x, 1) = 1 L(x, 2) = A1e

γ1x +A2e
γ2x + ν2

r+ν2
III L(x, 1) = B13e

β3x +B14e
β4x L(x, 2) = B13`3e

β3x +B14`4e
β4x.

2) The particular solutions when ϕ(x) = ex are

g1(x) =
ν2e

x

σ2

2 + µ(2)− r − ν2
and g2(x) = 0.

respectively. This gives

H1(x, 2) = Â1e
γ1x + Â2e

γ2x +
ν2e

x

σ2

2 + µ(2)− r − ν2

and
H2(x, 2) = Ĉ1e

γ1x + Ĉ2e
γ2x.
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When i = 1, the solution is

I H1(x, 1) = ex H1(x, 2) = 0

II H1(x, 1) = ex H1(x, 2) = Â1e
γ1x + Â2e

γ2x + ν2e
x

σ2

2 +µ(2)−r−ν2
III H1(x, 1) = B̂13e

β3x + B̂14e
β4x H1(x, 2) = B̂13`3e

β3x + B̂14`4e
β4x,

and when i = 2, we get the solution

I H2(x, 1) = 0 H2(x, 2) = ex

II H2(x, 1) = 0 H2(x, 2) = Ĉ1e
γ1x + Ĉ2e

γ2x

III H2(x, 1) = D̂13e
β3x + D̂14e

β4x H2(x, 2) = D̂13`3e
β3x + D̂14`4e

β4x.

3) The two previous steps leads to the following system of equations:

A1e
γ1b(2) +A2e

γ2b(2) + ν2
r+ν2

= 1

B13e
β3b(1) +B14e

β4b(1) = 1
B13`3e

β3b(1) +B14`4e
β4b(1) = A1e

γ1b(1) +A2e
γ2b(1) + ν2

r+ν2

B13`3β3e
β3b(1) +B14`4β4e

β4b(1) = A1γ1e
γ1b(1) +A2γ2e

γ2b(1)

Â1e
γ1b(2) + Â2e

γ2b(2) + ν2e
b(2)

σ2/2+µ(2)−(r+ν2) = 0

B̂13e
β3b(1) + B̂14e

β4b(1) = eb(1)

B̂13`3e
β3b(1) + B̂14`4e

β4b(1) = Â1e
γ1b(1) + Â2e

γ2b(1)

+ ν2e
b(1)

σ2/2+µ(2)−(r+ν2)
B̂13`3β3e

β3b(1) + B̂14`4β4e
β4b(1) = Â1γ1e

γ1b(1) + Â2γ2e
γ2b(1)

+ ν2e
b(1)

σ2/2+µ(2)−(r+ν2)
Ĉ1e

γ1b(2) + Ĉ2e
γ2b(2) = eb(2)

D̂13e
β3b(1) + D̂14e

β4b(1) = 0

D̂13`3e
β3b(1) + D̂14`4e

β4b(1) = Ĉ1e
γ1b(1) + Ĉ2e

γ2b(1)

D̂13`3β3e
β3b(1) + D̂14`4β4e

β4b(1) = Ĉ1γ1e
γ1b(1) + Ĉ2γ2e

γ2b(1)

4) We have the following two equations from the property of zero derivative
at the hitting levels:

eb(1)h(1) + IL′(b(1), 1)− h(1)H ′1(b(1), 1)− h(2)H ′2(b(1), 1) = 0

eb(2)h(2) + IL′(b(2), 2)− h(1)H ′1(b(2), 2)− h(2)H ′2(b(2), 2) = 0.

5) We now have a system of 14 equations and 14 unknowns, which, at least
numerically, are possible to solve.
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4.2 A numerical example

We now consider the model from the previous section with the following param-
eter values:

µP = 0.10

σ = 0.30

r = 0.050

λ(1) = 1.0

λ(2) = 1.2

ν1 = 1.0

ν2 = 0.50

I = 100

The levels b(1) and b(2) are in this case given by

b(1) = 3.5889

b(2) = 3.5969.

In levels, we have

eb(1) = 36.1960

eb(2) = 36.4855.

The values for the two states are given in Figures 4.2 and 4.2.

Figure 3: The value in the two regimes, with parameter values as given in this
section. The blue curve is when j = 1, and the red curve when j = 2.
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Figure 4: The values of the two regimes zoomed in on the values close to eb(1) =
36.1960 and eb(2) = 36.4855. Again, blue is for j = 1 and red for j = 2. The
two circles show the points where the value functions reaches the cost I = 100
of investing.
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